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Introduction

The last few years have seen much fruitful research into the nature of functional
programming. Although there are still many important questions unanswered it
seems clear that we have reached a point at which it is appropriate to make avail-
able what we have found out so far to a larger community, in the form of stable
implementations of complete and well-documented programming languages.

Miranda1 is a functional programming language which has been developed
with this aim in mind. Given that there are still honest disagreements about
some quite fundamental questions amongst researchers in the field, we cannot
have a single vehicle. Miranda embodies one set of design decisions.

The basic ideas of Miranda are closely modelled on those of the earlier lan-
guages SASL [Turner 76, Richards 84] and KRC [Turner 82]. To arrive at a
system more suitable for tackling large problems Miranda adds to this founda-
tion (i) a polymorphic type system [Milner 78] and (ii) a library structure with
type secure facilities for separate compilation and linking. The major part of
this paper will be taken up with a discussion of the type system and in partic-
ular the facilities for user-defined types in Miranda, with other aspects of the
language and its programming environment being only briefly sketched.

In general approach Miranda is quite similar to HOPE [Burstall McQueen
& Sannella 1980]. The fundamental difference is that following SASL and KRC,
Miranda has a non-strict (i.e. “lazy”) semantics. There are two reasons for
this decision. The first is the authorś belief that a non-strict semantics is the
only one fully consistent with the principle of referential transparency [this is
argued in Turner 81]. The second and more practical reason is that the presence
of non-strict functions and infinite data structures seems to yield a richer and
more expressive language.

1‘Miranda’ is a trademark of Research Software Ltd.
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Miranda also has a somewhat terser style than HOPE — it uses fewer key-
words, and leaves rather more to be deduced by the compiler (the main example
of this being that the type system is based on inference rather than declaration).
Whether you like this or not is very much a matter of personal taste.

Overview of the Language

Miranda is a purely functional language, with no imperative features of any kind.
A program is a collection of definitions, of functions and other data objects,
written in the form of recursion equations. The order in which the definitions
are written is not in general significant — the definition of an object may come
later in the program than its first use for example. It seems inappropriate to call
a collection of equations a ‘program’, so we call it a ‘script’. There is a nested
block structure using where, and indentation of inner blocks is compulsory —
as in SASL the compiler uses the offside rule to determine the scopes of local
definitions.

foldr op z = g
where
g [] = z
g (a : x) = op a (g x)

product = foldr (*) 1
sum = foldr (+) 0
and = foldr (&) True
or = foldr (\/) False

example:- product[1,2,3,4] = 24

FIGURE 1
(Using a higher order function)

Note that ‘[]’ is the empty list, and that ‘:’ is infix cons on
lists. Note also that in Miranda an operator, such as ‘*’ or
‘+’ can be passed as a parameter by enclosing it in parentheses.
The ‘foldr’ function defined above is closely related to the
reduce operator of Backus.

A typical script is shown in Figure 1, which defines a higher order function
foldr and uses it to define a series of useful list-processing functions. Like KRC,
Miranda uses guarded equations rather than conditional expressions to express
case analysis. So the greatest common divisor function can be expressed:-

gcd a b = gcd (a-b) b, a>b
= gcd a (b-a), a<b
= a, a=b
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Case analysis can also be done by ‘pattern matching’ on the argument. The
reader will see an example of this in the definition of foldr shown in Fig 1,
where the auxiliary function g is defined by pattern matching.

Miranda also takes over from KRC the ‘..’ notation for arithmetic series, so
e.g. [1..10] is shorthand for the list [1,2,3,4,5,6,7,8,9,10]. In fact there
is a fairly rich syntax for expressing sequences of various kinds in a succinct
way. Some examples are given in Figure 2.

nats = [1..]

evens = [2,4..]

negs = [-1,-2..]

fibs = [a | (a,b) <- (1,1), (b,a+b)..]

primes = sieve [2..]
where
sieve(p : x) = p : sieve[n<-x | n rem p ~= 0]

FIGURE 2
(Some Miranda notation for infinite sequences)

Notations for both list-abstraction and set-abstraction are provided, and
distinguished by using square brackets [...] for lists, and braces {...} for
sets. As an example of the conciseness of set expressions we offer the follow-
ing Miranda expression, which searches for counter-examples to Fermatś Last
Conjecture:-

{ [a,b,c,n] | a,b,c,n <- [3..]; a^n + b^n = c^n }

The Miranda compiler is embedded in an interactive system (implemented under
UNIX2 providing access to a screen editor, an on line reference manual and
an interface to UNIX. There is support for a program library structure with
fully automatic and type secure facilities for separate compilation of library
components. (Users do not need to be aware that object files exist, since they
are kept up to date by the system.)

The library structure is quite powerful and has some similarities to [Mc-
Queen 84] but within the framework of a somewhat simpler mechanism. A full
description of the language and its programming environment is in preparation.

The type system

In Miranda it is not required to declare the types of functions and other ob-
jects. The language is, however, strongly typed. The types are deduced by the

2UNIX is a trademark of Bell Laboratories.
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compiler from the information in the script. This is done using a method based
on [Milner 78].

Miranda notation for types (which is very close to that of the original version
of ML [Gordon et al 1979]) is shown in Figure 3. Note that there is a single type
‘num’, which comprises both integers and floating point numbers, the distinction
between these being handled at run time. (This was done to avoid the necessity
of having two sets of arithmetic operators, given that it would greatly complicate
the algorithm for inferring types if it had to cope with overloaded operators.)

The primitive types, in addition to num, are bool (comprising True and
False) and char, which is the ascii character set, written using the same con-
ventions as in “C”.

Notice that a strongly typed language has to distinguish between lists, such
as [1,2,3,4], whose elements must all be of the same type, and tuples such as
(1,True,’@’), whose elements can be of mixed type. List processing operations
work only on lists — with a tuple, you can do little, except pass it around and
extract its elements by pattern matching. Tuples correspond to what are usually
called ‘records’ in an imperative language.

Types can in general be polymorphic, so for example if we define the identity
function:-

I x = x

the type deduced for this will be (we use ‘::’ to mean ‘is of type’)

I :: *->*

where the ‘*’ stands for an arbitrary or unknown type.
It is permitted to specify the types of functions and other objects in the

script, and if this is done the compiler will check that the types are correctly
given. Very occasionally it is necessary to give the system type information it
could not deduce for itself (a situation of this kind is discussed in [Mycroft 84]).

A certain level of type information in the script is desirable for documenta-
tion purposes, even though the compiler does not need it. One of the options
available is to have the compiler insert the types for you, after it has deduced
them.

An interesting consequence of letting the compiler discover the type of your
function, is that it may tell you that it has a more general type than you realised.
For example the type deduced by the system for ‘foldr’ (see Figure 1) is

(*->**->**)->**->[*]->**

which reveals that the operator supplied to foldr can be unsymmetrical, which
is something that most people miss when they are shown its definition.

The type system in Miranda serves two purposes. First it permits a signifi-
cant proportion of programming errors to be detected at compile time. Secondly
it provides a foundation on which to erect a system of user-defined types. It is
these that are the main subject of this paper.
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primitive types

num bool char

function types

T1 -> T2

examples:- sqrt :: num->num
+ :: num->num->num

list types

[T]

examples:- [char] ||strings
[[num]] ||matrices
[num->num] ||a list of functions like ‘sqrt’

tuple types

(T1, ... ,Tn)

example:- (1,True,’@’) :: (num,bool,char)

generic type variables

* ** *** ... etc.

examples:- map :: (*->**)->[*]->[**]
reverse :: [*]->[*]

FIGURE 3
(Miranda notation for types)

Note that ‘->’ is right associative, and functions of >1
argument are normally regarded as being ‘curried’, e.g. see the
type of ‘+’ above. Note also that types can be enclosed in
parentheses for grouping. See for example the type of ‘map’
above. There is no conflict between this convention and the use
of parentheses in tuple types, because Miranda has no concept of
a 1-tuple.
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User defined types

We now discuss the facilities available in Miranda for user-defined types. There
are three mechanisms — (i) type synonyms, (ii) algebraic types, (iii) abstract
types.

Type synonyms

This permits the user to introduce a name for an already existing type (we use
‘==’ for these definitions, to distinguish them from ordinary value definitions)
thus

string == [char]

makes string a synonym for the type [char]. We can also introduce names
for operators over types, this is done by using generic type variables as formal
parameters, as in

f2 * == *->*->*

So now f2 string will mean [char]->[char]->[char], for example. Obvi-
ously type operators of any arity can be defined in this style by introducing
enough generic type variables into the definition.

[Note In Miranda the ‘==’ symbol is always used when we have to bind an
identifier to a type. This turns up in two other places — when implementing
an abstract type (see below) and also when passing a type into a parameterised
script via an include directive (this is part of the library mechanism, not dis-
cussed here). A type binding not associated with one of these special contexts
is treated as introducing a synonym — these are entirely transparent to the
typechecker.]

The ability to introduce abbreviations for types is likely to be less important
in Miranda than it might be in some other languages, because the type system is
primarily based on inference rather than explicit declaration. The type synonym
facility was included, however, because it seemed that the language would be in
some sense incomplete without it. Being able to rename types is also sometimes
useful for documentation purposes.

Algebraic data types

The basic method of introducing a new concrete data type, as in a number of
other languages, is to declare a free algebra. In Miranda this is done by an
equation using the symbol ‘::=’,

tree ::= Niltree | Node num tree tree

being a typical example. This introduces three new identifiers, ‘tree’ which is a
new type, ‘Niltree’ which is a tree-constructor of no arguments (i.e. an atomic
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tree), and ‘Node’ which is a tree-constructor of type: num->tree->tree->tree.
The idea of using free algebras to define data types has a long and respectable
history [Landin 64], [Burstall 69], [Hoare 75]. We call it a free algebra, because
there are no associated laws, such as a law equating a tree with its mirror image.
Two trees are equal only if they are constructed in exactly the same way.

Note that we do not need names for the recognisers and selectors correspond-
ing to each constructor (such as ‘isnode’, ‘label’, ‘left’, ‘right’ for nodes) because
we can do pattern matching on the constructors. For example we can define a
function of type (tree->num) for summing all the labels in tree, thus

sumlabs Niltree = 0
sumlabs (Node a x y) = a + sumlabs x + sumlabs y

Since an ‘::=’ can introduce a type with any number (≥ 1) of constructors, each
of which has any arity (≥ 0), algebraic types are a very general idea. Among
the possibilities subsumed, are enumerated scalar types (as in PASCAL)

day ::= Mon | Tue | Wed | Thur | Fri

and also unions

boolint ::= Left bool | Right int

This is a labelled disjoint union. The other possible kind of union (coalesced
union, as in Algol 68), is not present in Miranda, and (at least in the author’s
view) is not missed.

The subject of an algebraic type definition can be made a family of types,
rather than just a single type, by introducing an appropriate number of generic
type variables as formal parameters of the definition. So we can revise our
earlier definition of trees to allow trees with labels of arbitrary type, built with
polymorphic constructors, by writing

tree * ::= Niltree | Node * (tree *) (tree *)

This introduces an infinite family of types, of which ‘tree int’, ‘tree bool’,
‘tree(num->num)’, are typical members. This definition of trees is exploited in
Figure 4 to define a polymorphic version of the well known tree-sort algorithm.
(Note the use of ‘foldr’, defined earlier.)

It is interesting to note that algebraic type definitions could be used to define
all the basic data types of the language, e.g.

nat ::= Zero | Suc nat
bool ::= True | False
list * ::= Nil | Cons * (list *)

gives us respectively (natural) numbers, booleans and lists with arbitrary ele-
ments. That we make numbers and certain other data types primitive to Mi-
randa is therefore from considerations of convenience and efficiency, not logical
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tree * ::= Niltree | Node * (tree *) (tree *)

sort :: [*]->[*]; build :: [*]->tree *; flatten :: tree *->[*];
|| these types would be deduced by the compiler anyway, but
|| we include them as documentation

sort = flatten.build

build = foldr insert Niltree
where
insert b Niltree = Node b Niltree Niltree
insert b (Node a s t) = Node a (insert b s) t, b<=a

= Node a s (insert b t), b>a

flatten Niltree = []
flatten(Node a s t) = flatten s ++ [a] ++ flatten t

FIGURE 4
(The tree sort algorithm in Miranda)

Note that in Miranda the comparison functions, > >= = ~= <= <,
are polymorphic and impose a built in ordering on every (finite)
type. On numbers and characters this is the natural ordering,
and on other data types it is defined lexicographically (in the
case of [char] for example it gives us the usual dictionary
order). The tree sort algorithm given above is therefore
polymorphic, and will sort lists with any finite element type.
The infix operator ‘++’ denotes the append operation on lists.
The infix operator ‘.’ is functional composition.
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necessity. The primitive data types of the language may be regarded as having
been introduced by ‘::=’ definitions, but with some special syntax that allows
us to write ‘3’ instead of Suc(Suc(Suc Zero)), ‘[]’ instead of Nil, and so on.

The apparatus briefly rehearsed above (many-sorted free algebras, plus poly-
morphism) is in no way peculiar to Miranda. Exactly the same apparatus (up
to trivial differences in syntax) is to be found both in the functional language
HOPE and in the procedural language ML.

In Miranda, however, the power of the apparatus is increased because the
constructor functions are (in default of information to the contrary) taken to be
non-strict. As a result, recursively defined types, such as ‘tree’, here include
infinite objects. As an object of type ‘tree num’ we have

big = Node 1 big big

the (complete) infinite binary tree, with 1 as the label at every node.
A more interesting example is that from the BNF of a context free language

we can easily write some equations to construct a tree containing all possible
sentences of the language (which we can then search for sentences with a given
property). The presence of infinite data structures has a far reaching effect
on programming style, the ramifications of which we have hardly begun to
explore. (Consider for example the possibility of representing real numbers as
infinite Cauchy sequences.) The author is convinced that the possibilities opened
up by the use of infinite data structures form an essential part of functional
programming.

Infinite objects are not always required in a recursively defined data type.
If we are setting up an account of natural numbers from first principles, the
infinite object defined by ‘x = Suc x’ is an unwelcome intrusion into the theory.
Miranda provides a means to control this, by writing ‘!’ after a field in an
algebraic type definition, to indicate that the constructor is strict in that field.
For example ordinary LISP type lists (which must be finite) may be introduced
by the definition

lisplist * ::= Nil | Lispcons *! (lisplist *)!

which makes ‘Lispcons’ strict in both its arguments. Notice that either of the
strictifying symbols may be present or absent independently of the other, giving
us four possible accounts of the list data type, which comprise in addition to
ordinary finite lists and fully lazy lists, two interesting intermediate forms of
partial laziness.

[Note Readers familiar with domain theory will have recognised that there
is a simple isomorphism between a ‘::=’ definition and the corresponding do-
main equation, and that ‘!’ is an operator which cuts the bottom element from
a domain before including it in the construction. This gives the Miranda pro-
grammer fine control over the structure of his data types. It is intended that
future implementations of Miranda will exploit this extra information to con-
struct more efficient representations of data objects.]

The naive user, who does not use ‘!’ in his type definitions, gets the failsafe
option in which all the infinite objects are available if he wants to use them.
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Unfree algebras

Miranda also offers a facility for defining algebraic data types with associated
laws. Laws are special equations using ‘=>’ which can accompany an algebraic
type definition. This greatly extends the scope of algebraic types. We take an
example — suppose we wish to define from first principles a type containing the
integers (positive, negative and zero). We could write

int ::= Zero | Suc int | Pred int

As a free algebra this is wrong. We have e.g. ‘Zero’, ‘Suc (Pred Zero)’ and
‘Pred(Suc Zero)’ as three different objects whereas we really want them all
to be the same. We have too many objects in the type. We can fix this by
writing after the type definition, the following laws

Suc (Pred n) => n
Pred (Suc n) => n

These laws are simplification rules which will be used (if applicable) whenever
an object of type ‘int’ is created. The effect of the laws is that certain objects
which would otherwise have been distinct are reduced to a common form. The
object ‘Suc(Pred Zero)’ is no longer part of the data type, because it will be
simplified to ‘Zero’ as soon as we try to form it.

[Note Readers acquainted with domain theory will again recognise a familiar
idea at work here, namely that we can form one type from another by means
of a retract. Here the retract is built into the definition of the type in such a
way that it is the retracted type, rather than the original one, which comes into
being.]

All the standard textbook examples of data types with constraints (balanced
trees, ordered lists etc) can be represented in Miranda as algebraic data types
with appropriate laws. For example we can define ordered lists as follows

ordlist ::= Onil | Ocons num ordlist
Ocons a (Ocons b x) => Ocons b (Ocons a x), a>b

Note the use of the guard ‘a>b’ in the statement of the law. Objects of type
‘ordlist’ automatically retain themselves in ascending order as they are built.
(The effect of the law is that each element ripples down to the right place in the
list as it is added.) To see how this works, it is necessary to understand that
the law is invoked whenever ‘Ocons’ is applied, including therefore on the rhs
of the law itself.

[The exact effect of the mechanism can be explained as follows. Let us
introduce a different identifier, ‘OCONS’ say, to refer to the constructor of the
original free algebra. Then we define a function ‘ocons’ as follows

ocons a (OCONS b x) = ocons b(ocons a x), a>b
ocons a x = OCONS a x ||otherwise
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rational ::= Ratio num num
Ratio a b => error "bad ratio", b=0 \/ ~integer a \/ ~integer b

=> Ratio (-a) (-b), b<0
=> Ratio (a div h) (b div h), h>1

where
h = hcf (abs a) (abs b)
hcf a b = hcf (a-b) b, a>b

= hcf a (b-a), a<b
= a, a=b

Ratio a b $rat_plus Ratio c d = Ratio (a*d+c*b) (b*d)
Ratio a b $rat_minus Ratio c d = Ratio (a*d-c*b) (b*d)
Ratio a b $rat_mult Ratio c d = Ratio (a*c) (b*d)
Ratio a b $rat_div Ratio c d = Ratio (a*d) (b*c)
rat_recip (Ratio a b) = Ratio b a
whole (Ratio a b) = (b=1)
|| etc...

FIGURE 5
(Rational numbers: an algebraic data type with laws)

Note the use of the function ‘error’ in the first law, to
eliminate malformed rationals. The result of applying ‘error’
to a string is an object which possesses every type (i.e. is of
type ‘*’ and is semantically indistinguishable from bottom (i.e.
non-termination). Note also that there is in Miranda a class of
user defined infix operators, of the form ‘$identifier’. Any
identifier can be turned into an infix, at any time, simply by
prefixing it with the ‘$’ sign.

Throughout the rest of the program, whenever ‘Ocons’ occurs on the left, in a
pattern match, we read it as the constructor ‘OCONS’, but if it occurs on the
right it is a reference to the function ‘ocons’ defined above.]

A definition in Miranda of a more complex algebraic type, rational numbers,
is shown in Figure 5. The effect of the laws is to ensure that a rational is always
represented in its lowest terms.

Abstract data types

Many of the data types which in other languages would have to be expressed
as abstract data types can be represented in Miranda as algebraic data types
with associated laws. Nevertheless there is still a need for abstract data types,
as may be seen from the following example (which is based on a use of abstract
data types in the LCF system [Gordon et al 79]).
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Suppose we are interested in writing programs to derive theorems in a formal
system of inference. Such a system would typically be organised as follows.
There is a class of wffs (well formed formulae), which are correctly formed
propositions of the theory. These can be defined by giving a grammar, say.
Theorems are a distinguished subset of wffs, which are generated inductively
from axioms by using rules of inference. For example in the standard formulation
of propositional logic, there is an axiom which says that for any wffs A B, it is a
theorem that: A implies (B implies A). There are two more axioms, and a single
rule of inference (modus ponens) which enables us to derive new theorems from
existing ones.

We would like to use the type system to guarantee that a well typed program
cannot, even accidentally, make an invalid inference. One way to do this would
be to define proof as an algebraic data type (a proof is a kind of tree with
instances of the axioms as its leaves) and we could easily do this in such a way
that only valid proofs are permitted by the type definitions. Proofs are rather
large objects, however, so let us suppose we decide not to do things this way.
Instead of collecting proofs we decide to collect theorems. Now we need an
abstract data type.

Theorem is an abstract data type based on wff. A theorem looks like a wff,
but has been lifted to a higher world (think of it as being dyed blue). The
entrances to this higher world are closely guarded (as in general are the exits,
although that is not relevant in this example.) The only way create a blue
object is either by using an axiom, or by applying a rule of inference to objects
that are already blue.

This is illustrated in Figure 6, which is a complete implementation of the
notion of theorem-of-propositional-logic as an abstract data type in Miranda.
First we define wff as an algebraic data type. Then we declare that theorem
is an abstract data type, and give a list of the identifiers which implement it
together with their types (this list is called the signature of the abstract data
type).

Notice that the information that theorem is based on wff is not given in
the abstype declaration, nor any other information about how the objects
mentioned in the signature are implemented. (Methodologically, this is surely
right — in order to take delivery of an abstract object, it is not necessary to
know anything about its internal representation.)

The implementation equations (the fact that a theorem is really a wff, the
definitions of axiom1, axiom2, and so on) are given separately. This does not
have to be immediately after the abstype declaration, it could be somewhere
else in the same script. (Nor do the bindings for theorem, axiom1, axiom2, etc
have to be given together — they could be scattered about the script, although
stylistically that would be bad practice.)

Although the idea of an abstract data type is now standard, the reader will
see from the example that the way in which they are presented in Miranda
(compared with say ML or HOPE) involves some innovations. The first, and
minor deviation is that we have separated the declaration of the signature of an
abstract data type from the statement of how it is implemented, treating these
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wff ::= Var[char] | wff $Implies wff | Not wff

abstype theorem
with axiom1, axiom3 :: wff->wff->theorem

axiom2 :: wff->wff->wff->theorem
modus_ponens :: theorem->theorem->theorem
contents :: theorem->wff

theorem == wff
axiom1 a b = a $Implies (b $Implies a)
axiom2 a b c = (a $Implies (b $Implies c))

$Implies ((a $Implies b) $Implies (a $Implies c))
axiom3 a b = Not (a $Implies b) $Implies (Not b $Implies Not a)
modus_ponens a (a $Implies b) = b
contents x = x

FIGURE 6
(Data type abstraction in Miranda - creating ‘theorem’ from ‘wff’)

as distinct syntactic acts.
More significant is that the abstract data type mechanism used in Miranda

does not require the division of the program into two regions (the inside and
outside of a capsule, say) such that in one region the the programmer has access
to conversion functions (called ‘abs_theorem’ and ‘rep_theorem’, say) permit-
ting him to move at will between the abstract type and its representation, while
in the other region these are hidden from him. The mechanism used in Miranda
is transparent, in that all the identifiers involved are visible throughout the
script. The security of the abstract data type here depends, not on the hiding
of declared identifiers, but on the fact that explicit acts of conversion between
the abstract type and its representation are nowhere permitted.

The idea behind the mechanism is that all the information necessary to
carry out the abstraction can be deduced from the signature, together with the
concrete binding given for the abstract type. By substituting the latter into the
former we can infer a second signature. Call these the abstract and the concrete
signature, respectively. By comparing them systematically the compiler can
infer what type conversions are necessary to support the abstraction, and where
in the text they must be inserted. (The actual implementation technique is less
clumsy than this, but has the same effect. See Further remarks below)

The advantages (in terms of security and convenience) of having the conver-
sion functions installed by the compiler rather than the user, should be clear. It
might be argued however, that this is pushing just too much onto the compiler
and will lead to difficulties (perhaps that users will not understand the implica-
tions of what they are doing). The method of defining abstract data types must
be regarded as one of the more experimental features of Miranda, and only after
a period of experience with the language will we be in a position to say where
the balance of advantage lies.
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abstype stack *
with empty :: stack *

isempty :: stack *->bool
push :: *->stack *->stack *
pop :: stack *->stack *
top :: stack *->*

stack * == [*]
empty = []
isempty x = (x=[])
push a x = a:x
pop(a:x) = x
top(a:x) = a

FIGURE 7
(A polymorphic type abstraction in Miranda)

We here define ‘stack’ to be an abstract type based on lists.
Outside of the implementation equations, any attempt to access a
stack using list operators will be rejected as illegal.

A second and more familiar example of an abstract data type is given in
Figure 7, where we give an abstype declaration for stacks, together with the
obvious implementation in terms of lists. Note that in this example the abstract
type is a polymorphic one.

It is also permitted following an abstype to introduce several abstract data
types — in this case, after the with we must give a collective signature for all
of them. It is necessary to be able to do this because in general, abstract data
types occur in groups (think of e.g. ‘graph’, ‘node’, ‘edge’).

A nice fact about data type abstraction in Miranda is that it involves no run-
time penalty. The responsibility for enforcing distinctions such as that between
‘theorem’ and ‘wff’ can be discharged entirely at compile time. At run time a
theorem is just another wff, and is represented in the same way. So we can build
layer upon layer of abstract data types in our programming, without thereby
incurring any loss of efficiency.

Note that the mechanism for data type abstraction which is presented here
is inextricably bound up with strong (i.e. compile time) typing. There would
seem to be no equivalent mechanism available in a language which delays its
type checking until run time. By contrast, the traditional account of data type
abstraction as an act of encapsulation would appear to be equally applicable to
both strongly and weakly typed languages.

By ‘encapsulation’ (as a method of defining an abstract data type) we mean
the process of defining within a local scope, some functions or other objects
which involve a locally defined type, and then exporting them to a place where
the type, or some of the facts about the type, are unknown. In Miranda to
create an abstract data type in this way is always an illegal act. (This is a
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consequence of the scope rules for type identifiers — the rules are quite simple,
but we will not go into them here.)

If you want to define an abstract data type, you must use the abstype
mechanism.

Further remarks on type abstraction

Since the presentation of data type abstraction in Miranda is somewhat non-
standard we offer some additional explanatory remarks.

How to typecheck a script containing an abstype declaration (sketch):- First
we use the binding of the abstract type to its representation type to compute
the concrete signature from the abstract signature. The binding of the abstract
type to the representation type is then suppressed — from now on ‘theorem’
and ‘wff’ (or ‘stack’ and ‘list’, or whatever) are treated as two distinct and un-
related types throughout the script. Each identifier in the signature now has
two types, a concrete type and an abstract type. When typechecking the im-
plementation equations each such identifier is regarded as having been declared
with its concrete type; when typechecking the rest of the script (i.e. outside
the implementation equations) it is regarded as having been declared with its
abstract type. All other identifiers in the script (i.e. those not listed in the
signature) are treated as having the same type everywhere. (end of sketch)

It is interesting to note that if you take the complete Miranda script con-
taining an abstract date type declaration like that of figure 6 and remove from
it just the ‘abstype ... with <signature>’ part, leaving everything else intact,
including the implementation equations, the resulting script is still well-typed
and describes exactly the same computations as before, but now has a coarser
type structure — ‘theorem’ has collapsed back into ‘wff’.

This observation seems to throw light on the real purpose of introducing
type abstractions into our program. It is to provide the compiler with more
information about what we are doing, so that it can impose a finer type structure
on the program. (So we see that here, data type abstraction should not be
thought of as a matter of hiding information — quite the reverse.)

A good question is whether it is always the case that a well typed Miranda
script remains well typed when you remove all abstype statements from it. The
answer is no, because of the existence of mutually recursive acts of data type
abstraction, such as when two abstract data types are declared, each having an
implementation based on the other. (Although this sounds pathological, it is
possible to produce useful examples of this phenomenon, and they are handled
correctly by the compiler.) In such a case, when the abstype information is
removed, so that the abstract types and their representations are collapsed back
together, the resulting script will contain an infinite cycle in its type structure,
which will be rejected by the compiler. (It was a deliberate decision in the
design of Miranda, following the example of ML, that the creation of cycles in
the type structure is not permitted except via an abstype or ‘::=’ declaration.)

A final note — there is a systematic way of translating an ML-style abstype
declaration, using encapsulation, into an equivalent Miranda script, using the
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transparent style of abstype declaration (and vice versa). [We leave this as an
exercise for the reader!]
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