
In: Applied Soft Computing, Volume 12, Issue 11, pp. 3615–3626. November, 2012. 1

Inducing Decision Trees with an Ant Colony Optimization

Algorithm

Fernando E. B. Otero∗, Alex A. Freitas, Colin G. Johnson

School of Computing, University of Kent, UK

Abstract

Decision trees have been widely used in data mining and machine learning as a compre-

hensible knowledge representation. While ant colony optimization (ACO) algorithms

have been successfully applied to extract classification rules, decision tree induction

with ACO algorithms remains an almost unexplored research area. In this paper we

propose a novel ACO algorithm to induce decision trees, combining commonly used

strategies from both traditional decision tree induction algorithms and ACO. The pro-

posed algorithm is compared against three decision tree induction algorithms, namely

C4.5, CART and cACDT, in 22 publicly available data sets. The results show that the

predictive accuracy of the proposed algorithm is statistically significantly higher than

the accuracy of both C4.5 and CART, which are well-known conventional algorithms

for decision tree induction, and the accuracy of the ACO-based cACDT decision tree

algorithm.

Keywords: ant colony optimization, data mining, classification, decision tree

1. Introduction

One of the most studied data mining tasks in the literature is the classification task

[15, 29]. In essence, the classification task consists of learning a predictive relationship

between input values and a desired output. Each example (data instance or record) is

described by a set of features (attributes)—referred to as predictor attributes—and a

class attribute. Given a set of examples, a classification algorithm aims at creating a

model, which represents the relationship between predictor attributes values and class

values (labels), and which is able to predict the class label of a new (unseen) example

based on the values of its predictor attributes.

Classification problems can be viewed as optimisation problems, where the goal is

to find the best function (model) that represents the predictive relationships in the data.

A classification problem can be formally specified as:

∗Corresponding author

Email addresses: F.E.B.Otero@kent.ac.uk (Fernando E. B. Otero), A.A.Freitas@kent.ac.uk

(Alex A. Freitas), C.G.Johnson@kent.ac.uk (Colin G. Johnson)

Given: {(e1,ce1
), . . . ,(en,cen)} pairs representing the training data D, where each ei

denotes the set of predictor attributes’ values of the i-th example (1≤ i≤ n, where n is

the total number or examples), and each cei
denotes the class label associated with the

i-th example out of m different class labels available in the set C.

Find: a function f : D→C that maps each example ei in D to its correspondent class

label cei
in C.

The main goal of a classification algorithm is to build a model that maximises

the predictive accuracy—the number of correct predictions—in the test data (unseen

during training), although in many application domains the comprehensibility of the

model plays an important role [15, 8, 19]. For instance, in medical diagnosis the clas-

sification model should be validated and interpreted by doctors; in credit scoring the

classification model should be interpreted by an expert, improving their confidence in

the model; in protein function prediction the classification model should be interpreted

to provide useful insights about the correlation of protein features and their functions

and ultimately improve the current biological knowledge about protein functions. In

these domains, it is crucial to produce comprehensible classification models.

Ant colony optimization (ACO) [11, 12, 13] algorithms involve a colony of ants

(agents), which despite the relative simplicity of their individuals’ behaviours, cooper-

ate with one another to achieve an unified intelligent behaviour. As a result, the colony

produces a system capable of performing a robust search to find high-quality solutions

for optimisation problems with a large search space. In the context of the classification

task in data mining, ACO algorithms have the advantage of performing a flexible ro-

bust search for a good combination of predictor attributes, less likely to be affected by

the problem of attribute interaction [10, 17].

Decision trees are widely used as a comprehensible representation model, given

that they can be easily represented in a graphical form and also be represented as a set

of classification rules, which generally can be expressed in natural language in the form

of IF-THEN rules. Most ACO algorithms for classification in data mining have focused

on extracting classification rules [22, 18]. In this paper, we propose a novel ACO al-

gorithm for the induction of decision trees. The proposed algorithm—called Ant-Tree-

Miner (ant colony optimization-based decision tree induction)—is compared against

two well-known decision tree induction algorithms, namely C4.5 [31] and CART [6],

and the ACO-based cACDT algorithm [5] in 22 publicly available data sets in terms of

both predictive accuracy and size of the induced decision trees.

The remainder of this paper is organised as follows. Section 2 presents the back-

ground of this paper, discussing the top-down strategy commonly used to induce de-

cision trees, an overview of Ant Colony Optimization (ACO) and the related work on

ACO algorithms for induction of tree structures. The proposed algorithm is described

in Section 3. The computational results are presented in Section 4. Finally, Section 5

concludes this paper and presents future research directions.

2

2. Background

2.1. Top-down Induction of Decision Trees

Decision trees provide a comprehensible graphical representation of a classification

model, where the internal nodes correspond to attribute tests (decision nodes) and leaf

nodes correspond to the predicted class labels—illustrated in Fig. 1. In order to classify

an example, the tree is traversed in a top-down fashion from the root node towards a

leaf node, moving down the tree by selecting branches according to the outcome of

attribute tests represented by internal nodes until a leaf node is reached. At this point,

the class label associated with the leaf node is the class label predicted for the example.

A common approach to create decision trees automatically from data is known as

the divide-and-conquer approach, which consists of an iterative top-down procedure

of selecting the best attribute to label an internal node of the tree. It starts by selecting

an attribute to represent the root of the tree. After the selection of the first attribute,

a branch for each possible (set of) value(s) of the attribute is created and the data

set is divided into subsets according to the examples’ values of the selected attribute.

The selection procedure is then recursively applied to each branch of the node using

the corresponding subset of examples—i.e., the subset with examples which have the

attribute’s value associated with the branch—and it stops for a given branch when all

examples from the subset have the same class label or when another stopping criterion

is satisfied, creating a leaf node to represent a class label to be predicted. The divide-

and-conquer approach represents a greedy strategy to create a decision tree, since the

selection of an attribute at early iterations cannot be reconsidered at later iterations—

i.e., the selection of the best attribute is made locally at each iteration, without taking

into consideration its influence over the subsequent iterations.

The problem of inducing a decision tree following the divide-and-conquer approach

is divided into smaller problems of selecting an appropriate attribute given a set of

examples. Several heuristics for choosing attributes have been used in the literature

[23, 24, 33]. The CART algorithm [6] uses the Gini Index as a measure of impurity

of an attribute, where the lower the impurity the better is the attribute. Quinlan [30]

introduced the ID3 algorithm, which selects attributes based on the information gain

measure—a measure derived from the entropy measure commonly used in information

theory [7]. ID3 is the precursor of the well-known C4.5 algorithm [31]. More recently,

a distance-based measure has been used in the CLUS algorithm [3, 36].

The C4.5 algorithm, probably the best known decision tree induction algorithm,

employs an entropy-based criterion in order to select the best attribute to create a node,

called the information gain ratio. In essence, the entropy measures the (im)purity of a

collection of examples relative to their values of the class attribute, where higher en-

tropy values correspond to more uniformly distributed examples, while lower entropy

values correspond to more homogeneous examples (more examples associated with the

same class label). The entropy of a collection of examples S is given by

Entropy(S) =
m

∑
c=1

−pc · log2 pc , (1)

where pc is the proportion of examples in S associated with the c-th class label and m

is the total number of class labels. Using the entropy measure, the information gain of

3

sunny

Outlook

Humidity WindyP

NN PP

overcast rain

high normal true false

Figure 1: An example of a decision tree, adapted from [30]. Internal nodes (including the root node) are

represented by attribute names and branches originating from internal nodes correspond to different values

of the attribute in a node; leaf nodes are represented by different class labels. In this example there are three

attributes: Outlook {sunny, overcast, rain}, Humidity {high, normal} and Windy {true, false}; and two class

labels {N, P}.

an attribute A corresponds to the expected reduction in entropy achieved by dividing

the training examples into T subsets, where T is the number of different values in the

domain of attribute A, and is defined as

Gain(S,A) = Entropy(S)−
T

∑
v=1

|Sv|

|S|
·Entropy(Sv) , (2)

where |Sv| is the number of examples in the subset of S for which the attribute A has the

v-th value in the domain of A and |S| is the number of examples in S. The calculation

of the information gain ratio includes a penalty for attributes that divide the training

examples into very small subsets, called the split information, computed as

SplitInformation(S,A) =
T

∑
v=1

−
|Sv|

|S|
· log2

|Sv|

|S|
. (3)

Such a penalty is necessary since attributes that divide the training examples into very

small subsets are likely to have a high information gain just because the entropy of each

subset is artificially small, given that the very small number of examples in each subset

can be easily associated with a single class label without indicating a good generalisa-

tion ability. An extreme case would be an attribute that has a different value for each

training example. This attribute would have a high information gain, since if we divide

the training examples by its values, we would have subsets with examples associated

with the same class label, even though the size of each subset is one. Clearly, this at-

tribute represents a poor predictor (no generalisation ability) and would not be useful

to classify unseen examples.

Finally, the information gain ratio of an attribute A is derived from the Gain and

SplitInformation measures, and is given by

4

GainRatio(S,A) =
Gain(S,A)

SplitInformation(S,A)
. (4)

At each step of the top-down procedure, the C4.5’s selection favours the attribute

that maximises information gain ratio, which corresponds to the attribute that provides

the larger gain in terms of the entropy measure. C4.5 has been successfully applied to a

wide range of classification problems and it is usually used on evaluative comparisons

of new classification algorithms [37]. Further details of C4.5 can be found in [31, 32].

2.2. Ant Colony Optimization

Ant colonies, despite the lack of centralised control and the relative simplicity of

their individuals’ behaviours, are self-organised systems which can accomplish com-

plex tasks by having their individual ants interacting with one another and with their en-

vironment. The intelligent behaviour of the colony emerges from the indirect commu-

nication between the ants mediated by small modifications of the environment, which

is called stigmergy.

Many ant species, even with limited visual capabilities or completely blind, are

able to find the shortest path between a food source and the nest by using pheromone

as a communication mechanism. Ants drop pheromone on the ground as they walk

from a food source to the nest, thereby creating a pheromone trail on the used path.

The pheromone concentration of a path influences the choices ants make, and the more

pheromone the more attractive a path becomes. Given that shorter paths are traversed

faster than longer ones, they have a stronger pheromone concentration after a period

time, contributing to being selected and reinforced more often. Ultimately the majority

of ants will be following the same path, most likely the shortest path between the

food source and the nest. Inspired by this behaviour, Dorigo et al. [11, 12, 13] have

defined an artificial ant colony metaheuristic that can be applied to solve optimization

problems, called Ant Colony Optimization (ACO).

ACO algorithms use a colony of artificial ants, where ants build candidate solutions

to optimization problems by iteratively selecting solution components based on their

associated pheromone and heuristic information—where the latter corresponds to a

measure of how good a solution component is for the problem at hand. The colony

cooperates by using pheromone to identify prominent components of a solution and

the components with higher concentration of pheromone have a greater chance of being

selected by an ant. Components used to create good solutions have their pheromone

increased, while components not used will have their pheromone gradually decreased.

At the end of the iterative process of building candidate solutions guided by pheromone,

the colony converges to optimal or near-optimal solutions. In ACO algorithms, artificial

ants construct candidate solutions by traversing a graph, called the construction graph.

This is a graph where each vertex represents a potential component of a candidate

solution, and the act of traversing an edge means that an ant is adding, to the current

candidate solution, the component vertex at the end of the edge. Hence, the problem

of finding the best solution corresponds to the problem of finding the best path in the

target problem’s construction graph. Fig. 2 presents the high-level pseudocode of a

basic ACO algorithm. There are four main procedures involved:

5

Input: problem’s construction graph

Output: best solution

1. Initialise();

2. while termination condition not met do

3. ConstructAntSolutions();

4. ApplyLocalSearch();

5. UpdatePheromones();

6. end while

7. return best solution;

Figure 2: High-level pseudocode of a basic ACO algorithm.

• Initialise: this procedure sets the parameters of the algorithm, and initialises the

amount of pheromone (usually represented as a pheromone matrix) and heuristic

information associated with vertices or edges of the construction graph.

• ConstructAntsSolutions: this procedure incrementally builds candidate solutions

by creating paths on the problem’s construction graph, simulating the movement

of an artificial ant. Ants traverse the problem’s construction graph by applying

a stochastic decision policy based on the use of (problem-dependent) heuristic

information and pheromone.

• ApplyLocalSearch: this (optional) procedure is used to further refine a solution

created by an ant. In general, local search operators/algorithms introduce small

modifications to a solution in order to explore neighbour solutions. Dorigo and

Stützle [13] have shown that for a wide range of optimisation problems, the use

of local search operators/algorithms can boost the performance of ACO algo-

rithms. A local search procedure is one example of problem specific or cen-

tralised (optional) daemon actions [13]—i.e., actions that cannot be performed

by individual ants.

• UpdatePheromones: this procedure updates the pheromone associated with the

components—vertices or edges—of the problem’s construction graph by either

increasing the amount of pheromone, as ants deposit pheromone on the path used

to build their candidate solutions, or decreasing the amount of pheromone, due

to the simulation of pheromone evaporation. The quality of a candidate solution

influences on how much pheromone will be deposited on the path that represents

the candidate solution.

2.3. Related Work on ACO Algorithms For Inducing Tree Structures

Most of the research using ACO algorithms for the classification task in the context

of data mining have been focused on discovering classification rules, as implemented

in the Ant-Miner algorithm [28] and its many variations, which have been recently

reviewed in [22, 18]. It is important to emphasise that the ACO algorithm proposed in

this paper builds a decision tree, rather than a set of rules, and consequently it is very

6

different from Ant-Miner and its variations. Therefore, in this section we only review

related work on ACO for inducing tree-like structures.

Izrailev and Agrafiotis [21] proposed an ant colony-based method for building re-

gression trees. Regression consists of finding a model that maps a given input to a

numeric prediction (i.e., the target attribute takes continuous values), while classifica-

tion consists of finding a model that maps a given example to one of a predefined set

of discrete or nominal class labels (i.e., the target attribute takes discrete or nominal

values). A regression tree can be viewed as a special case of decision tree, where the

value predicted for the target attribute at each leaf node of the tree is a continuous value

instead of a discrete or nominal value. In their method, an ant represents a regression

tree and the pheromone matrix is represented by a binary reference tree corresponding

to the topological union of all created trees; each decision node of a tree is represented

by a binary condition xi < vi j (where vi j is the j-th value of the i-th continuous at-

tribute); pheromone is used to select both the attribute and value to create a decision

node. Consequently, their method has two important limitations. First, it uses only

continuous attributes on the decision nodes (i.e., it cannot cope with discrete or nomi-

nal predictor attributes). Secondly, it does not make use of heuristic information, which

is commonly used in ACO algorithms.

Recently, Boryczka and Kozak [4] proposed an ant colony algorithm for building

binary decision trees, called ACDT. A candidate decision tree is created by selecting

decision nodes—which are represented by binary conditions xi = vi j (where vi j is the

j-th value of the i-th nominal attribute) and consequently have exactly two outgoing

edges (i.e., one representing the outcome ‘true’ when the condition is satisfied and

one representing the outcome ‘false’ when the condition is not satisfied)—according

to heuristic information and pheromone values. The heuristic information is based on

the Twoing criterion, previously used in the CART decision tree induction algorithm

[6], and pheromone values represent the quality of the connection between a parent

and child decision nodes. An extension of ACDT, called cACDT, which can cope with

continuous attributes is presented in [5]. The cACDT algorithm is included in our

experiments to evaluate the performance of the proposed Ant-Tree-Miner algorithm.

While the research in decision tree induction with ACO algorithms remains almost

unexplored, evolutionary algorithms (non-ACO) have been applied for decision tree in-

duction [2]. Unlike ACO, evolutionary algorithms do not use a local heuristic and their

search is guided only by the fitness function (e.g., global quality of the decision tree).

In ACO algorithms, the search is guided by both the overall quality of the solution and

a local heuristic information. Additionally, pheromone levels provide a feedback on the

quality of the components of the solution and guide the search to the more prominent

solutions. More details of evolutionary algorithms for decision tree induction can be

found in [2].

3. The Proposed Ant Colony Approach for Decision Tree Induction

The proposed Ant-Tree-Miner algorithm follows the traditional structure of ACO

algorithms, as presented in Fig. 3. It starts by initialising the pheromone values and

computing the heuristic information for each attribute of the training set. Then, it enters

in an iterative loop (while loop) where each ant in the colony creates a new decision

7

Input: training examples, list of predictor attributes

Output: best discovered tree

1. InitialisePheromones();

2. ComputeHeuristicInformation();

3. treegb←∅;

4. m← 0;

5. while m < maximum iterations and not CheckConvergence() do

6. treeib←∅;

7. for n← 1 to colony size do

8. treen← CreateTree(Examples, Attributes, −);

9. Prune(treen);
10. if Q(treen)> Q(treeib) then

11. treeib← treen;

12. end if

13. end for

14. U pdatePheromones(treeib);
15. if Q(treeib)> Q(treegb) then

16. treegb← treeib;

17. end if

18. m← m+ 1;

19. end while

20. return treegb;

Figure 3: High-level pseudocode of the Ant-Tree-Miner algorithm.

tree until a maximum number of iterations is reached or the algorithm has converged.

An ant creates a decision tree (for loop) in a top-down fashion by probabilistically

selecting attributes to be added as decision nodes based on the amount of pheromone

(τ) and heuristic information (η). The decision tree creation procedure (CreateTree

procedure) takes three parameters, the set of training examples, the set of predictor

attributes and the edge being followed by the ant, which at the start of the procedure

corresponds to the default edge (denoted by the symbol ‘−’).

Once the tree construction procedure has finished, the created tree is pruned in order

to simplify the tree and thus potentially avoid overfitting of the model to the training

data. Overfitting is the phenomenon where the model is too adjusted to the training

data and as a result does not have a good predictive accuracy on the test set, unseen

during training. Since decision nodes are added to the tree while there are attributes

available and the set of examples in the current node includes examples of more than on

class label, the tree is usually very complex—composed of a large number of nodes—

which may affect its generalisation power on unseen data. After the pruning, the tree

is evaluated and the iteration-best tree (treeib) is updated, if the quality of the newly

created tree is greater than the quality of the current iteration-best tree. Finally, the

iteration-best tree constructed by the ants is used to update the pheromone values, the

global-best tree (treegb) is stored/updated and a new iteration of the algorithm starts.

8

When the maximum number of iterations is reached or the algorithm has converged

(CheckConvergence procedure), the global-best tree is returned as the discovered deci-

sion tree.

3.1. Construction Graph

The construction graph consists of N vertices that represent the predictor attributes,

one vertex per attribute. These vertices are connected by edges corresponding to differ-

ent conditions involving values from the domain of the attribute from where the edge

originates. Additionally, the construction graph has a virtual ‘start’ vertex. An ant

always starts the creation of a candidate decision tree from the ‘start’ node and there

are N edges connecting the ‘start’ node to each xi attribute vertices of the construction

graph. Fig. 4 presents an example of a construction graph.

For nominal attributes, each edge represents the condition where the attribute xi has

the value vi j—i.e., the term xi = vi j. Note that an ant cannot select the same nominal

attribute vertex xi multiple times in the same path of the tree—a path in this context

is defined as the list of attribute vertices between a node and the root node of the

tree—to avoid inconsistencies, such as the selection of the condition ‘outlook= sunny’

and ‘outlook = rain’. Hence, there are N− 1 edges for each xi = vi j pair connecting

attribute vertex xi to the remaining N− 1 attribute vertices—i.e., for each value vi j in

the domain of the attribute xi, there is an edge xi = vi j connecting attribute vertex xi to

the attribute vertex xk, where i 6= k.

Continuous attributes represent a special case of attribute vertices in the construc-

tion graph. Given that a continuous attribute does not have a (predefined) set of fixed

intervals to define attribute conditions and therefore represent the edges originating

from its vertex, a dynamic discretisation procedure is employed to create discrete inter-

vals to be used as attribute conditions. The discretisation procedure follows a similar

approach as the one employed in the ACO-based cAnt-Miner rule induction algorithm

[25, 26]. We have used two different approaches to discretise continuous attributes

values:

1. The first approach is the same as the one employed in C4.5, where the thresh-

old value selected corresponds to the value that produces the highest information

gain. Each continuous attribute first has its values sorted in increasing order.

The candidate threshold values are the values in the domain of the continu-

ous attribute that occur on adjacent examples—according to the sorted values—

associated with different class labels. For instance, consider a hypothetical data

set with 3 examples with attribute Age values {25, 26, 27} associated with class

labels {yes, yes, no}, respectively. A candidate threshold value for those exam-

ples is 26, but not 25, since the examples with Age values 25 and 26 have the

same class label. A threshold value t divides the training examples into two sub-

sets in relation to the values of the continuous attribute xi, those with a value of

xi less than the threshold (xi < t) and those with a value greater than or equal

to the threshold (xi ≥ t) respectively. This approach has also been used in the

ACO-based cAnt-Miner rule induction algorithm [25].

2. The second approach is based on the minimum description length (MDL) prin-

ciple, and it was proposed by Fayyad and Irani [14] and used in the context

9

start

H
u
m
i
d
i
t
y

W
i
n
d
y

O
u
t
l
o
o
k

sunny
overcast

rain
sunny
overcast

rain

high
normal

high
normal

true
false

true
false

Figure 4: An example of a construction graph that can be used to generate the decision tree presented in Fig.

1. In this example, the construction graph is composed by three vertices representing nominal attributes:

Outlook {sunny, overcast, rain}, Humidity {high, normal} and Windy {true, false}; and a virtual ‘start’

vertex.

of inducing decision trees. In the MDL-based discretisation, multiple discrete

intervals can be extracted by applying a binary discretisation procedure—e.g.,

the information gain-based discretisation procedure used in C4.5—recursively,

selecting the best threshold value at each iteration, and using the MDL princi-

ple as a stopping criterion to determine whether more threshold values should

be introduced or not. This approach has also been used in an extension of the

ACO-based cAnt-Miner rule induction algorithm [26].

Note that this makes the construction graph dynamic, since the discretisation of contin-

uous attributes is tailored for the current path being followed by an ant and the current

subset of training examples is used in the discretisation procedure. Additionally, a con-

tinuous attribute can be selected multiple times in the same path of the decision tree,

giving the algorithm a chance to refine the discrete interval selection. For each discrete

interval of a continuous attribute xi generated by the dynamic discretisation procedure,

N edges connecting the attribute vertex xi to every other attribute vertex xk (includ-

ing attribute vertex xi) are added to the construction graph. Since the discretisation

procedure is deterministic, when an ant follows the same path to an attribute vertex

representing a continuous attribute, the same edges will be used.

3.2. Heuristic Information

The heuristic information associated with each attribute vertex xi of the construc-

tion graph corresponds to its estimated quality with respect to its ability to improve

10

the predictive accuracy of the decision tree. Ant-Tree-Miner uses the same heuris-

tic information of the well-known C4.5 decision tree induction algorithm, namely the

information gain ratio of the attributes [31], given by

ηxi
= GainRatio(S,xi), (5)

where xi corresponds to the i-th attribute vertex and S corresponds to the set of training

examples. The GainRation function is described in Eq. 4.

In order to calculate the information gain ratio of continuous attributes, it is neces-

sary to dynamically select threshold values to define discrete intervals and subsequently

divide the training example into subsets. Once the threshold values of a continuous at-

tribute are generated and its discrete intervals defined, the information gain ratio given

by Eq. 4 can be computed assuming that each discrete interval represents a different

value and consequently a different subset of training examples. The discretisation of

a continuous attribute is a temporary transformation with the goal of computing its in-

formation gain ratio and the continuous attribute values are not replaced by the discrete

intervals.

Although both Ant-Tree-Miner and C4.5 algorithms use the information gain ra-

tio measure as a heuristic to select attributes, Ant-Tree-Miner selects attributes using

the information gain ratio in combination with pheromone, while C4.5 uses only the

information gain ratio. The use of pheromone provides an accurate feedback of the

quality of an attribute considering its effect in an entire decision tree (‘global’ attribute

evaluation), and so it can compensate for imprecisions of the greedy information gain

ratio measure (‘local’ attribute evaluation).

3.3. Solution Construction

The construction of a candidate decision tree follows a divide-and-conquer ap-

proach, with the difference that attributes are chosen stochastically based on heuristic

information and pheromone values, instead of deterministically like in a conventional

decision tree induction algorithm. At each iteration of the construction process, an ant

applies a probabilistic rule to decide which attribute vertex to visit based on the amount

of pheromone and the heuristic information. The probability pi of an ant to visit the

attribute vertex xi is given by

pi =
τ(E,L,xi) ·ηi

∑
i∈F

τ(E,L,xi) ·ηi

, ∀i ∈ F , (6)

where:

• τ(E,L,xi) is the amount of pheromone associated with the entry (E,L,xi)—E is

the attribute condition represented by the edge being followed or ‘−’ at the start

of the construction procedure, L is the ant’s current level in the decision tree or

0 at the start of the construction procedure, xi is the i-th attribute vertex of the

construction graph—in the pheromone matrix;

• ηi is the heuristic information of the i-th attribute;

11

• F is the set of available (feasible) attributes for selection.

The exponents α and β commonly used to control the influence of the pheromone

and heuristic information, respectively, during the selection of vertices are set to 1 and

therefore omitted from Eq. 6.

Fig. 5 presents the high-level pseudocode of the decision tree construction proce-

dure used in Ant-Tree-Miner. An ant begins the construction of a candidate decision

tree following the edge ‘−’ originating from the virtual ‘start’ node, with the complete

set of training examples and the complete set of predictor attributes. The selected at-

tribute is used to create a decision node. Depending on the type of the selected attribute,

two different set of instructions are executed. If the selected attribute is a nominal at-

tribute, it is removed from the set of predictor attributes and the list of conditions is

filled with attribute conditions A = vi for all values vi in the domain of attribute A. If

the selected attribute is a continuous attribute, the list of conditions is represented by

the discrete intervals generated by the discretisation procedure. The discretisation of

a continuous attribute is tailored to the current set of training examples, as explained

earlier. In contrast to nominal attributes, continuous attributes are not removed from

the set of predictor attributes since they can be selected multiple times, in the same tree

path, by an ant.

Once the list of attribute conditions is defined, each condition is used to create a

branch of the decision node. Then, the set of training examples is divided into one

subset of examples for each attribute condition (branch), where each subset contains

the training examples satisfying the corresponding attribute condition. At this point, the

construction procedure checks whether a leaf node should be added below the current

branch or if it should recursively add a subtree below the current branch. The decision

to add a leaf node to the candidate decision tree is deterministic and it is based on the

following conditions:

1. the current subset of training examples is empty, which corresponds to the case

that none of the training examples satisfied the attribute condition represented by

the current branch;

2. all examples in the current subset are associated with the same class label;

3. the number of examples in the subset is below a user-defined threshold;

4. the set of available predictor attributes is empty.

If any of the above conditions is observed, a leaf node representing a class label pre-

diction is added below the current branch. Otherwise, the construction procedure is

applied recursively to create a subtree given the subset of training examples, the cur-

rent set of predictor attributes and the current branch. Finally, the root node of the

candidate decision tree is returned at the end of the construction procedure.

3.4. Pruning

After a candidate decision tree is created, it undergoes a pruning procedure. The

aim of the pruning procedure is to improve the decision tree’s generalisation power and

consequently its predictive accuracy by removing unnecessary decision nodes from the

tree. In general, a candidate tree created by the the construction procedure is overly

12

Input: training examples (Examples), list of predictor attributes (Attributes), current

edge (Edge)

Output: root node of the decision tree

1. A← probabilistically selects an attribute from Attributes to visit given the current

Edge;

2. root← creates a new decision node representing attribute A;

3. conditions←∅;

4. if A is a nominal attribute then

5. Attributes← Attributes − {A};
6. for all value vi in domain of A do

7. conditions← conditions + {A = vi};
8. end for

9. else

10. conditions← Discretise(A, Examples);

11. end if

12. for all attribute condition T in conditions do

13. branchi← new branch representing T of root;

14. subseti← subset of Examples that satisfies T ;

15. if subseti is empty then

16. Add a leaf node with the majority class label of Examples below branchi;

17. else if all examples in subseti have the same class label then

18. Add a leaf node with the class label of subseti below branchi;

19. else if number of examples in subseti is below a threshold then

20. Add a leaf node with the majority class label of subseti below branchi;

21. else if Attributes is empty then

22. Add a leaf node with the majority class label of subseti below branchi;

23. else

24. Add the subtree returned by CreateTree(subseti, Attributes, branchi) be-

low branchi;

25. end if

26. end for

27. return root;

Figure 5: High-level pseudocode of the CreateTree(Examples, Attributes, Edge) decision tree

construction procedure used in Ant-Tree-Miner.

13

complex, since it is expanded until there are no available attributes or training exam-

ples, or all training examples are associated with the same class label. The main draw-

back of having a complex tree is that the tree is likely to overfit the training examples

and its predictive accuracy will be poor on unseen examples. Additionally, the decision

tree creation procedure is stochastic and the generated tree usually does not represent

the best fit to the training data. This is the main difference between an unpruned tree

generated by C4.5 and Ant-Tree-Miner. An unpruned decision tree of C4.5 represents

the best fit to the training data using the deterministic (greedy) creation procedure based

on the information gain ratio. Therefore, the pruning procedure should be applied in

order to increase the generalisation power of the decision tree. In Ant-Tree-Miner, the

pruning procedure has two tasks and it is divided into two steps: the first step prunes

the tree to fit the training data, which potentially leads to overfitting the training data,

and the second step prunes the tree in order to increase its generalisation power.

The first step consists of replacing a decision node by either its most common used

branch or by a leaf node that leads to a higher classification accuracy on the training

data. The aim of this step is to remove decision nodes that have been added by the

stochastic creation procedure that have a negative effect on the classification accuracy

of the decision tree. This step is repeated until none of the replacements leads to an

improvement in accuracy or the tree consists of just a leaf node.

The second step consists of the same pruning procedure used in C4.5, called error-

based pruning [31]. In essence, it consists of replacing a decision node by either its

most common used branch or by a leaf node. If the replacement leads to a lower

estimated error rate (details of the error rate estimation can be found in [31, p. 41]), the

decision tree is pruned accordingly. By contrast with the previous step, this decision

is based on the estimated error rate (a measure that gives a higher penalty for errors

than the accuracy measure) rather than the classification accuracy in training examples,

since the use of the classification accuracy can lead to overfitting—the case where the

decision tree is too tailored to the training data and does not generalise well, i.e., it has

a lower predictive accuracy in the test data. The rationale behind this replacement is

that the overall (estimated) error rate of the tree decreases if the error rate of any subtree

is reduced. The aim of this step is to improve the generalisation power of the tree by

reducing its estimated error rate on the training data. Note that a lower estimated error

rate is not related to a higher classification accuracy on the training data, and a decision

node that leads to a lower estimated error rate will be replaced by this step even though

the accuracy on the training data decreases—the accuracy on the training data is not

computed by this step.

3.5. Pheromone Matrix Representation

In order for an ant to create a decision tree, it has to follow several paths from

the root node towards leaf nodes. The decision nodes of a tree are represented by

attribute vertices of the construction graph and each branch originating from a decision

node is represented by an edge of the construction graph. Recall that each edge of

the construction graph is represented by an attribute condition and it has a destination

vertex that is the vertex that the edge leads to. Since the choices made by an ant can be

expressed by the edges that it has followed during the creation of a decision tree, each

entry in the pheromone matrix is represented by a triple [edgei j, level, xk], where edgei j

14

sunny

Outlook

Humidity WindyP

NN PP

overcast rain

high normal true false

startlevel 0

level 1

level 2

Figure 6: An example of a decision tree created by an ant; the ‘start’ node represents the starting vertex.

The highlighted branches—the branches that lead to a decision node, including the root node—are the ones

that eventually will be used to update the pheromones. Branches whose terminal node is a leaf node, such

as branches at level 2 in the figure, are the result of the deterministic pruning procedure or the case when all

examples following the branch are associated with the same class label, therefore they are not represented in

the pheromone matrix.

is the edge representing the j-th attribute condition of the attribute xi, level is the level

of the decision tree where the edgei j appears and xk is its destination attribute vertex.

The level information of the edge is associated with an entry to discriminate between

multiple occurrences of the same type of edge (i.e., the same attribute condition) at

different levels of the tree, either for occurrences in the same tree path—possible in

the case of edges of continuous attribute vertices—or in different tree paths. Given

that edges for continuous attributes’ vertices are dynamically created, the pheromone

matrix is an incremental structure that represent the mapping of a triple [edgei j, level,

xk] (key of the mapping) and a pheromone value (value of the mapping).

Revisiting the example of a decision tree presented in Fig. 1, Fig. 6 illustrates

the correspondent candidate decision tree created by an ant. In this example, the

highlighted branches—the branches that lead to a decision node, including the root

node—are the ones that eventually will be used to update the pheromones and they are

represented by the entries:

• [−,0,Outlook] - This is the entry in the pheromone matrix for the edge con-

necting the virtual ‘start’ node to the ‘Outlook’ node, the root node of the tree.

The ‘start’ node is referred to as virtual since it is not included in the final de-

cision tree. It is used to associate pheromone on the edge that leads to the root

node of a candidate decision tree. The edges originating at the ‘start’ node do not

represent an attribute condition. They are referred to as edgestart and represented

by the symbol ‘−’;

• [Outlook = sunny,1,Humidity] - This is the entry in the pheromone ma-

trix for the edge located at level 1 representing the condition that the ‘Outlook’

15

attribute has the value equal to ‘sunny’, which connects the ‘Outlook’ attribute

vertex to the ‘Humidity’ attribute vertex;

• [Outlook = rain,1,Windy] - This is the entry in the pheromone matrix for

the edge located at level 1 representing the condition that the ‘Outlook’ attribute

has the value equal to ‘rain’, which connects the ‘Outlook’ attribute vertex to the

‘Windy’ attribute vertex.

The remaining edges in the example on Fig. 6 are not used during the pheromone

update nor represented in the pheromone matrix, since they directly lead to a leaf node

representing a class label prediction and they are deterministically introduced in the

decision tree, either during the tree creation process or by the pruning procedure.

3.6. Pheromone Update

The pheromone values update in Ant-Tree-Miner are governed by the same ap-

proach as theMAX−MIN Ant System (MMAS) [34, 35]. InMMAS, pheromo-

ne trail values are limited to the interval [τmin,τmax]. These limits are dynamically

updated each time a new global-best solution is found, as detailed in [34].1 They are

also used to determine the stagnation of the search. When all entries in the pheromone

matrix used by an ant to create the iteration-best tree are associated with τmax and the

remaining entries are associated with τmin, the search is considered stagnant and the

algorithm stops.

Given the best candidate decision tree of an iteration (the iteration-best candidate

solution), pheromone update is performed in two steps. Firstly, pheromone evapo-

ration is accomplished by decreasing the amount of pheromone of each entry in the

pheromone matrix by a factor ρ (a user-defined parameter). Secondly, the amount of

pheromone of the entries corresponding to the branches used in the iteration-best can-

didate solution are increased based on the quality of the candidate solution. The quality

of a decision tree is based on the same measure used during the pruning procedure and

is given by

Q =
N−Error

N
, (7)

where N is the number of training examples and Error is the estimated number of

classification errors of the tree—the lower the number of errors, the better the quality

of the tree. The quality of a tree given by Eq. 7 is bound to the interval [0,1]. Finally,

the pheromone update rule is given by

τ(E,L,xi)=

{

ρ · τ(E,L,xi), if (E,L,xi) /∈ treeib;

ρ · τ(E,L,xi)+Q(treeib), if (E,L,xi) ∈ treeib;
(8)

where ρ is theMAX−MIN evaporation factor, τ(E,L,xi) is the amount of pheromone

associated with the entry (E,L,xi)—E is the attribute condition of the edge that this

1In Ant-Tree-Miner, the pheromone trail limits are chosen using the default MMAS pbest = 0.05 pa-

rameter.

16

entry corresponds to, L is the level in which the edge occurs and xi is the edge’s desti-

nation attribute vertex—and treeib is the iteration-best decision tree.

4. Computational Results

The proposed Ant-Tree-Miner algorithm was compared against two well-known

decision tree induction algorithms implemented in the Weka workbench [37], namely

C4.5 [31] (Weka’s J48 algorithm) and CART [6] (Weka’s SimpleCART algorithm),

and against the ACO-based cACDT decision tree algorithm [5]. We have tested four

variations of the Ant-Tree-Miner algorithm:

1. using a binary entropy-based discretisation procedure and the two-step tree prun-

ing, denoted by Ant-Tree-Miner;

2. using a binary entropy-based discretisation procedure and only C4.5’s error-

based pruning procedure, denoted by Ant-Tree-Miner –P (where ‘ –P’ denotes

the algorithm without the accuracy-based pruning step);

3. using a MDL-based discretisation procedure and the two-step tree pruning, de-

noted by Ant-Tree-MinerMDL;

4. using a MDL-based discretisation procedure and only C4.5’s error-based pruning

procedure, denoted by Ant-Tree-Miner –P
MDL.

The motivation for testing these different variations is to evaluate both discretisation

and pruning strategies. In terms of discretisation, we are evaluating whether it is best

to use a binary discretisation (i.e., a discretisation that creates a single binary split) or

the multiple interval MDL-based discretisation. In terms of pruning, we are evaluating

whether it is best to first adjust a candidate tree to best fit the training data (two-step

pruning) or use the simplified (one-step) pruning procedure—only C4.5’s error-based

pruning procedure.

A comparison between Ant-Tree-Miner and cACDT is interesting, since Ant-Tree-

Miner follows a different strategy to create a decision tree. First, cACDT only creates

binary trees (i.e., trees with decision nodes with two outgoing edges), while Ant-Tree-

Miner is not restricted to create binary trees (i.e., for decision nodes representing nom-

inal attributes, there is a branch for each value in the domain of the attribute). Sec-

ond, Ant-Tree-Miner employs a 3-dimensional pheromone matrix to differentiate mul-

tiple occurrences of edges (connections between attributes) of a decision tree. Third,

cACDT uses the Twoing criterion (based on the CART algorithm) as heuristic infor-

mation and to dynamically discretise continuous attributes, while Ant-Tree-Miner uses

entropy-based criterion (based on the C4.5 algorithm) as heuristic information and to

dynamically discretise continuous attributes.

4.1. Experimental Setup

The experiments were carried out using 22 publicly available data sets from the

UCI Machine Learning repository [16]. A summary of the data sets used in the ex-

periments is presented in Table 1. We performed tenfold cross-validation for each data

set. A tenfold cross-validation procedure consists of dividing the data set into ten strat-

ified partitions of examples, wherein each partition has a similar number of examples

17

Table 1: Summary of the data sets used in the experiments.

Abbr. Description Attributes Classes Size

Nominal Continuous

auto automobile 10 15 7 205

balance balance scale 4 0 3 625

blood-t blood transfusion 0 4 2 748

breast-l breast cancer ljubljana 9 0 2 286

breast-t breast tissue 0 9 6 106

breast-w breast cancer wisconsin 0 30 2 569

credit-a credit approval 8 6 2 690

derm dermatology 33 1 6 366

ecoli ecoli 0 7 8 336

glass glass 0 9 7 214

heart-c heart cleveland 6 7 5 303

heart-h heart hungarian 6 7 5 294

horse horse colic 15 7 2 368

hep hepatitis 13 6 2 155

ionos ionosphere 0 34 2 351

iris iris 0 4 3 150

park parkinsons 0 22 2 195

s-heart statlog heart 7 6 2 270

soybean soybean 35 0 19 307

voting voting records 16 0 2 435

wine wine 0 13 3 178

zoo zoo 16 0 7 101

and class distribution. For each partition, the classification algorithm is run using the

remaining nine partitions as the training set and its performance is evaluated using

the unseen (hold-out) partition. For the stochastic Ant-Tree-Miner algorithm and its

variations, the algorithm is run fifteen times using a different random seed to initialise

the search for each partition of the cross-validation. In the case of deterministic C4.5

and CART algorithms, the algorithm is run just once for each partition of the cross-

validation.

The user-defined parameters of Ant-Tree-Miner variations were selected from val-

ues commonly used in the literature. Although we have made no attempt to tune the

parameter values for individual data sets, we have performed a systematic parameter

tuning in order to determine a suitable combination of values that work well across a

set of tuning data sets.2 We have tested three different values for the parameters colony

size = {50, 100, 200}, each of them with three different values of MAX−MIN
evaporation factor = {0.85, 0.90, 0.95}—i.e., nine combinations in total. We have left

2The tuning data sets used in this step comprises 8 data sets from the UCI repository not used in our final

experiments, namely: cylinder-bands, lymphography, monk-1, pima-indians-diabetes, thyroid, tic-tac-toe,

vertebral-column-2c and vertebral-column-3c.

18

fixed the maximum iterations = 500, given that we observed that the algorithm con-

verges in less than 200 iterations on average, and the minimum number of examples

per branch threshold = 3. The parameter tuning did not show significant differences

between the nine possible combinations of values—i.e., the findings concerning sta-

tistically significant differences between the algorithms was approximately the same

across all nine combinations of colony size and evaporation factor. The combination

of colony size = 50 and evaporation factor = 0.90 was used in the experiments re-

ported in this section, since it performed slightly better than the other combinations,

overall, in the tuning data sets. The C4.5, CART and cACDT algorithms were used

with their default parameters.

The results concerning the predictive accuracy are summarised in Table 2 and the

results concerning the size of the classification model, measured as the average number

of leaf nodes in the discovered decision tree, are summarized in Table 3. Each value

in those tables represents the average value obtained by the cross-validation procedure

followed by the standard error (average ± standard error) for the corresponding al-

gorithm and data set pair. Table 4 shows the results of the statistical tests according

to the non-parametric Friedman test with the Hommel’s post-hoc test [9, 20], for pre-

dictive accuracy and discovered model size. For each algorithm, the table shows its

average rank—the lower the average rank the better the algorithm’s performance—in

the first column and the adjusted p-value of the statistical test when that algorithm’s

average rank is compared to the average rank of the algorithm with the best rank (con-

trol algorithm) according to the Hommel’s post-hoc test. When statistically significant

differences between the average ranks of an algorithm and the control algorithm at the

5% level (p≤ 0.05) are observed, the line is tabulated in bold face.

4.2. Discussion

Considering the predictive accuracy (Table 2), Ant-Tree-Miner achieves the high-

est performance with an average rank of 2.52 across all data sets, which is statisti-

cally significantly better than the average ranks obtained by C4.5, Ant-Tree-MinerMDL,

CART and cACDT algorithms according to the non-parametric Friedman test with the

Hommel’s post-hoc test. The Ant-Tree-Miner –P and Ant-Tree-Miner –P
MDL variations

achieved an average rank of 3.20 and 3.93, respectively, ant there are no statistically

significant differences between their average ranks and the average rank of Ant-Tree-

Miner. C4.5, Ant-Tree-MinerMDL and CART have similar performances, with an aver-

age rank of 4.04, 4.11 and 4.49, respectively. cACDT has the worst performance, with

an average rank of 5.68. Ant-Tree-Miner is also the most accurate algorithm in 8 of the

22 data sets, followed by C4.5 in 5 data sets, cACDT in 3 data sets, Ant-Tree-Miner –P
MDL

and CART in 2 data sets each, and both Ant-Tree-Miner –P and Ant-Tree-MinerMDL in

1 data set each.

In terms of size of the classification model (Table 3), measured as the number of leaf

nodes of the discovered decision tree, CART is the algorithm that discovers the decision

tree with the lowest number of leaves, obtaining an average rank of 1.39 across all data

sets. The average rank of CART is statistically significant better than the average ranks

obtained by all the other six algorithms according to the non-parametric Friedman test

with the Hommel’s post-hoc test. Ant-Tree-Miner is second with an average rank of

3.68; cACDT is third with an average rank of 4.00; Ant-Tree-Miner –P is fourth with an

19

Table 2: Average predictive accuracy (average ± standard error) in %, measured by tenfold cross-validation.

The columns denoted by ATM correspond to Ant-Tree-Miner variations. The value of the most accurate

algorithm for each data set is shown in bold.

Data Set C4.5 CART cACDT ATM ATM –P ATMMDL ATM –P
MDL

auto 81.4 ± 2.5 76.6 ± 2.6 66.0 ± 0.6 77.2 ± 0.4 77.4 ± 0.6 74.8 ± 0.5 76.2 ± 0.5

balance 63.7 ± 2.2 79.3 ± 1.0 79.4 ± 0.2 62.9 ± 0.1 62.9 ± 0.1 62.9 ± 0.1 62.9 ± 0.1

blood-t 73.8 ± 1.3 74.2 ± 1.2 71.7 ± 0.0 72.4 ± 0.1 72.3 ± 0.1 72.1 ± 0.1 72.4 ± 0.1

breast-l 72.9 ± 2.3 71.7 ± 1.5 71.5 ± 0.4 73.5 ± 0.1 73.5 ± 0.1 73.6 ± 0.1 73.2 ± 0.1

breast-t 59.6 ± 5.7 64.7 ± 5.7 47.8 ± 0.8 65.2 ± 0.6 64.5 ± 0.6 62.9 ± 0.5 62.1 ± 0.4

breast-w 94.9 ± 0.7 93.8 ± 0.8 93.2 ± 0.2 94.0 ± 0.2 94.1 ± 0.2 93.5 ± 0.1 93.8 ± 0.1

credit-a 85.8 ± 1.0 85.2 ± 1.4 85.2 ± 0.2 85.9 ± 0.1 85.8 ± 0.1 85.9 ± 0.1 86.0 ± 0.1

derma 93.5 ± 1.1 94.0 ± 1.4 95.7 ± 0.2 94.4 ± 0.1 94.5 ± 0.1 94.4 ± 0.1 94.6 ± 0.1

ecoli 83.7 ± 1.7 81.3 ± 1.9 81.2 ± 0.3 83.9 ± 0.1 83.1 ± 0.2 83.2 ± 0.2 83.4 ± 0.2

glass 68.5 ± 1.8 68.4 ± 2.5 65.1 ± 0.5 71.0 ± 0.4 71.2 ± 0.5 77.1 ± 0.4 77.2 ± 0.4

heart-c 51.2 ± 1.6 55.1 ± 1.4 54.9 ± 0.5 51.9 ± 0.4 52.3 ± 0.4 51.5 ± 0.4 51.8 ± 0.3

heart-h 66.7 ± 3.0 62.7 ± 2.1 62.3 ± 0.4 65.9 ± 0.2 66.2 ± 0.2 65.4 ± 0.3 65.6 ± 0.2

hep 80.7 ± 2.5 77.5 ± 2.1 80.4 ± 0.7 82.5 ± 0.3 82.2 ± 0.3 80.6 ± 0.2 81.1 ± 0.2

horse 84.7 ± 1.5 83.5 ± 1.6 83.1 ± 0.3 83.8 ± 0.1 83.6 ± 0.2 83.0 ± 0.2 83.1 ± 0.2

ionos 90.2 ± 1.2 89.4 ± 1.8 88.0 ± 0.4 90.8 ± 0.2 90.7 ± 0.1 89.0 ± 0.4 88.9 ± 0.2

iris 93.9 ± 1.6 93.8 ± 1.3 94.9 ± 0.4 96.2 ± 0.1 95.9 ± 0.1 95.1 ± 0.1 94.9 ± 0.1

park 88.2 ± 1.5 86.7 ± 2.2 86.2 ± 0.5 92.4 ± 0.1 92.2 ± 0.1 89.2 ± 0.3 89.4 ± 0.2

s-heart 75.6 ± 3.1 78.1 ± 2.3 79.5 ± 0.3 77.3 ± 0.3 76.9 ± 0.3 77.3 ± 0.2 77.1 ± 0.2

soybean 85.6 ± 1.7 87.6 ± 1.9 86.4 ± 0.3 87.4 ± 0.2 87.3 ± 0.2 87.4 ± 0.3 87.2 ± 0.2

voting 94.5 ± 1.2 93.3 ± 1.2 93.1 ± 0.2 94.9 ± 0.1 94.7 ± 0.1 94.8 ± 0.1 94.8 ± 0.1

wine 93.3 ± 2.4 91.0 ± 1.5 89.2 ± 0.5 96.2 ± 0.1 96.4 ± 0.1 94.3 ± 0.3 94.9 ± 0.2

zoo 89.6 ± 5.2 87.6 ± 5.9 82.4 ± 0.7 88.2 ± 0.2 88.6 ± 0.3 88.8 ± 0.4 88.8 ± 0.4

average rank of 4.27; Ant-Tree-Miner –P
MDL and Ant-Tree-MinerMDL have similar results,

with average ranks 4.70 and 4.75, respectively; C4.5 is the algorithm that consistently

discover trees with a greater number of leaf nodes (in 14 out of the 22 data sets) and

performs last, with an average rank of 5.20.

Our results show that CART is consistently the algorithm that discovers decision

trees with the smallest number of leaf nodes. This is likely due to the way that CART

handles nominal attributes. While C4.5 and Ant-Tree-Miner create a branch for each

value of a nominal attribute (i.e., each branch representing a condition xi = vi j), CART

can group different values into the same branch (i.e., each branch can represent a con-

dition xi in {vi1,vi2, . . .}). This effectively reduces the dimensionality of nominal at-

tributes with large number of values and allows the algorithm to group the values into

a small number of subsets, and consequently, reduces the complexity of the tree and

the number of leaf nodes. On the other hand, it has a very significant negative impact

on the predictive accuracy of the discovered decision trees, since CART achieves the

second worst rank in terms of predictive accuracy.

Overall, the results obtained by the Ant-Tree-Miner algorithm are clearly positive.

It achieved the best rank in terms of predictive accuracy and outperformed well-known

20

Table 3: Average number of leaf nodes (average ± standard error) of the decision trees, measured by tenfold

cross-validation. The columns denoted by ATM correspond to Ant-Tree-Miner variations. The value of the

algorithm with the lowest average number of leaf nodes for each data set is shown in bold.

Data Set C4.5 CART cACDT ATM ATM –P ATMMDL ATM –P
MDL

auto 46.6 ± 2.3 23.3 ± 0.9 12.4 ± 0.5 31.1 ± 0.6 29.5 ± 0.6 27.3 ± 0.3 27.7 ± 0.3

balance 34.6 ± 1.2 25.4 ± 5.2 47.4 ± 0.4 34.5 ± 0.1 34.6 ± 0.0 34.5 ± 0.1 34.5 ± 0.1

blood-t 6.6 ± 0.7 6.4 ± 0.7 8.0 ± 0.3 14.8 ± 0.1 14.8 ± 0.1 14.9 ± 0.1 14.6 ± 0.1

breast-l 8.2 ± 2.6 2.9 ± 0.4 10.7 ± 0.2 10.0 ± 0.2 10.3 ± 0.2 10.5 ± 0.3 10.5 ± 0.2

breast-t 12.9 ± 0.5 7.8 ± 0.8 15.3 ± 0.4 12.0 ± 0.1 11.9 ± 0.1 13.6 ± 0.1 13.7 ± 0.1

breast-w 11.5 ± 0.5 7.1 ± 0.5 10.9 ± 0.2 9.0 ± 0.1 9.0 ± 0.1 11.1 ± 0.1 11.1 ± 0.1

credit-a 19.8 ± 2.2 2.8 ± 0.4 14.7 ± 0.3 29.6 ± 0.2 29.8 ± 0.2 29.8 ± 0.3 29.6 ± 0.3

derma 28.0 ± 1.3 7.5 ± 0.2 14.6 ± 0.2 20.7 ± 0.1 21.1 ± 0.1 20.9 ± 0.1 20.9 ± 0.1

ecoli 17.9 ± 0.9 10.1 ± 1.2 13.9 ± 0.3 15.9 ± 0.1 16.0 ± 0.1 16.8 ± 0.1 16.5 ± 0.1

glass 23.8 ± 0.5 14.7 ± 2.1 5.6 ± 0.2 20.2 ± 0.1 20.2 ± 0.1 19.5 ± 0.1 19.4 ± 0.1

heart-c 44.7 ± 1.6 8.8 ± 2.3 8.4 ± 0.3 35.8 ± 0.2 36.4 ± 0.3 35.8 ± 0.2 36.4 ± 0.3

heart-h 27.6 ± 0.9 3.1 ± 0.7 4.8 ± 0.2 21.8 ± 0.1 21.9 ± 0.1 22.1 ± 0.2 22.0 ± 0.1

hep 9.7 ± 0.6 2.9 ± 0.8 10.2 ± 0.3 7.6 ± 0.1 7.5 ± 0.1 8.1 ± 0.1 8.1 ± 0.1

horse 5.2 ± 0.5 4.0 ± 0.4 19.7 ± 0.3 10.2 ± 0.1 10.0 ± 0.1 12.7 ± 0.2 13.0 ± 0.2

ionos 13.4 ± 0.7 8.6 ± 1.6 8.9 ± 0.2 12.4 ± 0.1 12.2 ± 0.1 14.3 ± 0.1 14.4 ± 0.1

iris 4.5 ± 0.2 4.4 ± 0.3 4.8 ± 0.1 4.2 ± 0.0 4.4 ± 0.0 4.4 ± 0.0 4.3 ± 0.0

park 10.7 ± 0.4 6.2 ± 0.7 7.9 ± 0.2 8.0 ± 0.0 8.1 ± 0.0 8.3 ± 0.1 8.4 ± 0.1

s-heart 20.8 ± 1.6 10.1 ± 1.5 27.4 ± 0.3 18.1 ± 0.2 18.0 ± 0.2 18.4 ± 0.2 18.0 ± 0.2

soybean 55.9 ± 1.6 35.4 ± 2.0 2.4 ± 0.2 50.0 ± 0.3 50.3 ± 0.3 50.0 ± 0.3 50.3 ± 0.2

voting 5.7 ± 0.1 4.8 ± 0.7 10.8 ± 0.2 6.1 ± 0.0 6.1 ± 0.0 6.1 ± 0.0 6.0 ± 0.0

wine 5.2 ± 0.1 5.5 ± 0.3 7.5 ± 0.1 5.6 ± 0.0 5.6 ± 0.0 7.1 ± 0.0 7.1 ± 0.0

zoo 11.2 ± 0.8 7.3 ± 0.1 7.4 ± 0.0 10.7 ± 0.0 10.7 ± 0.1 10.5 ± 0.0 10.8 ± 0.1

C4.5 and CART algorithms with statistically significant differences, and also the ACO-

based cACDT algorithm. While Ant-Tree-Miner is not the algorithm that discovers de-

cision trees with the lowest number of leaf nodes and it is outperformed by CART with

a statistically significant difference, Ant-Tree-Miner achieves the second best rank in

terms of size of the classification model; although CART achieves the best ranking in

size of the classification model, it achieves the second worst rank in predictive accu-

racy. Therefore, Ant-Tree-Miner presents a better trade-off between both accuracy and

model size, overall, than C4.5, CART—two very popular conventional decision tree

induction algorithms—and the ACO-based cACDT algorithm.

Comparing the performance of Ant-Tree-Miner variations we can draw the follow-

ing conclusions about the discretisation and pruning strategies. The binary (single in-

terval) discretisation performs best in terms of both predictive accuracy and size of the

classification model, given that Ant-Tree-Miner and Ant-Tree-Miner –P achieved bet-

ter average ranks than the corresponding Ant-Tree-MinerMDL and Ant-Tree-Miner –P
MDL

variations using the MDL-based (multi-interval) discretisation. The difference between

the pruning strategies is not as clear as between the discretisation strategies. While

the use of the two-step pruner helps the Ant-Tree-Miner with binary discretisation to

21

Table 4: Statistical test results according to the non-parametric Friedman test with the Holm’s post-hoc test

for α = 0.05. Statistically significant differences between the average ranks of an algorithm and the control

algorithm are shown in bold.

Algorithm average rank adjusted pHomm

(i) Predictive Accuracy

Ant-Tree-Miner (control) 2.52 –

Ant-Tree-Miner –P 3.20 0.2952

Ant-Tree-Miner –P
MDL

3.93 0.0610

C4.5 4.04 0.0458

Ant-Tree-MinerMDL 4.11 0.0437

CART 4.49 0.0120

cACDT 5.68 7.4E-6

(ii) Model Size

CART (control) 1.39 –

Ant-Tree-Miner 3.68 4.2E-4

cACDT 4.00 1.2E-4

Ant-Tree-Miner –P 4.27 2.8E-5

Ant-Tree-Miner –P
MDL

4.70 1.4E-6

Ant-Tree-MinerMDL 4.75 9.7E-7

C4.5 5.20 2.7E-8

achieve a higher predictive accuracy and smaller number of leaf nodes in the discov-

ered decision trees than the Ant-Tree-Miner –P variation, the same effect is not ob-

served in the MDL-based discretisation variations. The Ant-Tree-Miner –P
MDL—which

uses the one-step pruner (C4.5’s error-based pruning procedure)—achieved a better

average rank in terms of both predictive accuracy and size of the classification model,

although the differences are relatively small. This is likely due to the differences in the

structure of the trees when using the multiple interval discretisation, where in this case

both pruning strategies have a similar effect.

Considering the average computation time for inducing a decision tree, shown in

Fig. 7, it is no surprise that the Ant-Tree-Miner variations using the two-step prun-

ing procedure require more time than the ones using only C4.5’s error-based pruning.

While the Ant-Tree-Miner algorithm achieved the highest predictive accuracy overall,

it is a factor of 4.2 slower than the Ant-Tree-Miner –P
MDL (the fastest Ant-Tree-Miner

variation). The Ant-Tree-Miner –P presents a trade-off between accuracy, model size

and computational time: while its predictive accuracy is slightly lower than the Ant-

Tree-Miner variation, it discovers simpler decision trees requiring less computational

time. The MDL-based discretisation helps to decrease the computational time at the

cost of a lower predictive accuracy and decision trees with more leaf nodes.

When compared to the computational time for inducing a decision tree of C4.5 and

CART, Ant-Tree-Miner variations are a factor of 120 to 504 slower. This is expected,

given that both C4.5 and CART create and prune a single candidate decision tree us-

ing a deterministic procedure, while in Ant-Tree-Miner variations multiple candidate

22

cACDT

Ant-Tree-Miner

Ant-Tree-Miner

Ant-Tree-Miner–P

Ant-Tree-Miner–P

MDL

MDL

14

1 600

120

140

420

504

Figure 7: Average computation time (over all data sets) in seconds to complete a fold of the cross-validation

for each of the ACO-based algorithms on a 3.33 GHz Intel Xeon computer. The deterministic C4.5 and

CART algorithms take on average 1 second to complete a fold of the cross-validation.

decision trees are created and pruned before finding the best decision tree. Comparing

the time taken by cACDT, Ant-Tree-Miner variations are a factor of 8.5 to 36 slower,

while the predictive accuracy of cACDT is statistically significantly lower than Ant-

Tree-Miner’s accuracy. It should be noted that in many data mining applications (e.g.,

medical diagnosis, bioinformatics and credit scoring) the computational time taken by

the algorithm to induce a classification model has a relatively minor importance, since

they represent off-line applications and the time spent collecting and preparing the data

is usually much greater than the time required to run the classification algorithm—

although in applications that require parameter tuning, the number of parameter set-

tings evaluated could be limited by the computational time of the algorithm. In addi-

tion, ACO algorithms can be easily parallelised since each ant builds and evaluates a

candidate decision tree independent from all the other ants. Therefore, a large speed

up could be obtained by running a parallel version of Ant-Tree-Miner on a computer

cluster or another parallel computing system in applications where Ant-Tree-Miner’s

processing time becomes a significant issue.

4.3. Comparing the Ant-Tree-Miner and cAnt-MinerPB rule induction algorithms

In this section we compare the performance of Ant-Tree-Miner against the ACO-

based cAnt-MinerPB rule induction algorithm [27]. Such a comparison is particularly

interesting since both algorithms employ an ACO-based procedure to create a compre-

hensible classification model, while using different solution representations and search

strategies. Additionally, decision trees can be converted to a set of classification rules

(e.g., as discussed in [31]) and vice-versa (e.g., as discussed in [1]). Table 5 presents

the results of Ant-Tree-Miner and cAnt-MinerPB in terms of both predictive accuracy

and size of the classification model, using the same tenfold cross-validation procedure

described in subsection 4.1. In the case of cAnt-MinerPB, the size corresponds to the

total number of rules in the discovered lists, while the size in the case of Ant-Tree-

Miner corresponds to the number of leaf nodes in the discovered trees—given that the

23

Table 5: Average predictive accuracy (average ± standard error) in % and average model size (average ±
standard error), measured by tenfold cross-validation. The value of the best performing algorithm for each

data set is shown in bold.

Predictive Accuracy Model Size

Data Set Ant-Tree-Miner cAnt-MinerPB Ant-Tree-Miner cAnt-MinerPB

auto 77.2 ± 0.4 65.5 ± 0.9 31.1 ± 0.6 14.3 ± 0.1

balance 62.9 ± 0.1 76.8 ± 0.2 34.5 ± 0.0 13.6 ± 0.0

blood-t 72.4 ± 0.1 72.3 ± 0.1 14.8 ± 0.1 9.8 ± 0.0

breast-l 73.5 ± 0.1 72.3 ± 0.3 10.0 ± 0.2 10.4 ± 0.1

breast-t 65.2 ± 0.6 67.1 ± 0.5 12.0 ± 0.1 6.7 ± 0.0

breast-w 94.0 ± 0.2 94.3 ± 0.2 9.0 ± 0.1 8.3 ± 0.1

credit-a 85.9 ± 0.1 85.7 ± 0.1 29.6 ± 0.2 12.3 ± 0.1

derma 94.4 ± 0.1 92.5 ± 0.3 20.7 ± 0.1 19.2 ± 0.1

ecoli 83.9 ± 0.1 79.9 ± 0.2 15.9 ± 0.1 9.1 ± 0.0

glass 71.0 ± 0.4 73.9 ± 0.2 20.2 ± 0.1 9.4 ± 0.1

heart-c 51.9 ± 0.4 55.5 ± 0.4 35.8 ± 0.2 12.8 ± 0.1

heart-h 65.9 ± 0.2 64.7 ± 0.3 21.8 ± 0.1 11.0 ± 0.1

hep 82.5 ± 0.3 80.1 ± 0.5 7.5 ± 0.1 7.6 ± 0.1

horse 83.8 ± 0.1 83.5 ± 0.3 10.2 ± 0.1 10.8 ± 0.2

ionos 90.8 ± 0.2 89.6 ± 0.3 12.4 ± 0.1 9.2 ± 0.1

iris 96.2 ± 0.1 93.2 ± 0.2 4.2 ± 0.0 4.8 ± 0.0

park 92.4 ± 0.1 87.0 ± 0.5 8.0 ± 0.0 7.1 ± 0.1

s-heart 77.3 ± 0.3 77.0 ± 0.4 18.1 ± 0.2 8.6 ± 0.1

soybean 87.4 ± 0.2 80.0 ± 0.3 50.0 ± 0.3 22.3 ± 0.1

voting 94.9 ± 0.1 93.3 ± 0.2 6.1 ± 0.0 6.4 ± 0.1

wine 96.2 ± 0.1 93.6 ± 0.3 5.6 ± 0.0 5.4 ± 0.1

zoo 88.2 ± 0.2 78.6 ± 0.9 10.7 ± 0.0 6.0 ± 0.0

path from a leaf node to the root node of the tree can be viewed as a rule.

The performance of Ant-Tree-Miner in terms of predictive accuracy is statistically

significantly better than the performance of cAnt-MinerPB, according to the Wilcoxon

signed-rank test [9] at the α = 0.05 level (p-value = 0.0461). On the other hand, cAnt-

MinerPB is statistically significantly better than Ant-Tree-Miner in terms of the size of

the classification model, according to the Wilcoxon signed-rank test at the α = 0.05

level (p-value = 0.0001). These results show that the decision trees created by Ant-

Tree-Miner are more accurate than the rule lists created by cAnt-MinerPB, at the ex-

pense of being bigger in size. As discussed in [31], it is possible to further reduce the

complexity of the decision tree representation by converting a tree to a set of classi-

fication rules, where each rule can be individually simplified, while maintaining the

same level of predictive accuracy. The application of such procedure is an interesting

direction for future research.

24

5. Conclusions

This paper has proposed a novel ant colony algorithm, called Ant-Tree-Miner, for

the induction of decision trees in the context of the classification task in data mining.

When used as a classification model, decision trees have the advantage of representing

a comprehensible model and being easily expressed in a graphical form or in a set

of classification rules. The Ant-Tree-Miner algorithm follows a top-down approach by

probabilistically selecting attributes to be added as decision nodes based on the amount

of pheromone and heuristic information. The pheromone matrix representation takes

into account the level in the decision tree that a particular branch—(attribute, value)

pair—appears to discriminate between multiples occurrences of the same branch. Four

variations of the Ant-Tree-Miner algorithm were compared against two well-known

decision tree induction algorithms, namely C4.5 (Weka’s J48 algorithm) and CART

(Weka’s SimpleCART algorithm), and the ACO-based cACDT decision tree algorithm

in 22 publicly available data sets in terms of both predictive accuracy and number of

leaf nodes of the discovered decision trees.

The results have shown the Ant-Tree-Miner algorithm outperforms C4.5, CART

and cACDT in terms of predictive accuracy, achieving a statistically significantly better

average rank across all data sets. It also presents a good trade-off between predictive

accuracy and size of the classification model (number of leaf nodes in the discovered

trees): Ant-Tree-Miner achieved the best rank in predictive accuracy and second best

rank in number of leaf nodes; C4.5 achieved the fourth best rank in predictive accuracy

and sixth rank in number of leaf nodes; CART achieved the sixth rank in predictive

accuracy and first rank in number of leaf nodes; cACDT achieved the seventh rank

in predictive accuracy and the third rank in number of leaf nodes. The evaluation of

different variations of the Ant-Tree-Miner algorithm have shown that the binary (single

interval) discretisation in combination with the two-step (classification accuracy and

C4.5’s error-based) pruner provides the best performance in terms of both predictive

accuracy and size of the classification model.

There are several potential avenues for future research. It would be interesting to

investigate different heuristic information measures, as well as different discretisation

procedures, which can improve the selection of attributes in decision nodes and conse-

quently the structure of the decision trees. The use of vertices to represent leaf nodes

in the construction graph, allowing the ants to choose when to add a leaf node, could

potentially avoid the need for a pruning procedure. This would not only simplify the

algorithm, but also provide an elegant solution for the problem of overfitting the train-

ing data during the construction of a candidate decision tree.

Software Availability The documentation, source-code and binaries of the Ant-Tree-Miner al-

gorithm implementation used in this paper can be found at http://sourceforge.net/projects/myra.

Acknowledgement

We thank Jan Kozak for providing a binary version of the cACDT algorithm and

for his help in the preparation of the cACDT’s data sets.

25

References

[1] A. Abdelhalim, I. Traore, and B. Sayed. Rbdt-1: A New Rule-Based Decision

Tree Generation Technique. In Proceedings of the 2009 International Symposium

on Rule Interchange and Applications, pages 108–121, 2009.

[2] R.C. Barros, M.P. Basgalupp, A.C.P.L.F. de Carvalho, and A.A. Freitas. A Sur-

vey of Evolutionary Algorithms for Decision-Tree Induction. To appear in IEEE

Transactions Systems, Man, and Cybernetics, Part C: Applications and Reviews,

2011.

[3] H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, and A. Clare. Decision Trees for

Hierarchical Multilabel Classification: A Case Study in Functional Genomics. In

Proceedings of the ECML PKDD, pages 18–29, 2006.

[4] U. Boryczka and J. Kozak. Ant Colony Decision Trees – A New Method for

Constructing Decision Trees Based on Ant Colony Optimization. In Proceedings

of the ICCCI, pages 373–382, 2010.

[5] U. Boryczka and J. Kozak. An Adaptive Discretization in the ACDT Algorithm

for Continuous Attributes. In Proceedings of the ICCCI, pages 475–484, 2011.

[6] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regres-

sion Trees. Chapman and Hall, 1984.

[7] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-Blackwell,

2nd edition, 2006.

[8] M. Daud and D. Corne. Human Readable Rule Induction In Medical Data Min-

ing: A Survey Of Existing Algorithms. In Proceedings of the WSEAS European

Computing Conference, 2007.

[9] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets. Ma-

chine Learning Research, 7:1–30, 2006.

[10] V. Dhar, D. Chou, and F. Provost. Discovering Interesting Patterns for Investment

Decision Making with GLOWER – A Genetic Learner Overlaid With Entropy

Reduction. Data Mining and Knowledge Discovery, 4(4):251–280, 2000.

[11] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In

D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages

11–32, 1999.

[12] M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant algorithms for discrete opti-

mization. Artificial Life, 5(2):137–172, 1999.

[13] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[14] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued

attributes for classification learning. In Thirteenth International Joint Conference

on Artifical Inteligence, pages 1022–1027. Morgan Kaufmann, 1993.

26

[15] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smith. From data mining to knowl-

edge discovery: an overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith,

and R. Uthurusamy, editors, Advances in Knowledge Discovery & Data Mining,

pages 1–34. MIT Press, 1996.

[16] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[17] A.A. Freitas. Understanding the crucial role of attribute interaction in data min-

ing. Artificial Intelligence Review, 16(3):177–199, 2001.

[18] A.A. Freitas, R.S. Parpinelli, and H.S. Lopes. Ant colony algorithms for data

classification. In Encyclopedia of Information Science and Technology, volume 1,

pages 154–159. 2 edition, 2008.

[19] A.A. Freitas, D.C. Wieser, and R. Apweiler. On the Importance of Comprehen-

sible Classification Models for Protein Function Prediction. IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, 7(1):172–182, 2010.

[20] S. Garcı́a and F. Herrera. An Extension on “Statistical Comparisons of Classi-

fiers over Multiple Data Sets” for all Pairwise Comparisons. Machine Learning

Research, 9:2677–2694, 2008.

[21] S. Izrailev and D. Agrafiotis. A Novel Method for Building Regression Tree

Models for QSAR Based on Artificial Ant Colony Systems. Journal of Chemical

Information and Computer Sciences, 41:176–180, 2001.

[22] D. Martens, B. Baesens, and T. Fawcett. Editorial survey: swarm intelligence for

data mining. Machine Learning, 82(1):1–42, 2011.

[23] J. Mingers. An empirical comparison of selection measures for decision-tree

induction. Machine Learning, 3:319–342, 1989.

[24] T. Mitchell. Machine Learning. McGraw Hill, 1st edition, 1997.

[25] F.E.B. Otero, A.A. Freitas, and C.G. Johnson. cAnt-Miner: an ant colony clas-

sification algorithm to cope with continuous attributes. In Proc. of the 6th Inter-

national Conf. on Swarm Intelligence (ANTS 2008), LNCS 5217, pages 48–59.

Springer-Verlag, 2008.

[26] F.E.B. Otero, A.A. Freitas, and C.G. Johnson. Handling continuous attributes in

ant colony classification algorithms. In Proc. of the 2009 IEEE Symposium on

Computational Intelligence in Data Mining (CIDM 2009), pages 225–231. IEEE,

2009.

[27] F.E.B. Otero, A.A. Freitas, and C.G. Johnson. A New Sequential Covering Strat-

egy for Inducing Classification Rules with Ant Colony Algorithms. To appear in

IEEE Transactions on Evolutionary Computation, 2012.

[28] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas. Data mining with an ant

colony optimization algorithm. IEEE Transactions on Evolutionary Computa-

tion, 6(4):321–332, 2002.

27

[29] G. Piatetsky-Shapiro and W. Frawley. Knowledge Discovery in Databases. AAAI

Press, 1991.

[30] J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106, 1986.

[31] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[32] J.R. Quinlan. Improved Use of Continuous Attributes in C4.5. Artificial Intelli-

gence Research, 7:77–90, 1996.

[33] L. Rokach and O. Maimon. Top-Down Induction of Decision Trees Classifiers –

A Survey. IEEE Transactions on Systems, Man and Cybernetics, 35(4):476–487,

2005.

[34] T. Stützle and H.H. Hoos. Improvements on the Ant System: IntroducingMAX -

MIN ant system. In Proceedings of the International Conference Artificial Neu-

ral Networks and Genetic Algorithms, 1997.

[35] T. Stützle and H.H. Hoos. MAX -MIN ant system. Future Generation Com-

puter Systems, 16(8):889–914, 2000.

[36] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel. Decision trees for

hierarchical multi-label classification. Machine Learning, 73(2):185–214, 2008.

[37] H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, 2nd edition, 2005.

28

