
A critique of Abelson and Sussman
- or -

Why calculating is better than scheming

Philip Wadler
Programming Research Group

11 Keble Road
Oxford, OX1 3QD

Abelson and Sussman
is taught [Abelson and Sussman 1985a, b].

Instead of emphasizing a particular programming language, they emphasize standard
engineering techniques as they apply to programming. Still, their textbook is
intimately tied to the Scheme dialect of Lisp. I believe that the same approach used
in their text, if applied to a language such as KRC or Miranda, would result in an
even better introduction to programming as an engineering discipline. My belief has
strengthened as my experience in teaching with Scheme and with KRC has
increased. -

This paper contrasts teaching in Scheme to teaching in KRC and Miranda,
particularly with reference to Abelson and Sussman's text. Scheme is a

"~dly-scoped dialect of Lisp [Steele and Sussman 19781; languages in a similar
style are T [Rees and Adams 19821 and Common Lisp [Steele 19821. KRC is a
functional language in an equational style [Turner 19811; its successor is Miranda
[Turner 1985k languages in a similar style are SASL [Turner 1976, Richards 19841
LML [Augustsson 19841, and Orwell [Wadler 1984bl. (Only readers who know that
KRC stands for "Kent Recursive Calculator" will have understood the title of this

There are four language features absent in Scheme and present in KRC/Miranda
that are important:

1. Pattern-matching.
2. A syntax close to traditional mathematical notation.
3. A static type discipline and user-defined types.
4. Lazy evaluation.

KRC and SASL do not have a type discipline, so point 3 applies only to Miranda,

Philip Wadhr Why Calculating is Better than Scheming 2
b

LML, and Orwell.

This paper should be thought of as a discussion of the relative importance of these
language features, rather than just of the relative merits of two different families of
languages. However, for convenience this paper will sometimes use the names "Lip"
and "Miranda" to distinguish the two f d i e s . (h an earlier :remion of this paper,
the name "functional" was used to characterize the Miranda family, but only point 4
is necessarily connected to the fact that these languages are functional.)

This paper is based largely on my experience over two years with two different
courses: a course for undergraduates based on Abelson and Sussman's text, taught
by Joe Stoy using Scheme (actually, T modified to look like Scheme); and a course .

for M.Sc. students in functional programming, taught by Richard Bird using KRC.

This paper is organized as follows. Section 1 discusses data types. Section 2
discusses confusion between program and data. Section 3 discusses programs that
manipulate programs. Section 4 discusses lazy evaluation. Section 5 presents
conclusions.

1. Data types

1.1. Lists

Many years ago, Peter Landin formulated an excellent way to describe data types
[Landin 19661. Here is a description of lists using that method:

An A-List is
either nil,
or a cons, and has

a bead, which is an A
and a tail, which is an A-List

From this type description, one can immediately see the structure of a program that
operates on lists. For example, here is a Miranda program to sum a list of numbers:

sum [] = 0
sum (x :xs) = x + sum xs

There are two clauses in this definition, one for each clause (nil and cons) in the

Philip Wadler Why Calculating is Better than Scheming 3

definition of A-List. (In Miranda nil is written [I , and a cons with head x and tail
xs is written x : xs.)

Here is the same definition in Lisp:

(define (sum xs)
(i f (null? xs)

0
(+ (car xs) (sum (cdr xs)))))

This definition is just plain more cumbersome to read, even though it has essentially
the same structure as the functional definition. The primary problem is the lack of
pattern-matching. The definition is also harder to read because of the syntax (or,
rather, lack of syntax) of Lisp.

Furthermore, the Lisp program obscures the symmetry between the two cases. The
nil case is tested for explicitly, and the cons case is assumed otherwise. The
symmetry can be recovered by writing:

(define (sum xs)
(cond ((nu1 l ? xs) 0)

((pair? xs) (+ (car xs) (surn4cdr xs))))))

-This program is perhaps more cumbersome than the preceding one. It is also a bit
less efficient, as it may perform two tests instead of one. On the other hand, there
are well-known ways to compile pattern-matching efficiently [Augustsson 851.

ID Miranda, the type discipline requires that sum is only applied to lists of numbers.
Since Miranda uses a type inference system the user may give the type of sum
explicitly, or leave it to be inferred. In other words, a type inference system means
that typing (of data) need not involve extra typing (with fingers).

, The type discipline is important for two related reasons. First, it is an important tool
for thinking about functions and function definitions. Second, the language system
can ensure that certain kinds of errors do not occur at run-time. Since a large
proportion of a beginner's - or even an experienced programmer's - errors are type
errors, these are important advantages.

1.2 Proving properties of programs

Philip W adier Why Calculating is Better than Scheming 4

Say we wish to prove that append is associative. Here is the definition of append
(written ++) in Miranda style:

[1 ++ ys = YS (1)
(x:xs) ++ ys = x: (xs ++ ys) (2)

We wish to prove that for all lists xs, ys, and 2s:

(xs ++ ys) ++ zs = xs ++ (ys ++ 2s)

The proof is by structural induction on xs [Burstall 691.

Base case. Replace xs by [I .

([I ++ ys) ++ zs
= ys ++ 2s
= [] ++ (ys ++ 2s)

Inductive case. Replace xs by x : xs .

((x:xs) ++ ys) ++ zs
= (x:(xs ++ US)) ++ 2s
= x:((xs ++ ys) ++ 2s)
= x: (xs ++ (ys ++ 2s))
s (x:xs) ++ (ys ++ 2s)

- unfolding by (1)
- folding by (1)

- unfolding by (2)
- unfolding by (2)
- induction hypothesis
- folding by (2)

This completes the proof.

Now, here is the definition of append in Lisp:

(define (append xs ys)
(if (null? xs)

Y s
(cons (car xs) (append (cdr xs) ys))))

And here is the equation to be proved:

(append (append xs US) 2s) = (append xs (append ys 2s))

It is left as an exercise to the reader to write the proof in terms of Lisp. Attention is
drawn to two particular difficulties.

Philip Wader Why Calculating is Better than Scheming 5

First, in the Miranda-style proof, folding and unfolding can be explained as a simple
matter of substituting equals for equals. An equivalent to the unfold operation in
Lisp requires expanding the definition and then simplifying. For example, the first
step in the base case, corresponding to unfolding by (I), is as follows:

(append n i l (append ys 2s))
= (i f (null? nil)

(append ys 2s)
(cons (car nil)

(append (cdr nil) (append ys 2s)))
= (append us 2s)

The folding operation is even more problematic. The lesson here is that pattern-
matching notation greatly simplifies the mechanics of the proof.

Second, each step in the Miranda-style proof simply involves a rearrangement of
parentheses. Although the terms represented by Lisp are the same, the prefix
notation means more mental effort is needed for each step. This effect is strongest
for the associative law, but in general any algebraic manipulation is easier in an infix
notation; this is one reason such notations have evolved.

For these reasons, writing the proof in full is considerably more difficult in Lisp than
Miranda. This is a serious impediment when teaching even simple proof methods to
students. I and several of my colleagues, when faced with this problem, decided it
was easier to teach our students a Miranda-like notation and then do the proof,
rather than try to do the proof directly in US*. ~ e a c h & ~ a Miranda-like notation
first usually can be done quickly and informally, because the notation is quite
natural.

Some people may wish to dismiss many of the issues raised in t h i paper as being
"just syntax*. It is true that much debate over syntax is of little value. But it is also
true that a good choice of notation can greatly aid learning and thought, and a poor
choice can hinder it. In particular, pattern-matching seems to aid thought about case

analysis, making it easier to construct programs and to prove their properties by
structural induction. Also, mathematical notation is easier to manipulate
algebraically than Lisp.

1.3. Mobiles

Here is part of exercise 2-27 from Abelson and Sussman:

Philip Wadler Why Calculating is Better than Scheming 6

A binary mobile consists of two branches, a left-branch and a right-branch.
Each branch is a rod of a certain length, from which hangs either a weight or
another binary mobile. We can represent a binary mobile using compound data
by constructing it from two branches (for example, using 1 i s t):

(def ine (make-mobile l e f t r i g h t)
(1 i s t l e f t r i g h t))

A branch is constructed from a length (which must be a number) and a
supported-structure, which may be either a number (representing a simple
weight) or another mobile:

(def ine (make-branch length s t ructure)
(1 i s t 1 ength s t ructure)

a. Supply the corresponding selectors 1 e f t -branch and r i ght -branch, which
return the branches of a mobile, and brench-length and branch-

s t ructure, which return the components of a branch.

b. Using your selectors, define a procedure t o t a1 -we i ght that returns the
total weight of a mobile.

The answer is easy for an experienced programmer to find:

(def i ne
(def i ne
(def i ne
(def i ne

(def ine

(1 eft-branch s t r u c t) (car s t r u c t))
(r i ght-branch s t r u c t) (cedr s t r u c t))
(branch-1 ength branch) (car branch))
(branch-structure branch) (cadr branch))

*

(t o t a l -we i ght s t r u c t)
(i f (atom? s t ruc t)

s t r u c t
(+ (t o t a l -we i ght-branch (1 eft-branch s t ruc t))

(t o t a l -we i ght-branch (r i ght-branch s t ruc t)))))

(def ine (total-weight-branch branch)
(t o t a1 -we i ght (branch-structure branch)))

Unfortunately, the answer is not so easy for a novice programmer to find. This is
because the question, although it is carefully worded, almost ignores a very
important aspect of the data structure - namely, the base case, the degenerate

Philip Wadler Why Calculating is Better than Scheming 7
-

mobile (or "structure") consisting of a single weight. Indeed, the question practically
misleads the student, because a careful distinction is made between "mobiles" and
"structures", and the question asks for a function to find the total weight of a
"mobile" rather than a "structure".

In a language with user-defined types, the first step to solving this problem is to
write down an appropriate type declaration. This leads one immediately to perceive
the importance of the base case. Here are the appropriate declarations in Miranda:

structure ::= Ueight num 1 Mobile branch branch
branch- - Branch num structure

The total weight function can then be written in a straightforward way, using the
type declarations as a guide.

totalUeight (Height u) = u
totalueight (Mobile 1 r)

= totalUeightBranch 1 + totalUeightBranch r

totalUeightBranch (Branch d s) = totalueight s

The Miranda program reflects the type structure in a more straightforward way
than the Lisp program, and it is also easier to read. Furthermore, the selector
functions are not needed at all.

1.4. Data representation and abetract data types

The mobile problem continues as follows:

d. Suppose we change the representation of mobiles so that the constructors are
now

(define (make-mobile left right)
(cons left right))

(define (make-branch length structure)
(cons 1 engt h structure))

How much of your program do you need to change to convert to the new
representation?

Philip WadJer W h y Calculating is Better than Scheming 8

The answer for Lisp is that we just need to change the selector functions
r i ght -branch and branch-s t ruc t u r e to use c d r instead of c a d r . The answer
for Miranda is that the question makes no sense, because there are no selector
functions. This points out some advantages, and also a disadvantage, of using
Miranda to teach issues of data representation.

The first advantage is that for certain data types, namely the free data types,
Miranda allows one to write programs at a higher level of abstraction, where the
choice of representation is not important. A data type is free if two objects of the
type are equal if and only if they are constructed in the same way [Burstall and
Goguen 19821. Lists and mobiles are both free data types. For example, lists are free
because x : xs = y : ys if and only if x=y and xs=ys. An example of a non-free
data type is a set, because {x} U xs = {y} U ys does not imply x=y and xs=ys.

ID Lisp there is essentially only one free data type, Sexpressions. If the user wants
some other free data type - say, lists or mobiles - then he or she must choose a
representation of that type in terms of S-expressions. As we saw in the mobile
example, there may be more than one way to make that choice. ID Miranda the user
may declare a new free data type directly. There is no need to choose an arbitrary
representation. Thus, for the mobile problem above, the question of changing
representation is irrelevant, because one can phrase the solution at a higher level of
abstraction.

The second advantage is that where choosing a representation is important, Mirzpda
provides a language feature - abstract data types - to support seperating use of a
type from its choice of representation. For example, Abelson and Sussman discuss
several different ways of representing sets. In software engineering, the classical
method for abstracting away from an arbitrary choice of representation is the
abstract data type. Although they discuss data abstraction at length, Abelson and
Sussman do not mention abstract data types per se, because Lisp does not contain
suitable hiding mechanisms. Languages such as Miranda and LML do support the
classical abstract data type mechanism, and so are perhaps better suited for
teaching this topic.

The disadvantage is that pattern-matching, which is so useful, cannot be used with
abstract data types. Solutions to this problem are on the horizon. One possibility is
algebraic types with laws in Miranda, which allow pattern-matching to be used with
some non-free types. Another is Views [Wadler 85a], a language feature which
allows one to use pattern-matching with any arbitrary representation. Lisp doesn't
have this problem, but only because it throws out the baby with the bathwater - it

Philip Wadler Why Calculating is Better than Scheming
-

doesn't have pattern matching at all.

1.6. A last word cm the mobile exercise

Finally, a minor point. The mobile exercise above is not really a good model for
teaching students about change of representation. The problem is that although the
representation of mobiles and branches is hidden by the selector functions, the
representation of a singleweight is not. This is not a problem with Lisp, as it is easy
to add the necessary constructors and selectors:

(define (make-weight weight) weight)
(define (weight? struct) (atom? st ruct))
(def i ne (we i ght struct) struct)

The modified definition of t o t a1 -He i ght is then:

(def i ne (to t a1 -we i ght st ruct)
(if (weight? struct)

(we i ght struct)
(+ (to ta l -we i ght-branch (1 eft-branch struct))

(to t a1 -we i ght -branch (r i ght -branch st ruct)))))

Perhaps this was an oversight on Abelson and Sussman's part, or perhaps they did
not wish to complicate the problem further. The same is unlikely to arise
in a language with userdefined data types, because, as we have Been, these lead one
to a solution that treats weights in a properly abstract way.

2. Confusion between program and data

An important feature of Lisp is that program and 'data have the same
representation, namely S-expressions, and that a special form, "quote", is available
to turn programs into data. This makes possible a convenient style for writing
programs that manipulate programs, such as interpreters. It also makes Lisp an easy
language to extend.

On the other hand, it also makes it easy for a new student to become confused about
the relationship between program and data. This section describes several such
confusions, which I have seen in many students during tutorial sessions. Further,
even when it comes to writing programs that manipulate programs, although Lisp

PAiiip Wadler Why Calculating is Better than Scheming 10

has some advantages, so does Miranda. This is discussed in the following section.
My conclusion is that the disadvantages of having program and data in the same
f orm outweigh the advantages, especially for beginning students.

2.1. L ' i lbta are not aelfquoting

la Lisp, numbers as data are self-quoting, whereas lists are not. For example, to
include the number 3 as a datum in a program one just writes 3, whereas to include
the list (1 2 3) as a datum one must write (quote (1 2 3)) (which is often
abbreviated as ' (1 2 3)).

The difference between (1 2 3) and (quote (1 2 3)) is subtle, and it inevitably
confuses students. In particular, it plays havoc with the substitution model of
evaluation. For example, one can use the substitution model to explain the
evaluation of (* (+ 3 4) 6) as follows:

All three steps of this derivation ((* (+ 3 4) 6) , (* 7 6) , 42) are themselves
legal Lisp expressions.

Now, consider using the substitution model to explain the evaluation of the term
(1 ist (1 ist 1 2) n i l) :

The intermediate steps are no longer legal Lisp expressions. One must keep track of
which parts of the expression have been evaluated, and which have not. One could
get around this by writing:

(l i s t (l i s t 1 2) n i l)
---> (l i s t ' (1 2) n i l)
---> (1 ist ' (1 2) * ())
---> '((1 2) 0)

But I find this tricky to explain.

Philip Wadler Why Calculating is Better than Scheming 11 ..

In Miranda, on the other hand, one just writes [[1,2], []] . There isn't any
evaluation to explain! When there is evaluation, it can be explained by the
substitution model:

Each step of the derivation is a legal Miranda expression.

The point of this is not that evaluation of (1 i st (1 i s t 1 2) n i 1) cannot be
explained. Of course it can. But it takes much more work to explain it than to
explain the Miranda expression [[1,2], [] 1. In this case, perhaps one can afford
the extra effort. But the problem is greatly compounded when one must explain this
sort of thing in the middle of some other derivation. I have encountered this sort of
problem many times.

2.2. Further confusion with quote

Here is exercise 2-30 from Abelson and Sussman:

Eva Lu Ator types to the interpreter the expression

(car " abracadabra)

To her surprise, the interpreter prints back quote. Explain. What would be
printed in response to

(cdddr ' (t h i s l i s t contains ' (a quote)))

The answer to the first part is that (car "abracadabra) is equivalent to (car
(quote (quote abracadabra))), and so one has the following evaluation:

(car (quote (quote abracadabra))) --- > (car (quote abracadabra)
---> quote

Here the need to keep track of what has and has not been evaluated is unavoidable.

The answer to the second part is that the Lisp input system transforms the given
expression to:

Philip Wadier Why CaJcuiating is Better than Scheming

(cdddr (quote (t h i s 1 ist contains (quote (a quo te)))))
7

and this evaluates to ((quote (a quote))) .

All this is quite obscure. Indeed, the equivalence of 'a and (quote a) is only
explained in a footnote. But if one is to fully understand Lisp, one must understand
this sort of thing. In languages without quote, this sort of problem simply does not
arise.

2.3. Evaluating too little or too much

Because program and data have the same form in Lisp, the form alone does not tell
one whether one is dealing with program or data. As pointed out above, one has to
remember this information when applying the substitution model. It is easy for
students to forget this information, and evaluate either too little or too much.

What is the value of this expression?

(car (quote (a b)))

The right answer is, of course, a. However, I have seen students give the answer
quote, which results from evaluating too little. This error is particularly common
after they have done the abracadabra exercise above.

I have also seen students give the answer "the value of the variable a", which results
from evaluating too much. That is, the student first evaluates far enough to get the
right answer, a , and then evaluates one step more, returning whatever value the
variable a is bound to. Students can make this error even when no variable named
a has been mentioned in connection with the problem.

Again, this sort of problem does not arise in a language without quote.

2.4. Other confusions with lists

There are two other confusions I have seen in students with regard to the list data
type. These confusions are inherent to the list data type itself, and appear when
teaching either Lisp or Miranda. However, I believe the problems are harder to
rectify in Lisp, because the student is already suffering from a confusion between

Philip Wadler Why Calculating IB Better than Scheming 13

data and program.

The f i t problem is that students inevitably confuse a list containing just one
element x with the value x itself. The confusion is compounded in Lisp because this
unit list is written either (1 i st x) or (x) , depending on whether it has been
evaluated yet. In Miranda one always writes 1x1. The concrete syntax of Miranda
also helps a bit: students are used to dropping parenthesis, so that (x) becomes x,

whereas they are a little less likely to convert [x] to x. Also, in a typed language
like Miranda this problem becomes much easier to explain, because if x has type t
then [x] has type list of t; and errors will be caught by the type-checker.

The second problem is that students get confused between cons and 1 i st. Again,
this problem is increased in Lisp, because, (cons x y) and (1 i st x y) look so
similar, whereas x : y and [x, y] look rather different. And again, the problem is
easier to explain and detect in a typed language.

2.5. Syntax

Finally, it is hard not to say something about the famous Lisp S-expression syntax.
There are strong advantages to the Lisp syntax. It is easy to learn, and it gives the
students a good appreciation of the underlying abstract structure.

On the other hand, as seen above, Lisp programs often have much more sheer bulk
than the corresponding Miranda programs. Also, as noted above, S-expression
notation hinders reasoning with algebraic properties, such as associativity. Perhaps
most important, the unfamiliarity of Lisp syntax can be a real stumbling block to
beginning students.

I remember giving a small group of students a demonstration, attempting to
convince them of the great power and sheer fun of using Lisp. After explaining that
3 + 4 was typed as (+ 3 4) , I went on to type some larger expressions. One of
these was ((+ 3 4) = (+ 5 2)), which naturally caused the interpreter to
complain. I quickly figured out why, but I had lost much ground in trying to
convince the students how "natural" the S-expression syntax was. If I make such
mistakes as an experienced Lisp programmer, I wonder how much trouble they cause
beginning students?

3. hgrame that manipulate programs

Philip Wadier Why Calculating is Better than Scbemjng 14

Lisp is famous for the ease with which one can construct programs that manipulate
programs, such as interpreters, compilers, and program-transformation systems.
However, Miranda also has advantages, complementary to those of Lisp, for
constructing such programs. This section compares Lisp and Miranda styles for
writing such programs.

3.1. A simple interpreter in Miranda and Lisp

As a simple example of an interpreter, let's consider an evaluator for terms in the
lambda calculus. There are three kinds of terms: variables, lambda abstractions,
and applications. Is addition, there is one more kind of term, a closure, that will be
used internally by the evaluator.

The evaluator consists of two mutually recursive functions. A call (eval e t)
evaluates the (non-closure) term t in environment e. A call (appl y t 0 t 1)
evaluates the application of term t,2 (which must be a closure) to term t 1. Miranda
and Lisp versions of the evaluator are shown in figures 1 and 2. The data structures
used in these programs are explained in more detail below.

Clearly, it is possible to write program manipulating programs in Miranda as well as
Lisp, even though in Miranda there is no mechanism analogous to quote. Lisp and
Miranda have complementary strengths when writing such programs, related to their
different treatment of data types.

3.2. Representing programs with free-data types

In Miranda, the data type for terms is described as follows:

term ::= Var var

1 Lambda var term
1 Apply term term
1 Closure env var term

env == [(var. term)]
var == [char]

The term Closure e v t represents the closure in environment e of a lambda
term with bound variable v and body t. The last two lines say that an environment
is represented by a list of (variable, term) pairs, and that a variable name is

Philip Wadier Why Calculating is Better than Scheming 15

represented by a list of characters.

In this representation, the term, say,

(Xx. (x x)) (Xx. (x x))

would be represented by

The advantage of Miranda is that the type declaration for terms is concise and
informative, and pattern-matching makes the program easier to write and read.
The disadvantage is that the notation for programs-as-data (like the term above) is
cumbersome. In short, manipulating the data is easy, but writing the data to be
manipulated is hard.

Experience in teaching with KRC and Orwell has shown that, although
cumbersome, the notation above is usable in practice for small to medium sized

. Often one can lessen the problems by introducing a few extra definitions
to make the data easier to enter. For example, one might define

lambda (v a r v) t = Lambda v t
- app t 0 tl = Apply to tl

x = Var "xu

and then write

app (lambda x (app x x)) (lambda x (app x 4)

which is tolerable, if less than elegant.

A better approach would be to write parsers and unparsers, to convert between a
convenient notation for reading and writing programs-as-data and a convenient
notation for manipulating them. This dearly requires more work, but also yields
more benefit. Parsers and unparsers are interesting subjects in their own right, and
are Important in most practical systems that treat programs as data. One interesting
approach to writing parsers in a functional language is discussed in [Wader 1985c].

3.3. Representing programs with ainroet abetract syntax

Philip Wadler Why Calculating is Better than Scheming 16

In Lisp, there are various choices for how one may represent terms. One common
choice would be:

v - a variable
(lambda (v) t) a lambda abstraction
(t o t l) - an application
(c l o s u r e e v t) - a closure

In this representation, the term above would be written:

'((lambda (x) (x x)) (lambda (x) (x x)))

which is far less cumbersome than the corresponding Miranda expression.

This representation is typically called as abstract syntax, but a more appropriate
name might be almost abstract syntax. A true abstract syntax would be:

(var v) - a variable
(1 ambda v t) - a lambda abstraction

(apply t o t l) - an application
(c l o s u r e e v t) - a closure

And now one would write:

' (app ly (lambda x (apply (var x) b a r x))

(lambda x (apply (var x) (var x)))

which is as cumbersome as Miranda.

The key idea behind almost abstract syntax is that if convenient notation is provided
for a few common loads of data (is this case, variables and applications), then full
abstract syntax for everything else is tolerable. Representations based on the
"almost abstract syntax" principle are common in Lisp. For example, the
representation of mobiles discussed in section 1 uses this principle, where a special
notation is provided for weights, but branches and mobiles use fully abstract
notation.

Manipulating programs-as-data seems easier in Miranda, but entering the data itself
is easier in Lisp. To a large extent, this seems to be because of the "almost abstract
syntax" principle, rather than because programs and data have the same form in

Phiiip Wadier Why Calculating is Better than Scheming 17 --- - - - -. - -- -- -

Lisp. One wonders if this principle could be added to a Miranda-style language in
some way, perhaps by adding a special notation for some data items?

Figure 1: Lambda term evaluator in Miranda

I I d a t a t y p e s

term ::= Var v a r
1 Lambda v a r term
1 Apply term term
1 Closure env v a r term'

env == [(var , term)]
var == [cha r]

1 e v a l u a t e and apply

eva l e (Var v) = lookup e v
eve1 e (Lambda v t) = Closure e v t ..
eva l e (Apply t o t l) = app ly (eval e t o) (eval e t l)

eppl y (C losu re e v t o) t l = e v a l (ex tend e v t l) t o

I I env i ronment man i pul a t i on

lookup ((v 0 , t) : e) v l = t, if (vO = v l)
= lookup e v l , o the rwi se -

Philip Wader Why Calculating is Better than Scheming
*- -- - -

Figure 2: Lambda term evaluator in Lisp

; evaluate term t in environment e

(define (eval e t)
(cond ((variable? t)

(1 ookup e (var i abl e-name t)))
((lambda? t)
(make-cl osure e (1 ambda-var t) (1 ambda-body t)))
((apply? t)
(appl y (eval e (appl y-operator t))

(eval e (appl y-operand t))))))

%- --*
; apply term to to term tl

-- - -- - m e *- - --
..- (def i ne (appl y t 0 t 1)
-- -.-r-

(cond ((closure? to)
(eval (extend (cl osure-env t 0) (cl osure-var to) t 1)

(cl osure-body t 0)))))

: ; env i ronment man i pul at i on - -
(define (lookup v e)

- , (cond ((pair? e)
(if (eq? v (caar e)) (cadr e) (lookup v (cdr e)))))

"r

(define (extend e v t) (cons (cons v t) e))
(define empty nil)

; create and access terms

(def i ne (make-ver v) v)
(define (variable? t) (atom? t))
(def i ne (var i abl e-name t) t)

(define (make-lambda v t) (1 ist 'lambda (1 ist v) t))
(define (lambda? t) (and (not (atom? t)) (eq? (car t) 'lambda)))
(def i ne (1 ambde-var t) (caadr t))

- -. Philip Wader Why CaJcuJatjng is Better than Scheming - - --
I9 -

- - - -

(def i ne (1 ambda-body t) (caddr t))

(define (make-apply to tl) (1 ist to tl))
(define (apply? t)

(and (not (atom? t)) (not (eq? (car t) ' l ambda))))
(def i ne (appl y-operat or t) (car t))
(define (apply-operand t) (cadr t))

(define (make-closure e v t) (list 'closure e v t))
(define (closure? c)) (and (not (atom? c)) (eq? (car c) 'closure))
(def i ne (cl osure-env c) (cadr c))
(def i ne (cl osure-var c) (caddr c))
(define (el osure-body c) (cadddr c))

A great deal of the power of Miranda derives from the uae of lazy evaluation. Some
arguments in favour of lazy evaluation are contained in [Turner 82, Hughes 85,
Wadler a].

Abelson and Sussman recognize the importance of lazy evaluation and include a
limited version of it, under the name of streams. Their section on streams teaches
most of the important methods of programming with lazy evaluation. However, as
usual, Lisp is rather more cumbersome than Miranda. For example, to find the sum -

of the squares of the odd numbers from 1 to 100 one writes

-., .

sum [i* i 1 i <- [1..100]; odd i]

in Miranda, and

(sum-st ream
(collect (* i i)

((i (enumerate- i nterval 1 100)))
(odd i)))

in Lisp.

It is particularly annoying that two very similar types - lists and streams - must be

Philip Wader Why Caicuiating is Better than Scheming 20

treated differently. Thus, one needs sum to find the sum of a list of numbers, and
sum-stream to find the sum of a stream of numbers.

A more subtle - and therefore more serious - problem arises in the interaction
between streams and the applicative order of evaluation used by Lisp. For example,
the following theorem is quite useful:

map f (x s ++ y s) = map f x s ++ map f y s

(map f x s applies f to each element of x s , and x s ++ y s appends x s to ys).

Unfortunately, this theorem is not true in Lisp! For example, evaluating

(heed
(map sqr t

(append-stream (enumerate- interval 7 42)
(enumerate-interval -42 - 7))))

returns the square root of 7, whereas evaluating

(head
(append-stream

(map sqrt (enumerate-interval 7 42))
(map sqrt (enumerate- i nterval -42 -7))))

reports a run-time error while trying to find the square root of -42. The problem is
that append-streem, like all functions in Lisp, must evaluate all of its arguments.

(This particular problem would go away if streams were redesigned to delay
evaluation of the head as well as delaying evaluation of the tail. However, the
theorem would still not be true, as can be seen by replacing
(enumerate- i nt erval -42 -7) by (bottom), where evaluation of (bottom)
enters an infinite loop.)

Obviously, problem like this are damaging if one is trying to present programming
as a discipline subject to mathematical analysis. They can also lead to subtle bugs
(for example, see Abelson and Sussman exercise 3-54 and the associated discussion).

Abelson and Sussman recognize this problem, and their discussion of streams
includes an explanation of why streams are much better suited to a language with
normal-order (lazy) evaluation. They go on to explain that they chose not to adopt

Philip Wadier Why Calculating is Better than Scheming

normal-order evaluation because it would make assignment impossibly difficult to
use. Their choice allows the student to be exposed to two important methods of
program construction, assignment and streams; but as a result, streams cannot be
shown in their best form.

I would argue that the value of lazy evaluation outweighs the value of being able to
teach assignment in the first course. Indeed, I believe there is great value in delaying
the Introduction of assignment until after the first course. (Abelson and Sussman
agree that assignment should not be introduced too early, delaying its introduction
until half-way through the book.)

4.2. Special forma aren't needed under lazy evaluation

Here is exercise 1-4 from Abelson and Sussman:

Alyssa P. Hacker doesn't see why if needs to be provided as a special form.
*Why cant I just define it as an ordinary procedure in terms of cond?" she
asks. Alyssa's friend Eva Lu Ator claims this can indeed be done, and she
defines a new version of if as follows:

(define (new-if predicate then-clause else-clause)
(cond (predi cate then-cl ause)

(else else-clause)))

. Delighted, Alyssa uses new- i f to rewrite the square root program:

(def i ne (sqrt- i t er guess x)
(new- i f (good-enough? guess x)

guess
(sqrt-i ter (improve guess x)

4 1)

What happens when Alyssa attempts to we this to compute square roots?
. Explain.

The answer, of course, is that sqrt - i t er gets into an infinite loop, because new- i f
always evaluates all of its arguments, whereas the special form (i f el e2 e3)
only evaluates e2 if el is nil, or e3 otherwise.

Only the very brightest students get this question correct, and it takes a fair amount

Philip Wadler Why Calculating is Better than Scheming 22

of effort to explain to some of the others just what a "special form" is and why it is
needed.

In a functional language with lazy evaluation this problem does not arise. One can
define a function new1 f :

newlf true x y = x -
newlf false x y = y

and newIf el e2 e3 evaluates only e2 or e3 depending on the value of el.
There is no need for special forms. It follows that the substitution model of
evaluation is more uniform and easier to explain.

Again, the problem is not that special forms cannot be explained. The point is that
lazy evaluation avoids a complication that appears early on in teaching Lisp.

Abelson and Sussman's text provides an excellent introduction to programming &a

an engineering discipline. My experience suggests that languages such as KRC and
Miranda are a significantly better vehicle for this task than Lisp.

Section 1 showed how pattern-matching and userdefined types offer an improved
approach to data types. Section 2 showed that having program and data in the same
form leads to many confusions in Lisp that do not occur in KRC or Miranda. It is
sometimes claimed that these confusions are necesswy, in order to support programs
that manipulate programs. Section 3 showed that this is not quite true, in that the
Lisp and Miranda approaches offer complementary advantages. Section 4 showed
that streams are easier to treat in a language with lazy evaluation, and some
problems with special forms do not arise; the cost of this is leaving discussion of
assignment to a later course.

Some readers may object that languages like KRC or Miranda are not "credible" for
teaching, because they are not used in the real world. It is true that a first course in
KRC or Miranda is not sufficient to prepare students for the real world; and the
same is also true of a first course in Lisp. The purpose of the first course is to teach
basic principles and develop good habits of thought. In this paper I have explained
why I believe languages like KRC and Miranda are good vehicles for this. Later
courses should apply these principles to an imperative language, such as Pascal or

Philip Wadier Why Calculating ia Better than Scheming

Modula; and perhaps to other languages, for data bases or for distributed
computing, as well. Then the student isprepared to program in Fortran or Cobol, if
need be, and to agitate for the introduction of Pascal, Lisp, or Miranda where they
are appropriate.

I embarked upon teaching Lisp with the attitude that the differences from KRC and
Miranda would be, at most, a small annoyance. The basic concepts were the same,
and I did not feel that the syntax or idiosyncracies of Lisp would be a major barrier.
Experience has convinced me otherwise. Although each difficulty by itself is minor,
the cumulative effect is significant.

Abelson and Sussman are to be thanked for pointing the way to a new approach to
teaching programming. I look forward to other teachers following that path, and I
am particularly eager to see a new generation of textbooks - written using languages
in the style of KRC and Miranda.

Acknowledgements

Hal Abelson and Gerry Sussman kindly made many detailed and perceptive
comments on an earlier draft of this paper. Comments from Richard Bird and Joe
Stoy were also very helpful in writing this paper. .

This work was performed while on a research fellowship sponsored by ICL.

Ref erencea

[Abelson and Suttman IS&] Harold Abdton, Gerald Jay Sussman, and Julie
Sussman. Structure and Interpretation of Computer Programs. MIT Press
and McGraw Hill, 1985.

[Abelson and Sussman 1985bI Harold Abelson and Gerald Jay Sussman.
Computation: an introduction to engineering design. Massachusetts Institute of
Technology, 1985.

[Augustsson 19841 Lennart Augiistsson. A compiler for Lazy ML. ACM Symposium
on Lisp and h c t i o n a i Programining, Austin, Texas, August 1984.

[Burstall 19691 R. M. Burstall. Proving properties of programs by structural

Philip Wadler Why Calculating is Better than Scheming 24

induction. The Computer Journal, 12(1), February 1969.

(Burstall and Goguen 1982) R. M. Burstall and J. A. Goguen. Algebras, theories
and freeness: an introduction for computer scientists. Internal report CSR-101-82,
Department of Computer Science, Edinburgh University, February 1982.

[Fairbairn 19821 Jon Fairbairn. Ponder and its type system. Technical report 31,
Cambridge University Computer ~ a b o z t o r y , 1982.

[Hughes 19851 R. J. M. Hughes. Why functional programming matters.
Programming Methodology Group Memo PMG-40, C h h e r s Tekniika Hogskola,
Goteborg, Sweden, 1985.

[Landin 19661 Peter Landii. The next 700 programming languages.
CommuJucations of the ACM, 9(3), March 1966,157-166.

pees and Adams 19821 J. A. Rees and N. L Adams. T: a dialect of Lisp, or
Lambda: the ultimate software tool. ACM Symposium on Lisp and Functional
Programming, Pittsburgh, Pennsylvania, August 1982.

(Richards 19841 Hamilton Richards, Jr. An overview of ARC SASL. SIGPLAN
Notices, 19(10), October 1984,4045.

[Steele and Sussman 19781 Guy Lewis Steele, Jr. and Gerald Jay Sussman. The
revised report on Scheme, a dialect of Lisp. MIT Artificial Intelligence
Laboratory Memo 452, January 1978.

[Steele 19821 Guy Lewis Steele, Jr. An overview of Common Lisp. ACM Symposium
on Lisp and Functional Programming, Pittsburgh, Pennsylvania, August 1982.

(Turner 19761 David Turner. SASL language manual. Computer Laboratory,
University of Kent, Canterbury, 1976 (revised, 1979).

[Turner 19811 David Turner. Recursion equations as a programming language. In
Darlington, Henderson, and Turner (editors), Functional Programming and Its
Applications. Cambridge University Press, 1981.

[Turner 19851 David Turner. Miranda: A non-strict functional language with
polymorphic types. Symposium on Functional Programming Languages and
Computer Architecture, Nancy, France, September 1985.

6. Philip Wadier Why Calculating is Better than Scheming 25

[Wadler 198SaI Philip Wadler. =ewe: A way for elegant definitions and efficient
representations to coexist. Workshop on implementing functional languages,
Aspenas, Sweden, January 1985.

[Wadler 1985bl Philip Wadler. An introduction to Orwell. Internal report,
Programming Research Group, Oxford University, April 1985.

[Wadler 19&] ip Wadler. How to replace failure by a list of successes:
Exception handling, backtracking and pattern matching in lazy functional
languages. Symposium on Functional Programming Languages and
Computer Architecture, Nancy, France, September 1985.

