
Noname manuscript No.
(will be inserted by the editor)

An Ant Colony Based Semi-Supervised Approach for
Learning Classification Rules

Julio Albinati · Samuel E. L. Oliveira ·
Fernando E. B. Otero · Gisele L. Pappa

Received: date / Accepted: date

Abstract Semi-supervised learning methods create models from a few labeled in-
stances and a great number of unlabeled instances. They appear as a good option
in scenarios where there is a lot of unlabeled data and the process of labeling
instances is expensive, such as those where most Web applications stand. This
paper proposes a semi-supervised self-training algorithm called Ant-Labeler.
Self-training algorithms take advantage of supervised learning algorithms to itera-
tively learn a model from the labeled instances and then use this model to classify
unlabeled instances. The instances that receive labels with high confidence are
moved from the unlabeled to the labeled set and this process is repeated until a
stopping criteria is met, such as labeling all unlabeled instances. Ant-Labeler
uses an ACO algorithm as the supervised learning method in the self-training pro-
cedure to generate interpretable rule-based models—used as an ensemble to ensure
accurate predictions. The pheromone matrix is reused across different executions
of the ACO algorithm to avoid rebuilding the models from scratch every time the
labeled set is updated. Results showed that the proposed algorithm obtains better
predictive accuracy than three state-of-the-art algorithms in roughly half of the
datasets on which it was tested, and the smaller the number of labeled instances,
the better the Ant-Labeler performance.

Keywords semi-supervised learning · self-training · ant colony optimization ·
classification rules

Julio Albinati and Samuel E. L. Oliveira have contributed equally to this work.

Julio Albinati (B), Samuel E. L. Oliveira, Gisele L. Pappa
Federal University of Minas Gerais
Av. Antonio Carlos, 6627, Zip Code: 31.270-901
E-mail: {jalbinati, samuel.lima, glpappa}@dcc.ufmg.br

Fernando E. B. Otero
University of Kent
Chatham Maritime, Kent, ME4 4AG, UK
E-mail: F.E.B.Otero@kent.ac.uk

2 Julio Albinati et al.

1 Introduction

Data availability, which was in the past a problem to test new algorithms and
methods for knowledge discovery, is currently not an issue. Data coming from
the Web 2.0, genomic and proteomics projects, governments, and other relevant
sources, are waiting for data scientists to make sense of them. However, depending
on what type of information we want to extract from these data, one valuable
information is missing: labeled data (Ginestet, 2009, Li and Zhou, 2011, Triguero
et al, 2015).

For a long period, researchers and practitioners tackled data analysis problems
in a supervised or unsupervised manner, depending on the characteristics of the
data available for learning or the resources available to label them. Supervised
learning methods were used in cases where all instances available for training
were labeled, while unsupervised learning methods took the opposite direction. In
applications where data labeling was an expensive process, unsupervised methods
were always considered the best option. However, supervised methods are proven
to obtain better accuracy results than unsupervised ones (Zhu and Goldberg,
2009), and hence the ideal approach is to find a trade-off between labeling cost
and accuracy. This is the rationale behind semi-supervised learning (SSL).

SSL methods create models from a few labeled instances and a great number
of unlabeled instances (Chapelle et al, 2010). They appear as a good option in
scenarios where there is a lot of unlabeled data and the process of labeling the
data is expensive, such as those where most Web applications stand nowadays—
e.g., there are large amounts of data being generated by social media websites. SSL
can be used to solve clustering problems, where it is named constrained clustering
(Davidson and Ravi, 2005), or semi-supervised classification task (SSC) (Chapelle
et al, 2010), which is the problem we are interested in this paper.

Two different settings can be considered when dealing with SSC: transductive
and inductive learning. In transductive learning approaches, the complete set of
labeled and unlabeled instances are known in advance, and the classifier does not
need to worry about model generalization—e.g., data disambiguation scenarios. In
the inductive approach, in contrast, labeled and unlabeled instances are combined
to build a model that will be used to predict the label of unseen data. The focus
of this paper is on the latter.

Many different methods have already been proposed to solve SSC problems,
including generative methods (Zhu and Goldberg, 2009), transductive inference
with Support Vector Machines (Li and Zhou, 2011, Zhao et al, 2008) and proba-
bilistic graphical models (Koutra et al, 2011). However, among the most popular
methods are those named self-labeled (Blum and Mitchell, 1998, Triguero et al,
2015). Self-labeled methods take advantage of a supervised classifier to label in-
stances of unknown class and include two well-known algorithms: co-training or
self-training. Self-training iteratively learns a model Mk from the labeled instances
L using any supervised learning algorithm and then uses Mk to classify instances
in the set of unlabeled instances U . The instances that receive labels with high
confidence are moved from U to L and the resulting L′ is then used to train a
new classification model Mk+1. This process is repeated until a stopping criterion,
such as U becoming empty, is met.

As aforementioned, the supervised learning algorithm used by self-learning can
be of any kind. This paper proposes a self-training algorithm, called Ant-Labeler,

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 3

which uses an ACO classification algorithm as a wrapper. ACO algorithms have
been successfully applied in supervised classification, particularly in discovering
classification rules (Martens et al, 2011, Otero et al, 2013). Ant-Labeler uses
cAnt-MinerPB (Otero et al, 2013), an algorithm where each ant creates a com-
plete list of classification rules, differently from the majority of ACO classification
algorithms.

One of the motivations for using an ACO algorithm that generates rule lists
as a self-learning wrapper, apart from being an accurate classification algorithm,
is that the models generated are interpretable and can be used to understand how
the labeling process evolves. Furthermore, these models are used in an ensemble,
which is able to make more consistent decisions regarding which instances should
be labeled. Finally, we can take advantage of its search mechanism to mitigate
the potential drawback present in many self-training methods: the fact that each
labeling round of the algorithm is usually independent of the previous, and models
are built from scratch every time L is updated. In a rule-based ACO algorithm, this
can be done in a straightforward manner, as the pheromone matrix represents the
state of the search, which can be preserved from one iteration to the next one. We
take advantage of this property of the ACO algorithm by preserving the pheromone
matrix across different executions of the algorithm (i.e., labeling rounds), allowing
each execution of the ACO to use the previous state of the search.

The remainder of this paper is organized as follows. Section 2 introduces
the most popular algorithms for SSC and discusses semi-supervised approaches
using ACO algorithms. Section 3 describes Ant-Labeler, the rule-based semi-
supervised classification algorithm proposed in this paper. Section 4 presents the
computational experiments comparing Ant-Labeler against other state-of-the-
art SSC algorithms. Finally, Section 5 draws conclusions and discusses ideas for
future work.

2 Related Work

This section introduces the basic notions of semi-supervised learning algorithms
and reviews related work involving ACO algorithms. Semi-supervised methods
work with both labeled and unlabeled data. They were initially studied by the
natural language processing and text classification communities in order to auto-
matically label data to improve learning (Ginestet, 2009, Wang et al, 2008).

One successful approach to tackle the semi-supervised learning problem is to
use self-labeling methods, which take advantage of existing supervised learning
algorithms. They use the results of the most confident predictions made by su-
pervised methods to assign a class value to unlabeled instances. Two common
self-labeling methods are the self-training and co-training algorithms. Both al-
gorithms work as a wrapper, in the sense that they require another supervised
learning algorithm to provide them confident predictions. The main difference be-
tween them is that co-training employs multi-view learning (Blum and Mitchell,
1998) and requires differentiated input data—i.e., data coming from independent
data views, described by sufficient and redundant attribute subsets.

Self-training works with a single data view and is successfully used in many
different contexts (Triguero et al, 2015). Self-training methods iteratively learn a
model Mk from the labeled instances L and use Mk to classify unlabeled instances

4 Julio Albinati et al.

in the set U . The instances that receive labels with high confidence are moved
from U to L and the new L′ is used to train a new classification model Mk+1.
Each iteration of the labeling process is said to be a labeling round and the process
goes on until a stopping criterion is met.

While the self-training approach is flexible and uses existing supervised learning
algorithms, its performance is limited by the fact that the models used in each
iteration are, most of the time, obtained independently. Hence, the underlining
supervised algorithm has no knowledge of how it is being used and therefore cannot
employ the models obtained in iterations 1, 2, ..., k in any way to obtain a new
model Mk+1. One of the motivations of the algorithm proposed in this paper is
to mitigate this limitation of most self-training methods by using a population
of classifiers that evolve over time. At each step, models are built not only from
the data but also from the models of previous labeling rounds by preserving the
pheromone trails between different rounds.

To the best of our knowledge, there are two other algorithms following the
self-training approach that also take advantage of information available from pre-
vious labeling rounds: Co-Forest and APSSC. Co-Forest (CO-trained Random
FOREST) (Li and Zhou, 2007) uses a Random Forest to facilitate the process
of determining the most confident instances to label and, in contrast with tradi-
tional co-training algorithms, does not require training data to be represented by
sufficient and redundant attribute subsets. In Co-Forest, the unlabeled instances
selected to be labeled by a given classifier are not removed from the set of un-
labeled instances. Hence, they might be selected more than once to be labeled
by different classifiers and receive distinct labels at different labeling iterations.
APSSC (Aggregation Pheromone Density based Semi-Supervised Classification)
(Halder et al, 2013), in contrast, works with the concept of temporary member-
ship, where elements in the training set and their classes may change during the
algorithm iterations, as detailed below.

Besides self-labeling approaches, many other methods for semi-supervised clas-
sification have been proposed. These methods can be divided into three main
groups: generative models, low-density separation methods and graph-based meth-
ods (Chapelle et al, 2010). Generative models usually estimate the conditional
density p(x|y) of the data, where x is the attribute vector and y the class value
(Zhu and Goldberg, 2009). A well-known example of this kind of method is the
Expectation-Maximization algorithm, which finds maximum likelihood estimates
of the distribution’s parameters. Low-density separation methods, in contrast, in-
clude S3VM (Semi-supervised Support Vector Machines) or TSVM (Transductive
SVM) (Joachims, 1999), which works by moving the class decision boundaries
found by SVM away from the unlabeled points. Although first named using the
term transductive, the algorithm produces a model which is expected to general-
ize to new data. Many extensions of TSVM were already proposed, including the
works found in (Li and Zhou, 2011, Zhao et al, 2008). Finally, graph-based meth-
ods model the instances as a graph, where nodes represent labeled or unlabeled
instances and edges reflect the similarity between instances. Many approaches can
be followed to solve the SSC problem in this case. A popular one is to propagate
information from labeled nodes through the graph to label all nodes (Koutra et al,
2011). Another approach is to address the SSC as a graph max-cut problem (Wang
et al, 2013).

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 5

Although meta-heuristic methods have already been successfully applied to
solve classification problems involving supervised learning (Freitas, 2002, Martens
et al, 2011), their use in SSC is still understudied. We identified a few works that
dealt with semi-supervised classification and meta-heuristics, including genetic
programming and ant colony optimization based methods. The first, named KGP,
uses genetic programming combined with self-learning algorithms for transductive
learning (Arcanjo et al, 2011). It explores the global search of GP to ensure that
classifiers deal with attributes dependencies, while specializing into different re-
gions of the search space. KGP uses a committee of classifiers to predict labels for
unlabeled instances, where their votes are weighted according to their confidence
in predicting neighbour instances.

The second is based on Aggregation Pheromone System (APSs) and ACO-
based algorithm for continuous domains. It was proposed by Halder et al (2010)
and extended in (Halder et al, 2013), originating the aforementioned APSSC. In
APSSC, each instance is an ant and its position is given by the attributes values.
Ants can represent either labeled or unlabeled instances. Each labeled ant spreads
pheromone of type c—where c is the ant’s instance class value. The unlabeled ants
can sense the accumulated pheromone of each class value c in their neighbourhood
and they are assigned to the class value with the highest accumulated pheromone.
The process is iterative and in iteration t + 1 the algorithm uses ants labeled in
iteration t to spread pheromone. Another interesting fact is that the class value of a
labeled ant can change over time, depending on pheromone concentrations. While
we used ants to build classification rules, in their case ants represent instances
in the training set, which spread pheromone to their neighbours according to a
Gaussian function.

A third approach was proposed by Xu et al (2013), a transductive graph-
based ACO approach for semi-supervised classification based on multi-colonies
and random walks. The algorithm models each class as a different ant colony and
unlabeled instances as food resources. The idea is that an ant colony competes
with the others for food resources. This approach has no resemblance to the model
proposed here.

The main differences between the algorithm proposed in this paper and those
mentioned above are: (i) by using a rule-based method, the models generated are
interpretable and can be used to understand how the labeling process evolves;
(ii) the diversity of the models ensures an ensemble with high quality, which in
turn is able to make more consistent decisions regarding which instances should
be labeled; (iii) as in a few other methods previously proposed in the literature,
labeling rounds are not independent since the pheromone is preserved from one
round to the next.

3 An ACO-Based Approach for Semi-Supervised Learning

This section describes the proposed algorithm, called Ant-Labeler, and it is di-
vided in four parts. We start by describing how the well-known semi-supervised
self-learning approach is combined with an ACO (supervised) classification algo-
rithm. We then present the details of the cAnt-MinerPB algorithm (Otero et al,
2013), which is the algorithm used to extract classification rules. The third part
explores distinct ways to preserve diversity during different executions of the ACO

6 Julio Albinati et al.

Input : labeled set L, unlabeled set U
output: ensemble model

1 M = Initialize pheromones of ACO graph G;
2 while U 6= ∅ do
3 RLS = k rule lists learned from L by cAnt-MinerPB using M for n iterations;
4 foreach instance i in U do
5 Classify i using k rule lists in RLS;
6 Use a voting procedure to determine final label of i;

7 end
8 subset← subset of instances selected by the SelectConfidentLabels procedure;
9 Move subset to L;

10 M = Update pheromone deposit in paths of top quality rule lists;

11 end
12 return final ensemble model;

Fig. 1 High-level pseudocode of the Ant-Labeler algorithm. The algorithm starts with a
set of labeled instances L and a set of unlabeled instances U as input. Using a rule lists
ensemble model created by an ACO classification algorithm, instances in U are transferred to
L, following a self-learning approach. The process is repeated until there are no instances in
U—i.e., all unlabeled instances are moved to the labeled set L.

classification algorithm, one aspect of extreme importance in the task being ad-
dressed. Finally, the last part discusses how the labeling of unlabeled instances
occurs.

3.1 Ant-Labeler: a semi-supervised ACO algorithm

The Ant-Labeler algorithm can be described as an iterative procedure that
receives a set of labeled instances L and a set of unlabeled instances U as input,
and outputs a set of rule lists RLS. Using the labeled instances L, it generates the
construction graph G and associated pheromone matrix M , which will be explored
by the ACO classification algorithm to create the rule lists. These rule lists are
used as an ensemble of classifiers to classify new unlabeled data. Figure 1 presents
the high-level pseudocode of Ant-Labeler. At each labeling round (lines 2 to 11),
k rule lists RLS are learned from L (line 3) and used to classify instances in U
(lines 4 to 7). The instances in U that are labeled by RLS and satisfy a confidence
threshold (line 8) are transferred to L (line 9).

This process is based on the self-learning approach, where instances are auto-
matically moved from the set U to the set L as the learning process goes on. While
there are unlabeled instances in U , an ACO classification algorithm is run for n
iterations to produce a set of rule lists based on the instances of L (the labeled
instances). Each rule list is able to classify all unlabeled instances in U and, be-
cause of that, some unlabeled instances may have multiple class values predicted.
To deal with the cases where there is conflict (rule lists predicting different class
values for the same unlabeled instance), we use a voting procedure to define a
unique prediction for each unlabeled instance. This unique class value prediction
is also associated with a confidence and number of votes (rule lists agreeing in the
class value predicted). If these numbers show enough confidence in the prediction,
we transfer the instances from the unlabeled set U to the labeled set L (details are
given in Section 3.4). This last step increases the size of the labeled set L, which
will be used in the next labeling round to generate new rule lists.

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 7

At the end of an iteration, the pheromone matrix is updated to reinforce the
pheromone values associated to a set of rule lists (line 10), chosen based on a
diversity strategy, so that the next execution of the ACO algorithm starts from
the previous state (position in the solution space) of the algorithm, instead of
starting the search from scratch.

3.2 Learning classification rules

As illustrated in Figure 1, Ant-Labeler uses an ACO classification algorithm
to produce a set of rule lists. The set of rule lists is then used as an ensemble
of classifiers to classify instances in the unlabeled set U . Ideally, the ACO classi-
fication algorithm should be able to produce a set of different rule lists. To this
end, Ant-Labeler uses the cAnt-MinerPB classification algorithm (Otero et al,
2013). In cAnt-MinerPB, each ant in the colony creates a complete rule list. While
the whole colony represents a set of potentially different rule lists, only a single
rule list is returned at the end. Recall that Ant-Labeler requires multiple exe-
cutions of the cAnt-MinerPB classification algorithm and these executions should
share the pheromone matrix, preserving the state of the search across different
iterations of the Ant-Labeler. There is also a need to return a set of rule lists,
instead of just one. Therefore, we modified the cAnt-MinerPB to receive the initial
pheromone values as a parameter and to return the set of rule lists created in the
last iteration of the algorithm.1

The high-level pseudocode of the modified cAnt-MinerPB procedure is pre-
sented in Figure 2. In summary, cAnt-MinerPB employs a different search strategy
than most ACO classification algorithms. Rather than using an ACO procedure
to create a single rule, cAnt-MinerPB uses an ACO procedure to create a complete
list of rules instead: an ant starts with the full training set and an empty rule
list (lines 6 to 7); then it creates a rule in the form IF <term1 AND . . . AND
termn > THEN <class value> by visiting the construction graph G and using its
associated pheromone matrix to select terms for the antecedent of the rule. Rules
are created by adding one term at a time to the rule antecedent by choosing terms
to be added to the current partial rule based on their values of the amount of
pheromone (τ) and a problem-dependent heuristic information (η). After a rule
is created and pruned, the training instances correctly covered by the rule are re-
moved and the rule is added to the current list of rules. These steps (lines 8 to 14)
are repeated until the number of remaining instances in the training set is lower
than a predefined threshold (maximum uncovered).

The construction graph uses a different representation for nominal and con-
tinuous attributes’ terms (vertices): for each nominal attribute xi and value vij
(where xi is the i-th nominal attribute and vij is the j-th value belonging to the
domain of xi), a vertex (xi = vij) is added to the construction graph; for each
continuous attribute yi, a vertex (yi) is added to the construction graph. Note
that continuous attributes vertices do not represent a valid term, since they do
not have a relational operator and value associated in the construction graph, in
contrast to nominal attributes. The relational operator and a threshold value will
be determined when an ant selects a continuous attribute vertex as the next term

1 Refer to (Otero et al, 2013) for more details on the cAnt-MinerPB algorithm.

8 Julio Albinati et al.

Input : labeled set L, pheromone matrix M
Output: set of rule lists RLS

1 pheromone←M ;
2 t← 0;
3 while t < maximum iterations and not stagnation do
4 RLS ← ∅;
5 for n← 1 to colony size do
6 instances← all training instances;
7 listn ← ∅;
8 while |instances| > maximum uncovered do
9 ComputeHeuristicInformation(instances);

10 rule ← CreateRule(instances, pheromone);
11 Prune(rule);
12 instances← instances− Covered(rule, instances);
13 listn ← listn + rule;

14 end
15 RLS ← RLS + listn;

16 end
17 update set← diverse solutions from RLS;
18 UpdatePheromones(update set, pheromone);
19 t← t + 1;

20 end
21 return RLS;

Fig. 2 High-level pseudocode of the modified cAnt-MinerPB procedure. The main modifica-
tions include: (i) initial pheromone values are given as a parameter (line 1); (ii) the current
set of rule lists created in an iteration is saved (lines 5 and 17); (iii) the algorithm returns a
set of rule lists created in the last iteration (line 28). Note that the pheromone update during
the procedure does not modify the (global) pheromone matrix M—only the Ant-Labeler
procedure updates M .

to be added to the rule. cAnt-MinerPB incorporates an entropy-based dynamic dis-
cretisation procedure (Otero et al, 2008), which selects the pair (operator, value)
representing the interval associated with the lowest entropy. Only the training
cases currently covered by the partial rule are used in this selection, which makes
the choice tailored to the current candidate rule being constructed, rather than
chosen in a static preprocessing step. Since the discretisation procedure is deter-
ministic, it selects the same (operator, value) pair given the same training cases,
avoiding the need to store the pair in the construction graph.

At the end of an iteration (line 16), when all ants have created a rule list,
a subset of the rule lists is selected based on a diversity strategy (see Section
3.3) and it is used to update pheromone values (lines 17 to 18). This provides
a positive feedback on the terms present in the rules: the higher the pheromone
value of a term, the more likely it will be chosen to create a rule. Note that
the pheromone update during the cAnt-MinerPB procedure does not modify the
(global) pheromone matrix M—only the Ant-Labeler procedure updates M .
This iterative process (lines 3 to 20) is repeated until a maximum number of
iterations is reached or until the search stagnates. The set of rule lists (i.e., the
set containing the rule list of each ant) created in the final iteration is returned as
the discovered set of rule lists (line 21).

An interesting aspect of using cAnt-MinerPB in the proposed algorithm is that,
by re-using the pheromone matrix M across different executions, we do not start
the search from scratch between iterations of the self-training (outer while loop

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 9

in Figure 1). In a high-level perspective, Ant-Labeler uses a modified cAnt-
MinerPB procedure for n iterations to search for a set of rule lists using the labeled
set L, labels instances from the unlabeled set U and augments L, and then re-starts
cAnt-MinerPB for another t iterations using the extended set L and the pheromone
matrix from the previous run. This process is repeated until the unlabeled set U
is empty.

3.3 Preserving rule lists diversity

It is usually the case that a single rule list performs well in classifying a subset
of instances, while others perform well in a different subset. In order to increase
the confidence when labeling instances from the unlabeled set U , Ant-Labeler
uses a multi-classifier approach, where different models vote for electing the class
value of an instance. The rationale behind the voting process is the same as the
one of an ensemble (Rokach, 2010), where different classifiers can work together
to classify new instances. One of the underlying principles of ensembles is to have
diversity. If all the classifiers return the same class value for all instances, any one
of them is sufficient to perform the classification.

The cAnt-MinerPB algorithm as proposed in (Otero et al, 2013) for learning
classification rules, however, does not consider the diversity of the generated rule
lists. Hence, we adapt and incorporate to the algorithm two distinct strategies for
diversity maintenance. The first strategy uses the notion of fitness sharing and it
is an adaptation of the work proposed by Angus (2009). The second is based on
token competition and it was originally proposed by Olmo et al (2010).

In the fitness sharing strategy, as its name suggests, the fitness of a candidate
solution i is penalized according to the number of solutions in the search space
that are similar to i. The idea is that there is only a limited amount of resources
for different regions (niches) in the search space and that solutions sharing the
same niche should also share their fitness. The size of a niche is defined by a user-
defined radius rshare, where solutions within the radius are considered similar.
In order to determine if two candidate solutions are within the same radius, the
distance between them needs to be calculated.

In the proposed algorithm, each solution is represented by a sequence of paths
in a graph—each rule represents a path in the construction graph. A simple metric,
which considers the number of shared edges between the two paths normalized by
their total size, is used to calculate the similarity between solutions i and j. The
distance d(i, j) between solutions i and j is defined as

d(i, j) = 1− (edges(i) ∩ edges(j))
max(edges(i), edges(j))

, (1)

where edges(i) and edges(j) are the set of edges of candidates solutions i and j,
respectively.

Given a set of m candidate solutions, the fitness sharing quality (Q′) of a
solution i corresponds to the quality of the solution Q(i)—the number of correct
predictions (accuracy) in L—divided by a penalty coefficient c(i), according to its
similarity to all other solutions in m. This is given by

10 Julio Albinati et al.

Q′(i) =

{
Q(i)
c(i) , if c(i) > 0

Q , otherwise
, (2)

c(i) =
m∑

j=1

sh(i, j) , (3)

sh(i, j) =

{
1−

(
d(i,j)
rshare

)p
, if d(i, j) < rshare

0 , otherwise
, (4)

where p is a user-defined parameter used to modify the shape of the sharing func-
tion and d(i, j) is the distance between candidate solutions i and j.

The second strategy, based on token competition, works as follows. The rule
lists created in an iteration of the ACO algorithm are ranked according to their
quality. Then, we assign to the best rule list (the rule list with the highest rank)
every instance it correctly classifies in the labeled training set L. In a next step, we
remove these instances from L and repeat this process for the next rule list until
there are no more instances in L. At the end of this procedure, the final subset of
rule lists is the one that is able to correctly classify all training data. This subset
is used to update the pheromone levels, instead of using only the best candidate
solution (rule list) created in the iteration.

We have performed experiments using both fitness sharing and token compe-
tition diversity strategies, as presented in Section 4.

3.4 Labeling instances

In semi-supervised approaches, a common way to try to guarantee that instances
are correctly classified is to use an ensemble of classifiers and define how their
votes will count for a final classification. In the voting procedure defined in Ant-
Labeler, each rule list votes for the class value of instances in the unlabeled set
U and the procedure computes the majority vote among all rule lists.

Figure 3 describes the SelectConfidentLabels procedure, which receives as in-
put the number of votes the class value assigned to an instance received (votes),
the classification confidence (confidence), the unlabeled set U and the maximum
number of instances that can be moved from U to L when the voting process is
not unanimous (instancesmax). The procedure returns a set of instances to be
moved from U to L. Each unlabeled instance in U receives at most |RLS| votes,
where |RLS| corresponds to the number of rule lists generated by Ant-Labeler
and it is the value initially set to votesmin.

For each instance i in U , the procedure verifies if the number of votes the ma-
jority class value (i.e., the class value that received most votes) received is above a
minimum number of votes (votesmin) and a minimum confidence (confidencemin)
(line 5). The confidence is defined as the ratio among the sum of the confidences
of the rules assigning the instance to the majority class value and the sum of the
confidences of all rules—the confidencemin is initially set to 1. When at least
votesmin rules agree with the assigned class value, instance i is moved to a tem-
porary set subset (line 6).

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 11

Input : votes, confidence, unlabeled set U , instancesmax

Output: set of labeled instances
1 confidencemin ← 1.0; votesmin ← |RLS|;
2 while votesmin > 0 do
3 subset ← ∅;
4 forall the i in U do
5 if (votes ≥ votesmin) and (confidence ≥ confidencemin) then
6 Move i from U to subset;
7 end

8 end
9 if (|subset| > instancesmax) and (votesmin 6= |RLS|) then

10 Move |subset| − instancesmax least confident instances to U ;
11 end
12 if (subset 6= ∅) then
13 return subset ;
14 end
15 if confidencemin > threshold then
16 confidencemin ← confidencemin − 0.1;
17 else
18 if votesmin > 1 then
19 votesmin ← votesmin − 1;
20 confidencemin ← 1.0;

21 end

22 end

23 end
24 return ∅;

Fig. 3 High-level pseudocode of the SelectConfidentLabels labeling procedure.

The rationale behind the procedure is to first move to L instances that received
the same class unanimously—i.e., all rule lists predict the same class (votes =
|RLS|)—and that are above a minimum voting confidence threshold. In this case,
all instances in the subset are returned by the procedure (line 13). If there are
no instances that received the class label unanimously (|subset| = 0), an iterative
process starts and the conditions for labeling instances are gradually weakened.
At each iteration, we reduce the voting confidence by 0.1 until it reaches a mini-
mum acceptable threshold (lines 15 to 16). When the minimum voting confidence
threshold is reached, the number of votes required for labeling decreases by 1 (line
19) and the minimum voting confidence is reset to 1 (line 20). This iterative pro-
cess (lines 2 to 23) goes on until a subset of instances is labeled, in which case the
subset is returned (line 13), or the minimum number of votes (votesmin) decreases
to zero. In the latter case, an empty set is returned (line 24). Note that the pa-
rameter instancesmax determines how many instances can be labeled in a single
round when classifiers are not unanimous in their decisions (lines 9 to 11). This
parameter was created to slow down the labeling process, allowing the algorithm
more time to adapt. If instancesmax is set to the number of instances in U , no
upper bound is considered.

4 Experimental Results

The experiments with Ant-Labeler were performed in three phases. In the pa-
rameter investigation phase we compared three versions of Ant-Labeler in 8

12 Julio Albinati et al.

datasets from the UCI Repository (Bache and Lichman, 2013). These three ver-
sions vary on the strategies implemented for maintaining solution diversity, which
is essential to the performance of the proposed algorithm. We then moved to the
test phase, where we compared the results of Ant-Labeler with four algorithms:
S3VM, which is widely used in the literature due to its robust performance across
different application domains (Kasabov and Pang, 2003, Tong and Chang, 2001);
a version of self-learning with C4.5, which was shown in (Triguero et al, 2015) to
be a method to achieve superior results than other wrapped classifiers; APSSC,
an ant-colony based semi-supervised algorithm; and the original version of cAnt-
MinerPB. In this second phase, we used additional 20 UCI datasets, different from
those used in the parameter investigation phase.

For both phases, experiments were conducted using different proportions of
labeled data, namely 10%, 40% and 70%, using a 5-fold cross validation process.
Ant-Labeler was executed 10 times, as it is a stochastic algorithm, and the
values reported correspond to the average over this 10 executions. Throughout
this section, the results of the algorithms in both phases are compared using a
two-step approach. First, we apply the Friedman’s test with the null hypothesis
H0 : θ1 = θ2 = ... = θn, where θ1, θ2, ..., θn are the mean accuracies from
each algorithm being tested, and the alternative hypothesis that at least one mean
accuracy is different from the others. The alternative hypothesis H1 occurs if the
p-value given by the Friedman’s test is less than or equal to 0.05. If H0 is rejected,
we apply Wilcoxon’s test with Bonferroni correction as a post-hoc procedure and
make pairwise comparisons between the mean accuracies.

In a third phase, we investigated the behaviour of the algorithm when the
number of labeled instances drops significantly, reaching 1% of labeled data. As
in most real problems very few instances are available, this scenario is one of the
most relevant to this work.

4.1 Parameter investigation: diversity maintenance methods

The 8 UCI datasets used in the parameter investigation phase of Ant-Labeler
with different diversity maintenance methods are presented in Table 1. For each
dataset, we show the dataset’s name (first column), the number of instances (sec-
ond column), number of attributes (third column) and classes (fourth column). In
this phase we also tested the impact of preserving pheromone from one labeling
round to another and fixed the values of the main ACO parameters. After pre-
liminary experiments, the number of iterations was set to 20, the colony size to
50 and parameters instancesmax and threshold (see Figure 3) were set to 5 and
0.75, respectively. For the fitness sharing strategy, rshare was set to 0.1 and p to
1 (see Eq. 4).

Table 2 shows the results of the average accuracy and standard error (accuracy
[standard error]) obtained by Ant-Labeler using the parameters defined above
and no special strategy for maintaining diversity. This table reports the results
using 70%, 40% and 10% of labeled data (generated by withdrawing uniformly
distributed samples from original data). For each dataset, there is a row labeled C
(clear pheronome) and another labeled P (pheromone preservation)—in P , after
each labeling round, the pheromone matrix is preserved and in C it is restarted
(cleared).

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 13

Table 1 Datasets used in the parameter investigation phase.

Dataset # Instances # Attributes # Classes

australian 690 14 2

balance-scale 624 4 3

glass 214 9 6

heart 270 13 2

horse-colic 368 22 2

iris 150 4 3

parkinsons 195 22 2

vertebral-column 310 6 2

Table 2 Predictive accuracy obtained in the parameter investigation phase by Ant-Labeler
preserving pheromone levels after labeling instances (P) and resetting the pheromone levels
after labeling instances (C), using no diversity strategy. The symbols N/H indicate that P
result is statistically better/worse than C result.

Percentage of labeled data
Dataset 70% 40% 10%

australian C 0.84 [0.02]N 0.83 [0.03]N 0.76 [0.07]N
P 0.84 [0.03]N 0.84 [0.03]N 0.81 [0.05]N

balance-scale C 0.85 [0.02]N 0.81 [0.04]N 0.76 [0.05]N
P 0.82 [0.04]H 0.84 [0.03]N 0.76 [0.06]N

glass C 0.82 [0.04]N 0.80 [0.04]N 0.71 [0.05]N
P 0.82 [0.06]N 0.81 [0.04]N 0.69 [0.09]N

heart C 0.76 [0.06]N 0.72 [0.08]N 0.70 [0.06]N
P 0.75 [0.04]N 0.73 [0.04]N 0.68 [0.07]N

horse-colic C 0.81 [0.03]N 0.75 [0.05]N 0.69 [0.07]N
P 0.81 [0.04]N 0.75 [0.04]N 0.70 [0.08]N

iris C 0.96 [0.02]N 0.96 [0.03]N 0.83 [0.09]N
P 0.96 [0.03]N 0.97 [0.02]N 0.94 [0.05]N

parkinsons C 0.86 [0.04]N 0.83 [0.04]N 0.79 [0.06]N
P 0.87 [0.07]N 0.82 [0.07]N 0.76 [0.10]H

vertebral-column C 0.81 [0.03]N 0.82 [0.03]N 0.71 [0.07]N
P 0.80 [0.03]N 0.81 [0.04]N 0.77 [0.05]N

P vs. C 0 N / 1 H 1 N / 0 H 3 N / 1 H

We first compare the results of the pheromone preservation and then present
the results using different diversity strategies. Our aim is to determine the opti-
mal pheromone preservation and diversity strategies. In all tables in this section,
H indicates that the method represented by the row in the table achieved results
significantly worse than the reference result, while N means the method achieved
results significantly better.

Looking at the results in Table 2, we observe that most of the results compar-
ing the strategies of preserving or not the pheromone levels show no evidence of
statistical difference. However, in 4 cases preserving the pheromone was statisti-
cally better than clearing it (cells marked with N) and worse in two cases (cells
marked with H). As expected, as the number of labeled data decreases, so does the
accuracy of Ant-Labeler. However, note that the accuracy does not fall drasti-

14 Julio Albinati et al.

Table 3 Predictive accuracy obtained in the parameter investigation phase using 50 ants, 20
iterations and two diversity strategies: TK and FS. The symbols N/H indicate that the result
of the method indicated in the row is statistically better/worse than the method using no
diversity strategy (ND), presented in Table 2.

Percentage of labeled data
Dataset 70% 40% 10%

australian TK 0.85 [0.03]N 0.85 [0.03]N 0.78 [0.05]N
FS 0.84 [0.05]N 0.82 [0.04]N 0.77 [0.09]N

balance-scale TK 0.87 [0.03]N 0.82 [0.04]N 0.72 [0.08]N
FS 0.85 [0.02]N 0.83 [0.02]N 0.74 [0.05]N

glass TK 0.82 [0.03]N 0.78 [0.04]H 0.69 [0.07]N
FS 0.81 [0.05]N 0.78 [0.04]H 0.69 [0.06]N

heart TK 0.74 [0.05]N 0.75 [0.05]N 0.70 [0.07]N
FS 0.74 [0.07]N 0.72 [0.06]N 0.70 [0.08]N

horse-colic TK 0.83 [0.03]N 0.77 [0.06]N 0.73 [0.11]N
FS 0.78 [0.05]H 0.78 [0.06]N 0.70 [0.06]N

iris TK 0.96 [0.04]N 0.95 [0.04]H 0.92 [0.06]N
FS 0.98 [0.01]N 0.94 [0.04]H 0.94 [0.05]N

parkinsons TK 0.83 [0.08]H 0.82 [0.08]N 0.74 [0.07]N
FS 0.82 [0.06]H 0.83 [0.06]N 0.76 [0.05]N

vertebral-column TK 0.82 [0.04]N 0.78 [0.05]H 0.75 [0.06]N
FS 0.82 [0.05]N 0.78 [0.06]H 0.77 [0.07]N

TK vs. ND 3 N / 1 H 1 N / 3 H 0 N / 0 H
FS vs. ND 1 N / 2 H 1 N / 3 H 0 N / 0 H

cally. Consider, for example, the use of 10% of labeled data. The highest drop in
accuracy occurred in the dataset glass, with the accuracy changing from 82% to
69%, while the number of labeled training instances was reduced from 149 to 21
instances. The highest gains of preserving the pheromone matrix occurred with
10% of labeled data, which is the most interesting scenario. Given these results,
we decided to use the pheromone preservation strategy in the next experiments.

Next, we examine the results obtained when using the two diversity strategies:
token competition and fitness sharing, from now on referred as TK and FS, respec-
tively. Table 3 shows the results obtained by the two strategies, both preserving
the pheromone matrix throughout labeling rounds, and compares with the results
obtained by Ant-Labeler when no diversity strategy is used. Note that, overall,
the TK method was better than no diversity in 4 cases and worse in other 4; FS,
in contrast, was better than no diversity in 2 cases and worse in 5. The 4 cases
where TK is worse than no diversity strategy are the same where FS also presents
worse results than no diversity strategy. However, in the majority of cases, the
tests do not show any evidence of statistical difference between the results. For
10% of labeled data, for example, the performance of the methods is the same.
When comparing FS and TK, in turn, TK is better than FS in 3 cases, which are
the same ones where it is better than no diversity strategy. Based on these results,
we can say that using token competition or no diversity generate the same results,
and that fitness sharing has a slight disadvantage.

However, the accuracy of the models is not the only aspect that matters. In
semi-supervised methods using a self-training strategy—where the unlabeled data
is labeled and then moved to the training set as the method runs—it is also inter-

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 15

Table 4 Number of labeling rounds needed in the parameter investigation phase for different
diversity strategies. The symbols N/H indicate that the result of the method indicated in the
row is statistically better/worse than the method using fitness sharing (FS).

Percentage of labeled data
Dataset 70% 40% 10%

australian
ND 12.12 [2.69]H 13.00 [3.61]H 24.54 [14.65]N
TK 45.26 [8.33]H 87.28 [18.86]H 47.88 [21.18]N
FS 6.10 [0.96]N 7.00 [0.82]N 32.70 [22.86]N

balance-scale
ND 16.06 [2.66]H 24.24 [8.40]H 17.64 [6.51]N
TK 30.56 [5.86]H 75.96 [9.19]H 88.82 [42.68]H
FS 6.44 [1.10]N 9.36 [1.69]N 15.42 [4.45]N

glass
ND 16.98 [10.33]H 35.74 [7.35]H 45.78 [7.66]H
TK 12.62 [8.34]N 41.04 [10.14]H 45.02 [14.10]H
FS 3.74 [1.91]N 6.62 [1.57]N 17.32 [10.94]N

heart
ND 11.80 [2.72]H 16.74 [9.06]N 50.36 [11.33]N
TK 31.40 [5.66]H 36.86 [8.07]H 50.50 [10.29]N
FS 4.92 [1.00]N 7.16 [2.67]N 39.68 [7.21]N

horse-colic
ND 10.30 [2.16]N 11.94 [3.23]N 53.92 [7.41]N
TK 34.86 [5.52]H 47.98 [16.46]H 53.56 [9.70]N
FS 7.26 [1.67]N 7.08 [1.73]N 53.30 [15.93]N

iris
ND 9.38 [1.78]N 16.52 [2.15]H 21.68 [3.86]H
TK 9.06 [2.54]N 15.04 [3.35]N 21.62 [4.53]H
FS 7.42 [2.01]N 8.84 [4.41]N 5.72 [1.75]N

parkinsons
ND 17.70 [4.67]N 38.92 [3.85]N 40.50 [5.59]H
TK 20.40 [3.37]N 41.06 [5.09]N 49.98 [6.50]H
FS 20.56 [3.31]N 38.00 [5.90]N 18.80 [13.59]N

vertebral-column
ND 17.52 [2.71]H 32.80 [8.21]N 60.24 [8.96]N
TK 24.86 [4.11]H 44.84 [6.42]H 60.38 [10.19]H
FS 7.68 [3.18]N 18.82 [10.28]N 43.28 [13.18]H

ND vs. FS 0 N / 5 H 0 N / 4 H 0 N / 3 H
TK vs. FS 0 N / 5 H 0 N / 6 H 0 N / 4 H

esting to consider how many labeling rounds are necessary to move all instances
from the unlabeled to the labeled set. Table 4 shows how many rounds were used
by different versions of Ant-Labeler. The number of labeling rounds has a direct
effect on the efficiency of the algorithm and a large value may cause overfitting.

Observe that TK is the method that requires more labeling rounds, followed by
ND (no diversity) and FS. As FS has the smallest number of rounds, the statistical
test in this case compared FS against ND and TK. Note that, out of 24 cases (8
datasets × 3 data configurations), ND takes significantly more labeling rounds
than FS in 12 and TK requires more rounds than FS in 15. Considering that
FS inserts diversity in the colony at a smaller cost than TK, without degrading
accuracy in the majority of datasets, we chose to use the fitness sharing as our
diversity strategy for the remaining experiments.

Figure 4 illustrates diversity by using the number of different edges among
all ants during the model creation process for 2 datasets, namely horse-colic and
heart, when using different sizes of labeled training data. Each iteration represents
a complete run of ACO, which is equivalent to one labeling round, and the graphs
consider pheromone preservation within labeling rounds. As expected, diversity
decreases as the number of labeling rounds increases and, consequently, after the

16 Julio Albinati et al.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

D
iv

er
si

ty

● ●

●

●

●
● ● ● ●

●

●

●
●

●

●

Labeled instances: 10%
Labeled instances: 40%
Labeled instances: 70%

(a) horse-colic

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

D
iv

er
si

ty

● ● ●

●

● ●

● ●

●

●

●

●

Labeled instances: 10%
Labeled instances: 40%
Labeled instances: 70%

(b) heart

Fig. 4 Diversity evolution in terms of the difference in the number of edges (rule antecedents)
among models in subsequent labeling rounds using different sizes of labeled training data.

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

D
iv

er
si

ty

● ●

●

●

●
● ● ● ●

●

● PHERO
CLEAR

(a) horse-colic

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

D
iv

er
si

ty

● ● ●

●

● ●

● ●

● PHERO
CLEAR

(b) heart

Fig. 5 Diversity evolution in terms of the difference in the number of edges (rule antecedents)
among models in subsequent labeling rounds when preserving or clearing the pheromone levels
with a fitness sharing diversity strategy.

model has been tuned for some time, diversity drops and then stabilizes. Note that
the fewer the number of initially labeled instances, the higher the diversity among
the first labeling rounds. This may happen because, as the number of labeling
rounds increases, so does the number of labeled instances used to generate the
model.

Figure 5, in contrast, illustrates the number of different edges among the mod-
els generated at each subsequent labeling round when preserving or clearing the
pheromone levels with a fitness sharing diversity strategy. Note that, in both cases,
the number of different edges follows a similar pattern and decreases over time,
reaching around 50% different edges towards the end of the process. However, as
expected, the number of different edges decreases faster when the pheromone levels

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 17

Table 5 Datasets used in the test phase.

Dataset # Instances # Attributes # Classes

anneal 945 38 6

breast-cancer 304 9 2

breast-tissue 124 9 6

bupa 360 6 2

car 1743 6 4

dermatology 409 34 6

ecoli 352 7 8

german 1029 20 2

hepatitis 183 19 2

house-votes 460 16 2

hungarian 316 13 5

ionosphere 394 34 2

mushroom 8124 22 2

soybean 351 35 19

tic-tac-toe 976 9 2

transfusion 761 4 2

vehicle 873 18 4

wdbc 608 30 2

wine 200 13 3

wpbc 200 32 2

are preserved. The results indicate that, by preserving the pheromone levels, we
avoid that the model starts to be built from scratch at each new labeling round
and, at the same time, it does not lead to overfitting.

4.2 Test Phase

Given the parameters chosen during the investigation phase (Section 4.1)—Ant-
Labeler with fitness sharing and preserving the pheromone levels from one la-
beling round to the next—we then validated Ant-Labeler in another set of 20
datasets from the UCI Repository, described in Table 5. The results of predictive
accuracy achieved by Ant-Labeler are compared with four algorithms: C4.5 with
Self-Training (ST), described in Section 2; a Transductive (or Semi-Supervised)
Support Vector Machine (S3VM) (Joachims, 1999), considered state-of-the art
among semi-supervised methods; ant-based semi-supervised algorithm (APSSC,
also described in Section 2); and the original version of cAnt-MinerPB, which is a
supervised algorithm and it will be trained with a small portion of a dataset. Note
that, among these methods, ST is the most appropriate for this comparison, as it
works based on the same principle of Ant-Labeler.

We used the version of S3VM implemented in SVMLight (Joachims, 1999) and
ran the supervised version for 100% of labeled data and the transductive version for
the three other cases. In both cases, the SVMLight implementation can handle only
binary classification. In order to handle multiclass classification, we used the one-

18 Julio Albinati et al.

vs-all approach described in (Hsu and Lin, 2002). All experiments were performed
with the RBF kernel and, given the SVM sensitivity to parameters values, a grid-
search procedure was performed considering the parameters c = {1, 2} and γ =
{1, 0.5, 0.25, 0.125, 0.0625}. The results reported here are those obtained with the
best sets of parameters, which may vary from one dataset to the other.

APSSC was run using the implementation provided by KEEL (Alcalá-Fdez
et al, 2009) with the following parameters: Gaussian spread σ = 0.3, evaporation
rate ρ = 0.7, and minimum threshold (for an instance to belong to a class) equal
to 0.75. The parameters of cAnt-MinerPB were those recommended in (Otero et al,
2013): 5 ants, 500 iterations, evaporation rate ρ = 0.9, and the maximum number
of unconvered instances equal to 10.

The average predictive accuracy and the standard error achieved by the five
algorithms for the 20 datasets are shown in Tables 6 and 7 (accuracy [standard
error]). Apart from experiments with 70%, 40% and 10% of labeled data, we also
show results with 100% of labeled data. This last experiment corresponds to the
supervised approach and the results are interesting to serve as a baseline to the
values of accuracy when all data is labeled.2 We compare the results using the
same approach followed in the parameter investigation phase: the Friedman’s test
followed by the Wilcoxon’s test with Bonferroni correction as post-hoc procedure.
The symbol following the row representing S3VM, ST, cAnt-MinerPB and APSSC
indicates whether the respective algorithm is statistically better (N) or worse (H)
than Ant-Labeler.

Table 8 summarizes the number of times Ant-Labeler achieved statistically
significantly better or worse results than the algorithms tested. The column 100%
is only illustrative, as it represents generating a model using the whole dataset (no
unlabeled data) and its only purpose is to serve as a baseline for the results con-
cerning the use of unlabeled data. When using 70% of labeled data, Ant-Labeler
was superior to S3VM in 9 datasets and inferior in 4. For ST, Ant-Labeler was
superior in 11 and inferior in 5. In comparison with cAnt-MinerPB, Ant-Labeler
was better in 10 datasets and worse in 5. In all other cases there was no evidence
of statistical difference among the results. Similar numbers were obtained when
using 40% and 10% of labeled data. However, as the number of labeled instances
decreases, Ant-Labeler becomes more consistent, showing statistically signifi-
cantly better results than S3VM, ST and cAnt-MinerPB in up to 12 out of 20
datasets and statistically significantly worse results in up to only 3. Concerning
APSSC, for which we have results for only 40% and 10%, Ant-Labeler is sta-
tistically significantly better in 12 and 14 datasets, respectively, and statistically
significantly worse than APSSC in only 3 datasets for 10% of labeled data; in all
other cases there was no evidence of statistical difference among the results.

The best Ant-Labeler results were obtained for the experiments using 40%
and 10% of labeled data, where Ant-Labeler was statistically significantly better
than all algorithms in at least 10 out of 20 datasets and statistically significantly
worse in no more than 3. Overall, out of the 280 comparisons summarized in Table
8—20 datasets and 14 different algorithms/proportions of labeled data pairs—
Ant-Labeler was statistically significantly better than the other algorithms in

2 No results for APSSC with 70% and 100% of labeled data are reported, as the KEEL
implementation was not able to generate results for these data configurations.

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 19

Table 6 Average predictive accuracy in test datasets (accuracy [standard error]). The symbols
N/H indicate that the result of the algorithm indicated in the row is statistically better/worse
than Ant-Labeler.

Percentage of labeled data
100% 70% 40% 10%

anneal

Ant-Labeler 0.88 [0.02] 0.99 [0.01] 0.97 [0.02] 0.90 [0.03]
S3VM 0.87 [0.03]H 0.84 [0.03]H 0.80 [0.04]H 0.72 [0.04]H
ST 0.92 [0.02]N 0.90 [0.02]H 0.86 [0.03]H 0.80 [0.03]H
APSSC – – 0.26 [0.06]H 0.31 [0.08]H
cAnt-MinerPB 0.97 [0.01]N 0.97 [0.00]H 0.94 [0.01]H 0.79 [0.01]H

breast-cancer

Ant-Labeler 0.72 [0.07] 0.70 [0.05] 0.63 [0.05] 0.65 [0.06]
S3VM 0.76 [0.06] 0.71 [0.06] 0.71 [0.07]N 0.65 [0.08]
ST 0.71 [0.05] 0.70 [0.05] 0.68 [0.04]N 0.66 [0.09]
APSSC – – 0.60 [0.07] 0.63 [0.09]
cAnt-MinerPB 0.74 [0.01] 0.73 [0.01]N 0.69 [0.03]N 0.72 [0.00]N

breast-tissue

Ant-Labeler 0.86 [0.07] 0.88 [0.05] 0.85 [0.06] 0.78 [0.06]
S3VM 0.67 [0.11]H 0.58 [0.11]H 0.48 [0.11]H 0.41 [0.10]H
ST 0.67 [0.12]H 0.63 [0.11]H 0.60 [0.13]H 0.37 [0.15]H
APSSC – – 0.60 [0.10]H 0.46 [0.11]H
cAnt-MinerPB 0.65 [0.03]H 0.63 [0.01]H 0.48 [0.00]H 0.18 [0.02]H

bupa

Ant-Labeler 0.68 [0.07] 0.64 [0.04] 0.61 [0.06] 0.52 [0.08]
S3VM 0.59 [0.05]H 0.62 [0.05] 0.59 [0.04] 0.54 [0.09]
ST 0.64 [0.06]H 0.64 [0.06] 0.62 [0.06] 0.57 [0.07]N
APSSC – – 0.57 [0.09] 0.53 [0.09]
cAnt-MinerPB 0.66 [0.02] 0.63 [0.01] 0.63 [0.01] 0.56 [0.00]

car

Ant-Labeler 0.82 [0.04] 0.92 [0.02] 0.91 [0.02] 0.86 [0.05]
S3VM 0.95 [0.02]N 0.93 [0.01]N 0.90 [0.02] 0.83 [0.03]H
ST 0.92 [0.01]N 0.89 [0.02]H 0.86 [0.02]H 0.78 [0.03]H
APSSC – – 0.50 [0.03]H 0.48 [0.04]H
cAnt-MinerPB 0.89 [0.00]N 0.88 [0.00]H 0.87 [0.00]H 0.78 [0.00]H

dermatology

Ant-Labeler 0.98 [0.01] 0.98 [0.01] 0.96 [0.01] 0.87 [0.03]
S3VM 0.97 [0.02] 0.96 [0.02]H 0.96 [0.03]H 0.78 [0.10]H
ST 0.94 [0.03]H 0.93 [0.04]H 0.89 [0.06]H 0.69 [0.09]H
APSSC – – 0.94 [0.02]H 0.91 [0.05]N
cAnt-MinerPB 0.91 [0.02]H 0.88 [0.03]H 0.81 [0.01]H 0.61 [0.08]H

ecoli

Ant-Labeler 0.94 [0.02] 0.94 [0.02] 0.93 [0.02] 0.86 [0.06]
S3VM 0.86 [0.04]H 0.85 [0.04]H 0.84 [0.05]H 0.78 [0.06]H
ST 0.82 [0.05]H 0.81 [0.04]H 0.79 [0.05]H 0.68 [0.08]H
APSSC – – 0.75 [0.07]H 0.70 [0.08]H
cAnt-MinerPB 0.80 [0.01]H 0.78 [0.01]H 0.76 [0.01]H 0.53 [0.00]H

german

Ant-Labeler 0.71 [0.04] 0.73 [0.03] 0.71 [0.04] 0.70 [0.03]
S3VM 0.70 [0.03] 0.70 [0.03]H 0.70 [0.03] 0.70 [0.03]
ST 0.71 [0.03] 0.70 [0.03]H 0.69 [0.03]H 0.66 [0.04]H
APSSC – – 0.69 [0.03]H 0.65 [0.04]H
cAnt-MinerPB 0.73 [0.00]N 0.73 [0.01] 0.72 [0.01] 0.68 [0.01]

hepatitis

Ant-Labeler 0.81 [0.09] 0.79 [0.07] 0.82 [0.07] 0.78 [0.10]
S3VM 0.79 [0.06] 0.79 [0.05] 0.79 [0.07] 0.79 [0.07]
ST 0.77 [0.07] 0.79 [0.06] 0.79 [0.07] 0.77 [0.09]
APSSC – – 0.81 [0.06] 0.77 [0.10]
cAnt-MinerPB 0.79 [0.04] 0.80 [0.04] 0.76 [0.05]H 0.74 [0.00]

house-votes

Ant-Labeler 0.95 [0.03] 0.94 [0.04] 0.95 [0.04] 0.90 [0.07]
S3VM 0.96 [0.02] 0.95 [0.02] 0.94 [0.03] 0.88 [0.05]
ST 0.96 [0.03]N 0.95 [0.02] 0.94 [0.03] 0.94 [0.04]
APSSC – – 0.92 [0.03] 0.91 [0.03]H
cAnt-MinerPB 0.95 [0.00] 0.94 [0.01] 0.94 [0.00] 0.92 [0.01]

20 Julio Albinati et al.

Table 7 Average predictive accuracy in test datasets (accuracy [standard error]). The symbols
N/H indicate that the result of the algorithm indicated in the row is statistically better/worse
than Ant-Labeler.

Percentage of labeled data
100% 70% 40% 10%

hungarian

Ant-Labeler 0.80 [0.02] 0.81 [0.04] 0.81 [0.04] 0.77 [0.07]
S3VM 0.65 [0.07]H 0.65 [0.06]H 0.63 [0.04]H 0.64 [0.05]H
ST 0.66 [0.05]H 0.64 [0.05]H 0.63 [0.06]H 0.60 [0.07]H
APSSC – – 0.47 [0.13]H 0.47 [0.14]H
cAnt-MinerPB 0.65 [0.01]H 0.65 [0.02]H 0.64 [0.00]H 0.63 [0.00]H

ionosphere

Ant-Labeler 0.93 [0.02] 0.92 [0.03] 0.88 [0.04] 0.80 [0.08]
S3VM 0.95 [0.02]N 0.94 [0.03]N 0.94 [0.03]N 0.86 [0.06]N
ST 0.90 [0.03]H 0.88 [0.04]H 0.87 [0.04] 0.80 [0.08]
APSSC – – 0.85 [0.05] 0.78 [0.09]
cAnt-MinerPB 0.91 [0.01]H 0.87 [0.03]H 0.84 [0.04]H 0.66 [0.03]H

mushroom

Ant-Labeler 0.99 [0.01] 1.00 [0.00] 1.00 [0.00] 1.00 [0.00]
S3VM 1.00 [0.00]N 1.00 [0.00] 0.99 [0.00]H 0.99 [0.01]H
ST 1.00 [0.00]N 1.00 [0.00] 1.00 [0.00] 0.99 [0.01]H
APSSC – – 0.99 [0.00]H 0.99 [0.00]H
cAnt-MinerPB 1.00 [0.00]N 1.00 [0.00] 1.00 [0.00] 0.99 [0.00]H

soybean

Ant-Labeler 0.97 [0.01] 0.96 [0.02] 0.95 [0.01] 0.90 [0.01]
S3VM 0.92 [0.03]H 0.85 [0.05]H 0.80 [0.05]H 0.52 [0.09]H
ST 0.83 [0.06]H 0.80 [0.07]H 0.68 [0.08]H 0.38 [0.09]H
APSSC – – 0.81 [0.06]H 0.53 [0.08]H
cAnt-MinerPB 0.75 [0.05]H 0.64 [0.02]H 0.49 [0.03]H 0.29 [0.02]H

tic-tac-toe

Ant-Labeler 0.72 [0.04] 0.77 [0.04] 0.74 [0.04] 0.64 [0.04]
S3VM 0.99 [0.01]N 0.97 [0.02]N 0.73 [0.03] 0.77 [0.04]N
ST 0.94 [0.02]N 0.92 [0.03]N 0.88 [0.04]N 0.70 [0.05]N
APSSC – – 0.74 [0.03] 0.62 [0.04]H
cAnt-MinerPB 0.80 [0.02]N 0.80 [0.03]N 0.81 [0.01]N 0.67 [0.01]N

transfusion

Ant-Labeler 0.76 [0.05] 0.75 [0.04] 0.74 [0.05] 0.74 [0.03]
S3VM 0.73 [0.04]H 0.74 [0.03] 0.73 [0.03] 0.72 [0.04]
ST 0.78 [0.03] 0.77 [0.03] 0.76 [0.03] 0.75 [0.04]
APSSC – – 0.65 [0.04]H 0.65 [0.09]H
cAnt-MinerPB 0.78 [0.00] 0.78 [0.00]N 0.77 [0.00]N 0.74 [0.00]

vehicle

Ant-Labeler 0.79 [0.02] 0.83 [0.02] 0.80 [0.02] 0.77 [0.03]
S3VM 0.73 [0.03]H 0.72 [0.03]H 0.69 [0.04]H 0.59 [0.06]H
ST 0.72 [0.03]H 0.71 [0.03]H 0.68 [0.03]H 0.57 [0.06]H
APSSC – – 0.62 [0.04]H 0.54 [0.05]H
cAnt-MinerPB 0.68 [0.00]H 0.67 [0.01]H 0.64 [0.01]H 0.49 [0.05]H

wdbc

Ant-Labeler 0.95 [0.02] 0.94 [0.02] 0.93 [0.02] 0.89 [0.02]
S3VM 0.63 [0.05]H 0.63 [0.04]H 0.63 [0.04]H 0.60 [0.09]H
ST 0.94 [0.02]H 0.93 [0.02] 0.92 [0.03] 0.90 [0.03]
APSSC – – 0.94 [0.02] 0.93 [0.02]N
cAnt-MinerPB 0.94 [0.01]H 0.94 [0.01] 0.91 [0.01]H 0.88 [0.00]

wine

Ant-Labeler 0.97 [0.02] 0.95 [0.03] 0.95 [0.04] 0.87 [0.06]
S3VM 0.97 [0.01] 0.97 [0.02]N 0.94 [0.03] 0.89 [0.09]
ST 0.93 [0.04]H 0.90 [0.05]H 0.87 [0.06]H 0.72 [0.13]H
APSSC – – 0.96 [0.03] 0.94 [0.05]N
cAnt-MinerPB 0.94 [0.02]H 0.87 [0.02]H 0.85 [0.03]H 0.37 [0.00]H

wpbd

Ant-Labeler 0.76 [0.06] 0.69 [0.07] 0.71 [0.06] 0.73 [0.06]
S3VM 0.76 [0.06] 0.76 [0.06]N 0.76 [0.06]N 0.75 [0.08]
ST 0.71 [0.08]H 0.69 [0.07] 0.68 [0.08] 0.65 [0.11]H
APSSC – – 0.57 [0.11]H 0.56 [0.08]H
cAnt-MinerPB 0.68 [0.04]H 0.70 [0.04] 0.66 [0.04]H 0.76 [0.00]

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 21

Table 8 Comparison of Ant-Labeler against the other four algorithms on the 20 UCI
datasets. The symbol N indicates that Ant-Labeler was statistically better than the method
on the row, while H indicates that Ant-Labeler was statistically worse than the method on
the row.

Percentage of labeled data
100% 70% 40% 10%

Ant-Labeler vs.

S3VM 9 N / 4 H 9 N / 5 H 10 N / 2 H 11 N / 2 H
ST 11 N / 5 H 11 N / 2 H 10 N / 2 H 12 N / 2 H
APSSC – – 12 N / 0 H 14 N / 3 H
cAnt-MinerPB 10 N / 5 H 10 N / 2 H 12 N / 3 H 11 N / 2 H

152 cases (54% of the experiments) and statistically significantly worse in 39 cases
(14% of the experiments).

It is interesting to note that Ant-Labeler was statistically significantly bet-
ter than cAnt-MinerPB in 10 cases when training was performed with 100% of
instances, and statistically significantly worse in 5 cases. The fact that the algo-
rithm we used as a wrapper is outperformed by the proposed algorithm when we
consider a supervised task (i.e., training with all labeled data) might be strange
at first. However, note that Ant-Labeler does work with a diversity scheme and
uses an ensemble of rule lists to make predictions. These two features are probably
responsible for the improvements observed in the results.

Regarding the behaviour of Ant-Labeler when the number of labeled in-
stances decreases, the fewer labeled instances the lower the accuracy, as expected.
However, we observed that in a some datasets—including german, house and trans-
fusion—there were no significant differences among the results using different per-
centages of labeled data. In anneal, a different phenomenon was observed. The
accuracies achieved for 10%, 40% and 70% of labeled data increased before de-
creasing again when reaching 100%. There are two potential explanations for this
behaviour. When using 100% of labeled instances, Ant-Labeler runs for 20 iter-
ations and stops—i.e., only one labeling round is performed. For smaller labeled
sets, Ant-Labeler runs for many more iterations. Hence, the algorithm has more
time to generate an optimal (near optimal) model. The increase in accuracy in-
line with the increase in the size of the labeled data is likely due to the fact that
instances labeled and moved to the labeled set at each labeling round introduced
small errors to the final labeling process, therefore, the smaller the unlabeled set,
the smaller the potential error introduced in the predictions.

4.3 Lower ratio of labeled data

The results in the previous section have showed that Ant-Labeler outperforms
state-of-the-art semi-supervised algorithms in a set of 20 UCI datasets with differ-
ent ratios of labeled and unlabeled data. This section presents results considering
even lower number of labeled data, which correspond to 1% and 5% of the datasets.
For this analysis three new datasets, with a higher number of instances than those
described in Table 5, were selected from UCI: nursery (with 12,960 instances, 8
attributes and 6 classes), magic (with 19,020 instances, 10 attributes and 2 classes)
and EEG (with 14,490 instances, 14 attributes and 2 classes). In order to compare
the results obtained in these datasets with those achieved in smaller datasets, we

22 Julio Albinati et al.

selected three small datasets used in the experiments in the previous section to
be added to this experiment: anneal, transfusion and wdbc. These datasets were
selected because they provide a reasonable (although very small) number of la-
beled instances when considering very low ratios of labeled data (9, 7 and 6 for
1% labeled instances, respectively).

We focus the analysis on semi-supervised algorithms. The results are compared
with S3VM and APSCC; however, we replaced the C4.5 with Self-Training by a
Tri-Training (Zhou and Li, 2005) version of C4.5 to evaluate a different semi-
supervised strategy. Tri-training is based on three learners, and works as follows.
Initially, three learners h1, h2 and h3 are trained using the set of labeled data, and
then, in pairs, learners are used to label unlabeled data. When h2 and h3 agree on
the label of an unlabeled instance, the instance is added to a temporary labeled
set associated with h1. Three temporary labeled sets are generated considering
the agreement of pairs of classifiers on unlabeled instances. A set of conditions
regarding classification error and noise on unlabeled instances are checked, and
when these conditions allow, the learners are retrained using these temporary sets
plus the original labeled set. This process goes on until h1, h2 and h3 are invariant.

The parameters used for Ant-Labeler, S3VM and APSCC are the same re-
ported in the previous section. For Tri-Training, we used the implementation pro-
vided by KEEL (Alcalá-Fdez et al, 2009) with C4.5 and its default parameters.

The average predictive accuracy and the standard error (accuracy [standard
error]) achieved by each algorithm is presented in Table 9—they were calculated
over a 10-fold cross-validation. Again, the statistical significance analysis is per-
formed using the Friedman’s test followed by the Wilcoxon’s test with Bonferroni
correction as post-hoc procedure. The symbol following an algorithm’s value in-
dicates whether the respective algorithm is statistically significantly better (N) or
worse (H) than Ant-Labeler.

Table 10 summarizes the number of times Ant-Labeler achieved statistically
significantly better or worse results than the algorithms tested. Overall, Ant-
Labeler results are positive: it achieved similar or better results than the other
semi-supervised algorithms used in the experiments at both 1% and 5% in the
majority of the experiments. An exception is the magic dataset, where at 1%,
Ant-Labeler results are statistically significantly worse than all remaining algo-
rithms; at 5%, S3VM is statistically significantly better than Ant-Labeler. There
are two other cases where Ant-Labeler obtained statistically significantly worse
results. The first is the wdbc dataset at 1%, where the results are worse than those
of APSCC, followed by Tri-Training in nursery with 5%. Ant-Labeler results
are particularly positive in nursery, EEG, anneal and transfusion. In the nursery
dataset, Ant-Labeler results are statistically significantly better than APSCC
in both the 1% and 5% cases; in the EEG, Ant-Labeler results are statistically
significantly better than Tri-Training in both the 1% and 5% cases; in the anneal
dataset, Ant-Labeler results are statistically significantly better than APSCC at
1% and it is statistically significantly better than all remaining algorithms at 5%;
finally, in the transfusion dataset, Ant-Labeler results are statistically signifi-
cantly better than APSCC in both the 1% and 5% cases. Once more, these results
show that Ant-Labeler is effective with different ratios of labeled and unlabeled
datasets, being competitive to or better than other state-of-the-art semi-supervised
algorithms.

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 23

Table 9 Predictive accuracy in extreme scenarios of Ant-Labeler, S3VM, APSCC and Tri-
Training. The symbols N/H indicate that the result of the algorithm indicated in the row is
statistically better/worse than Ant-Labeler.

Percentage of labeled data
5% 1%

nursery

Ant-Labeler 0.81 [0.03] 0.79 [0.04]
S3VM 0.81 [0.02] 0.77 [0.04]
APSCC 0.60 [0.02]H 0.40 [0.05]H
Tri-Training 0.89 [0.01]N 0.80 [0.09]

magic

Ant-Labeler 0.73 [0.01] 0.70 [0.03]
S3VM 0.82 [0.01]N 0.81 [0.01]N
APSCC 0.73 [0.02] 0.73 [0.01]N
Tri-Training 0.75 [0.05] 0.77 [0.01]N

EEG

Ant-Labeler 0.57 [0.01] 0.57 [0.02]
S3VM 0.57 [0.03] 0.54 [0.03]
APSCC 0.55 [0.04] 0.55 [0.03]
Tri-Training 0.51 [0.05]H 0.50 [0.05]H

anneal

Ant-Labeler 0.88 [0.04] 0.72 [0.07]
S3VM 0.76 [0.01]H 0.76 [0.01]
APSCC 0.27 [0.11]H 0.39 [0.14]H
Tri-Training 0.73 [0.22]H 0.75 [0.04]

transfusion

Ant-Labeler 0.76 [0.04] 0.69 [0.09]
S3VM 0.71 [0.06] 0.66 [0.11]
APSCC 0.61 [0.11]H 0.57 [0.12]H
Tri-Training 0.73 [0.06] 0.61 [0.18]

wdbc

Ant-Labeler 0.90 [0.06] 0.68 [0.10]
S3VM 0.63 [0.00]H 0.63 [0.00]
APSCC 0.92 [0.05] 0.91 [0.05]N
Tri-Training 0.88 [0.06] 0.67 [0.10]

Table 10 Comparison of Ant-Labeler against S3VM, APSCC and TriTraining in extreme
scenarios. The symbol N indicates that Ant-Labeler was statistically better than the method
on the row, while H indicates that Ant-Labeler was statistically worse than the method on
the row.

Percentage of labeled data
5% 1%

Ant-Labeler vs.
S3VM 2 N / 1 H 0 N / 1 H
APSSC 3 N / 0 H 3 N / 2 H
Tri-Training 2 N / 1 H 1 N / 1 H

4.4 Time complexity analysis

Ant-Labeler is an iterative procedure, where each iteration is divided into three
parts: (i) a call to cAnt-MinerPB, (ii) the classification of all unlabeled instances
through a voting procedure; and (iii) the labeling of the most confident instances.
The time complexity of cAnt-MinerPB, previously studied in Otero et al (2013),
is O(t ∗ c ∗ a2 ∗ d2l), where t is the number of iterations of the ACO procedure, c is
the number of ants, a is the number of attributes and dl is the number of labeled
instances in the dataset. The complexity associated with classifying du unlabeled
instances—where du is the number of unlabeled instances in the dataset—is O(du∗
c ∗ dl ∗ a), given that for each unlabeled instance we have to verify the label and

24 Julio Albinati et al.

accuracy provided by all c rule lists and each rule list is composed of at most
dl rules using at most a terms. The labeling procedure is an iterative procedure,
where the constraints are relaxed by decrementing the number of votes from c to
1 and the confidence from 1 to 0.75 by a constant step, in the worst case scenario.
Since du instances need to be checked at each iteration, the labeling procedure
complexity is O(c ∗ du). Therefore, the time complexity of an iteration of Ant-
Labeler is dominated by cAnt-MinerPB complexity and the number of iterations
of Ant-Labeler is upper-bounded by O(du

m). Since instances are labeled at each
iteration, du decreases as dl increases and d = du+dl (therefore d ≥ du and d ≥ dl),
we conclude that the final time complexity of Ant-Labeler is O(du

m ∗t∗c∗a
2∗d2).

Note that this analysis uses two pessimistic assumptions: it considers that rules
have a terms and that the number of rules in a list is equal to d; in practice these
values are smaller (Otero et al, 2013).

Regarding the actual execution time, Tri-Training is the fastest overall, fol-
lowed by Self-Training with C4.5 and APSSC. The execution time of these algo-
rithms is within the same order of magnitude for different dataset sizes. S3VM and
Ant-Labeler, in contrast, are slower and within the same order of magnitude—
for smaller datasets, Ant-Labeler is faster than S3VM; the bigger the dataset,
the more similar the performances of Ant-Labeler and S3VM. The computa-
tional time is highly dependent on the number of necessary labeling rounds, which
varies significantly from one dataset to another. For example, in smaller datasets
(less than 1,000 instances, e.g., tic-tac-toe and anneal) considering 1% of labeled
data, Tri-Training took less than 1 second, Ant-Labeler 7 seconds and S3VM
24 seconds; in the larger datasets (more than 20,000 instances, e.g., nursery and
magic) considering 1% of labeled instances, Tri-Training took 3 seconds, APSSC
76 seconds, S3VM 4.3 hours and Ant-Labeler 11.3 hours.3 It is important to
emphasize that the reported times are for the training phase. After the models
have been generated, the testing time for all algorithms is essentially the same (in
the order of seconds). The additional effort spent training the Ant-Labeler is
paid off by the higher accuracy obtained during the test phase, as our results illus-
trate. In addition, ACO algorithms can be easily parallelised since each ant builds
and evaluates a candidate solution independently of all the other ants. Therefore,
a large speed up could be achieved by running a parallel version of cAnt-MinerPB

in applications where the computational time of Ant-Labeler is considered a
significant issue.

5 Conclusions and Future Work

This paper proposed Ant-Labeler, a self-training algorithm that uses as a wrap-
per the cAnt-MinerPB algorithm (Otero et al, 2013), produces rule lists and pre-
serves pheromone levels from one labeling round to another. The original version
of cAnt-MinerPB was modified to include two different types of mechanisms to
encourage diversity, namely fitness sharing and token competition, as the results
of multiple classifiers were considered when moving instances from the unlabeled
to the labeled set.

3 The running times were observed on a Xeon 2.4 GHz machine with 3.5 GB of RAM.

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 25

Experiments were performed in three phases. In the parameter investigation
phase, eight datasets were used to set parameters and compare different diversity
strategies. Although token competition was superior to fitness sharing in three out
of eight datasets, it required a much larger number of labeling rounds. Hence, we
opted for using the fitness sharing strategy.

In the test phase, we used an additional 20 datasets and compared the results
of Ant-Labeler against well-known semi-supervised algorithms, namely the C4.5
algorithm with Self-Training (ST), Transductive (or Semi-Supervised) Support
Vector Machines (S3VM), APSSC (Aggregation Pheromone Density based Semi-
Supervised Classification) and the original supervised version of cAnt-MinerPB.
Our results are very promising, showing that Ant-Labeler outperforms ST,
S3VM, APSSC and cAnt-MinerPB with statistical significant differences. The com-
parison against these algorithms is interesting as (i) ST follows the same self-
training strategy; (ii) S3VM is considered a state-of-the-art in semi-supervised
learning; (iii) APSSC is based on the idea of ant colony algorithms; and (iv) cAnt-
MinerPB is the algorithms used as the core of self-training in the proposed ap-
proach. The results also showed that the smaller the number of labeled instances,
the better Ant-Labeler performance compared to the other algorithms.

Finally, a third set of experiments showed the performance of the algorithm
with a reduced number of labeled instances, corresponding to 1% and 5% of the
dataset, and considering three additional datasets with a larger number of in-
stances. Again, Ant-Labeler showed to be competitive with the state-of-the-art
algorithms.

As future work, we intend to test Ant-Labeler using real-world data with
even smaller proportions of labeled data, a common scenario in many applications.
Implementing a multi-objective version of the algorithm would also be interest-
ing, as it would allow to take into account the number of instances labeled and
the accuracy of the predictions made by the rule lists. Another interesting direc-
tion will be to consider further adaptations of cAnt-MinerPB to work with other
self-learning like approaches, such as Tri-Training, given the promising results ob-
tained. We also intend to investigate how the algorithm could be adapted to work
in graph-based scenarios, since ACO has a natural way of modeling problems as
graphs.

Acknowledgements The authors would like to thank the anonymous reviewers and the
associate editor for their valuable comments and suggestions. This work was partially supported
by the following Brazilian Research Support Agencies: CNPq, FAPEMIG, and CAPES.

References

Alcalá-Fdez J, Sánchez L, Garćıa S, del Jesus M, Ventura S, Garrell J, Otero
J, Romero C, Bacardit J, Rivas V, Fernández J, Herrera F (2009) KEEL: a
software tool to assess evolutionary algorithms for data mining problems. Soft
Computing 13(3):307–318

Angus D (2009) Niching for ant colony optimisation. In: Lewis A, Mostaghim S,
Randall M (eds) Biologically-Inspired Optimisation Methods, Studies in Com-
putational Intelligence vol 210, Springer, pp 165–188

26 Julio Albinati et al.

Arcanjo FL, Pappa GL, Bicalho PV, Meira W Jr, da Silva AS (2011) Semi-
supervised genetic programming for classification. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation (GECCO 2011),
ACM, pp 1259–1266

Bache K, Lichman M (2013) UCI machine learning repository. URL
http://archive.ics.uci.edu/ml

Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training.
In: Proceedings of the 11th Annual Conference on Computational Learning The-
ory (COLT ’98), ACM, pp 92–100

Chapelle O, Schölkopf B, Zien A (eds) (2010) Semi-Supervised Learning. MIT
Press, 528 pages

Davidson I, Ravi S (2005) Clustering with constraints: Feasibility issues and the
k-means algorithm. In: Proceedings of the 2005 SIAM International Conference
on Data Mining (SDM05), SIAM, pp 201–211

Freitas AA (2002) Data Mining and Knowledge Discovery with Evolutionary Al-
gorithms. Springer, 264 pages

Ginestet C (2009) Semisupervised learning for computational linguistics. Journal
of the Royal Statistical Society: Series A (Statistics in Society) 172(3):694–694

Halder A, Ghosh S, Ghosh A (2010) Ant based semi-supervised classification.
In: Swarm Intelligence: 7th International Conference (ANTS 2010), Springer,
LNCS, vol 6234, pp 376–383

Halder A, Ghosh S, Ghosh A (2013) Aggregation pheromone metaphor for semi-
supervised classification. Pattern Recognition 46(8):2239–2248

Hsu C, Lin C (2002) A comparison of methods for multiclass support vector ma-
chines. IEEE Transactions on Neural Networks 13(2):415–425

Joachims T (1999) Transductive inference for text classification using support vec-
tor machines. In: Proceedings of the 16th International Conference on Machine
Learning (ICML ’99), Morgan Kaufmann, pp 200–209

Kasabov N, Pang S (2003) Transductive support vector machines and applications
in bioinformatics for promoter recognition. In: Proceedings of the 2003 Interna-
tional Conference on Neural Networks and Signal Processing (ICNNSP), IEEE,
pp 1–6

Koutra D, Ke TY, Kang U, Chau DH, Pao HKK, Faloutsos C (2011) Unify-
ing guilt-by-association approaches: Theorems and fast algorithms. In: Machine
Learning and Knowledge Discovery in Databases: European Conference (ECML
PKDD 2011), Springer, LNCS, vol 6912, pp 245–260

Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning
techniques using undiagnosed samples. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans 37(6):1088–1098

Li YF, Zhou ZH (2011) Towards making unlabeled data never hurt. In: Proceedings
of the 28th International Conference on Machine Learning (ICML ’11), ACM,
pp 1081–1088

Martens D, Baesens B, Fawcett T (2011) Editorial survey: swarm intelligence for
data mining. Machine Learning 82(1):1–42

Olmo JL, Luna JM, Romero JR, Ventura S (2010) An automatic programming
aco-based algorithm for classification rule mining. In: Trends in Practical Ap-
plications of Agents and Multiagent Systems: 8th International Conference on
Practical Applications of Agents and Multiagent Systems, Advances in Intelli-
gent and Soft Computing vol 71, Springer, pp 649–656

An Ant Colony Based Semi-Supervised Approach for Learning Classification Rules 27

Otero F, Freitas A, Johnson C (2008) cAnt-Miner: An Ant Colony Classification
Algorithm to Cope with Continuous Attributes. In: Ant Colony Optimization
and Swarm Intelligence: 6th International Conference (ANTS 2008), Springer,
LNCS, vol 5217, pp 48–59

Otero F, Freitas A, Johnson C (2013) A New Sequential Covering Strategy for
Inducing Classification Rules With Ant Colony Algorithms. IEEE Transactions
on Evolutionary Computation 17(1):64–76

Rokach L (2010) Ensemble-based classifiers. Artificial Intelligence Review 33(1):1–
39

Tong S, Chang E (2001) Support vector machine active learning for image re-
trieval. In: Proceedings of the 9th ACM International Conference on Multimedia
(MULTIMEDIA ’01), ACM, pp 107–118

Triguero I, Garçia S, Herrera F (2015) Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowledge and Information
Systems 42(2):245–284

Wang J, Zhao Y, Wu X, Hua XS (2008) Transductive multi-label learning for video
concept detection. In: Proceedings of the 1st ACM International Conference on
Multimedia Information Retrieval (MIR ’08), ACM, pp 298–304

Wang J, Jebara T, Chang SF (2013) Semi-supervised learning using greedy max-
cut. Journal of Machine Learning Research 14(1):771–800

Xu X, Lu L, He P, Ma Y, Chen Q, Chen L (2013) Semi-supervised classification
with multiple ants maximal spanning tree. In: Proceedings of IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), IEEE, pp 315–320

Zhao B, Wang F, Zhang C (2008) CutS3VM: A Fast Semi-Supervised SVM Algo-
rithm. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), ACM, pp 830–838

Zhou ZH, Li M (2005) Tri-training: Exploiting unlabeled data using three classi-
fiers. IEEE Transactions on Knowledge and Data Engineering 17(11):1529–1541

Zhu X, Goldberg AB (2009) Introduction to Semi-supervised Learning. Morgan &
Claypool Publishers, 130 pages

