
Automated Problem Decomposition for the

Boolean Domain with Genetic Programming

Fernando E. B. Otero and Colin G. Johnson

School of Computing, University of Kent, Canterbury, UK
{F.E.B.Otero,C.G.Johnson}@kent.ac.uk

Abstract. Researchers have been interested in exploring the regulari-
ties and modularity of the problem space in genetic programming (GP)
with the aim of decomposing the original problem into several smaller
subproblems. The main motivation is to allow GP to deal with more
complex problems. Most previous works on modularity in GP empha-
sise the structure of modules used to encapsulate code and/or promote
code reuse, instead of in the decomposition of the original problem. In
this paper we propose a problem decomposition strategy that allows the
use of a GP search to find solutions for subproblems and combine the
individual solutions into the complete solution to the problem.

1 Introduction

Many problems in the genetic programming (GP) literature have demonstrated
the scalability issues of GP algorithms—e.g., it is relatively easy to find a solution
for the even-4-parity problem [1], while a solution for the even-8-parity problem is
much harder to find using a traditional GP. In order to be able to deal with larger
and more complex problems, researchers have been interested in exploring the
regularities and modularity of the problem space with the aim of decomposing
the original problem into several smaller (more tractable) subproblems.

One of the first approaches for exploiting the problem regularities is Koza’s
Automatic Defined Functions (ADFs) [1, 2]. In ADFs, the structure of program
trees is defined in a way that subtrees with different roles are evolved in parallel—
e.g., there are function-defining subtrees and a result-producing subtree, which
can contain references to the different function-defining subtrees mimicking func-
tion calls. Other authors investigated the creation of modules (functions) by
identifying subtrees on existing individuals [3–6]. The main idea is to create
modules based on fit or useful subtrees, either encapsulating their functionality
or creating parameterised modules.

In this paper, we investigate the use of an automated problem decomposition
strategy in the context of GP. The motivation is to use a heuristic to modularise
the GP search—i.e., use a GP search to explicitly find solutions to subproblems,
which can then be combined to create the solution to the original problem.
Therefore, the GP is not concerned with searching for the complete solution; the
original problem is decomposed in a series of smaller subproblems.

The remainder of this paper is organised as follows. Section 2 reviews prior
efforts to explore the regularities and modularity of the problem space in GP.
Section 3 discusses the proposed strategy to modularise the GP search and Sec-
tion 4 gives details of a specific implementation of this strategy. The computa-
tional results are presented in Section 5. Finally, Section 6 concludes this paper
and presents future research directions.

2 Background

Automatically Defined Functions (ADFs) were introduced by Koza [1, 2] as a
technique to explore the regularities and modularities of the problem space
in order to deal with complex problems, and it is probably the most popular
and studied automatic approach to create modules (sub-routines) in GP. Koza
proposed the use of ADFs to decompose the problem into several smaller sub-
problems. The solution of the original (complete) problem is then obtained by
combining the individual solutions to the subproblems. This process, defined by
Koza as hierarchical problem-solving process, is illustrated in Figure 1. There are
three important steps in this process: the first one is where the original prob-
lem is decomposed, the second is where the solutions of each subproblem are
obtained, and the third one is where the complete solution is built by combining
the individual solutions of the subproblems. Koza’s ADF approach implements
these three steps within a run of a GP algorithm: a modular ADF architecture
based on ‘function-defining branches’ is determined prior to evolving the solu-
tions (decomposition of the problem); the body of each ADF is evolved during
the run (subproblem solution search); these ADFs are available to the ‘result-
producing branch’ of candidate solutions (combination of subsolutions), which
is also being evolved during the run.

While Koza’s ADF approach allows the GP to exploit the problem regular-
ities through a modular architecture, the problem decomposition into an ADF
architecture (i.e., number of ADFs, the number of arguments of each ADF) is
done manually before the run of the GP. This also includes the definition of the
interaction between ADFs—which ADFs are allowed to call which other ADFs.
Therefore, the architecture of the candidate solutions is fixed to a pre-defined
number of ADFs and the ‘result-producing branch’. In [7], a set of architecture
altering operations relaxed this restriction, allowing candidate solutions to have
a different number of ADFs and each ADF to have a different number of param-
eters, although the maximum number of ADFs and arguments of each ADF are
restricted by user-defined values.

Other works have proposed the creation of modules based on the genetic
material from individuals of the population. Koza [1] proposed the use of a
subtree encapsulation operator. The approach consists in randomly selecting a
subtree from a fit individual and creating a terminal primitive to reference the
subtree—i.e., a terminal that encapsulates the behaviour of the subtree. The
motivation is to protect the encapsulated subtree from potential changes as a
result of genetic operators, and to facilitate its reuse by allowing the mutation

original problem subproblems subproblems

solutions

original problem

solution

problem

decomposition

solving

subproblems

combining

subproblem

solutions

1 2 3

P

S

p1

p2

p3

p4

s1

s2

s3

s4

Fig. 1. The hierarchical problem-solving process (adapted from [1]): the original prob-
lem P is decomposed in a set of subproblems (step 1); the goal is then to solve each of
the subproblems (step 2); finally, the solution S to the original problem P is created
by using the solutions to the subproblems (step 3).

operator to incorporate new references in the population. The terminal primitive
created by the encapsulation operator can be seen as a module (function) with
no arguments. Angeline and Pollack [3, 8] proposed the Genetic Library Builder
(GLiB) system, which employs special mutation operators to define new modules
based on subtrees from individuals. The first mutation operator is compression,
which consists of randomly selecting a subtree to define a new module. The newly
created module is then stored in a global module library and the occurrence of
the subtree is replaced by a reference to the module. The arguments of the
module are determined based either on the maximum depth of the module or by
the terminal (leaf) nodes used in the subtree. The second mutation operator is
expand, which consists in expanding the module by replacing its reference with
the subtree stored in the module library that defines the module. While module
definitions in GLiB are selected at random, Rosca and Ballard [4] proposed
a method to create new modules using heuristics to identify ‘useful’ building
blocks: fit blocks (blocks with high fitness value) and frequent blocks (blocks
that appear frequently in the entire population). Once a block has been identified
and its arguments determined (based on the terminals used in the subtree), its
definition is added to the function set as a new function and a replacement
operator introduces new individuals using the extended function set.

The idea of identifying building blocks in the population to create a library of
modules was extended further to include information accumulated from multiple
runs of a GP algorithm. Roberts et al. [5] proposed the use of a subtree database

to monitor the frequency of use of each subtree during the GP run. At the end
of the run, the most frequent subtrees are encapsulated as terminal primitives
in a similar manner as the encapsulation operator proposed by Koza [1]. The
subsequent runs can then take advantage of the subtree database by using an
extended terminal set incorporating the encapsulated subtrees. Keijzer et al.

[6] introduced the idea of Run Transferable Libraries (RTL), in which the GP
system uses the RTL in two phases: (1) training of the library, where a number
of runs is used to refine the randomly generated candidate modules (referred
to as Tag Addressable Functions) of the RTL; (2) subsequent runs of the GP
use the modules of the RTL. The motivation is that the RTL can be trained
in smaller (simpler) problem instances and then be applied to larger (harder)
problem instances. A similar idea was used by Christensen and Oppacher [9],
where a ‘training phase’ consisting in generating all small trees in the search
space of GP creates a library of useful modules. Christensen and Oppacher’s
approach explores the fact that there are more solutions of small size for the
Santa Fe Trail problem compared to larger ones. The generated modules (small
trees) are then used in the search for the complete solution.

Several other approaches for the creation/identification of modules have been
proposed in the literature—e.g., in the context of grammar-based GP (gram-
matical evolution) [10, 11], in Cartesian Genetic Programming (CGP) [12] and
in GP systems using the Push language [13]; other approaches are discussed in
[14]. The majority of approaches for modularity (including the ones discussed
above) focus on the discovery of modules rather than on the use of modules to
decompose the problem into smaller (more tractable) subproblems, relying on
the idea that if modules can be created/identified, their usefulness will emerge
through the GP search. An indication of this is the fact that modules are usually
created/identified during the run of the GP, at the same time that the GP is
searching for a solution to the problem. There is no control to check whether dif-
ferent modules are solving different parts of the problem or not, and the quality
of the modules is evaluated indirectly by evaluating how well an individual that
contains the module reference solves the problem.

This emphasis on the structure of modules to encapsulate code and/or pro-
mote code reuse of most previous works in GP modules motivated Jackson and
Gibbons [15] to propose the use of layered learning—an approach that aims at
solving simpler problems in order to deal with harder problems—in the context
of GP. The idea is to first use a layer to solve a lower-order version of the orig-
inal problem. Then, when a solution to the first layer is found, it is converted
to a parameterised module. Finally, a second layer is used to search for the so-
lution to the original problem, which can invoke the module created by the first
layer. Drawing a comparison with ADFs, the first layer in the layered learning
approach can be seen as a function-defining branch and the second layer can be
seen as the result-producing branch. The main difference between ADFs and the
layered learning approach is that in the latter, all computational effort is first
focused in the function-defining branch (layer 1) until it evolved into something
potentially useful, and then switched to the result-producing branch (layer 2),
while in ADFs both function-defining and result-producing branches are evolved
simultaneously. One limitation of the layered learning is the need to manually
identify (and specify) a lower-order of the problem to be solved by the first
layer. A second limitation is that there is a single decomposition step, and more
complex problems may require multiple decomposition steps.

3 Modularisation of the GP search

The problem-solving procedure of GP can be viewed as a supervised learning
procedure:

(1) the training data is represented by a set of input-output pairs, which corre-
spond to the desired behaviour;

(2) the fitness function is used to evaluate how good a candidates solutions’
predictions are (i.e., how many correct predictions are made or how close
the predictions are to the correct output);

(3) the goal of the GP search is to find a program that can predict the correct
output for each of the inputs or, in cases where it cannot find the program
that generates the correct output, find one that provides the best fitness
score given by the fitness function.

Many supervised learning methods employ a strategy to decompose the prob-
lem at hand into smaller subproblems. For example, decision tree induction al-
gorithms usually employ a divide-and-conquer strategy to build a decision tree
in a top-down fashion. Starting from the root node, a test is selected to divide
the training instances—a descendant of the root node is created for each possible
outcome of the test and the training instances are sorted to the appropriate de-
scendant node. This procedure is then repeated for each descendant node using
the subset of the training instances associated with the node—a test is selected
for each of the descendant nodes to further divide the training instances. Another
example is the strategy used by rule induction algorithms. Instead of attempt-
ing to create a complete list or set of rules at once, they employ a sequential
covering strategy to reduce the problem into to a sequence of simpler problems,
each consisting in creating a single rule. The sequential covering is an iterative
procedure in which a single rule is created and the training instances correctly
classified by the rule are removed from the training data, effectively reducing
the search space for the next iterations of the procedure.

Most works in GP focuses on searching for a complete solution. While the use
of ADFs (or other module/building block creation method) provides a syntactic
modularisation, where different subtrees might focus on different parts of the
problem, there is still an evolutionary pressure to solve all parts of the problem
at once. McKay [16] argues that this pressure tends to reduce diversity and
in some cases prevents the search from converging to an optimal solution. To
counteract this effect, McKay uses the concept of partial functions—functions
whose values are not defined for some inputs—combined with the use of fitness
sharing to promote diversity and allow the GP search to explore subproblem
solutions. The use of partial functions can be seen as an explicit attempt to
modularise the GP search, i.e., focus the search on solutions of subproblems.

The hierarchical problem-solving process presented by Koza as a motivation
to use ADFs is closely related to both divide-and-conquer and sequential covering
strategies commonly used in machine learning, although ADFs do not use a
heuristic to decompose the problem. The use of layered learning by Jackson

and Gibbons [15] can also be seen as a divide-and-conquer, but it involves a
single decomposition step represented by the manually identified lower-order
version of the original problem. A natural question then arises: could we apply a

heuristic to decompose the problem into smaller problems and use GP to find a

solution to subproblems? Assuming that we successfully decompose the problem
and find solutions to the subproblems, we then have a second question: how do we

combine the individual solutions to the subproblems into the complete solution?

In the next section we discuss how we can combine both the sequential covering
strategy and the concept of partial functions to modularise the GP search—use
GP to solve several smaller subproblems and combine the solutions to create the
complete solution to the problem—and address the aforementioned questions.

4 Sequential Covering Genetic Programming

In this section we present the general idea behind the proposed sequential cov-
ering GP (SCGP). There are three distinct steps: (i) the decomposition of the
problem; (ii) the search for a subproblem solution; and (iii) the combination of
subproblem solutions into the complete solution. Figure 2 presents the high-level
pseudocode of the SCGP procedure.

The overall SCGP procedure mimics a sequential covering: starting with the
complete list of input cases (training data) and an empty solution tree,1 evolves
a partial solution using GP, adds the partial solution to the solution tree and
removes the cases for which it gives the correct output. The procedure is repeated
until there are no input cases remaining. The removal of cases at each iteration
effectively changes the search space for the next iterations, which allows the GP
to evolve solutions to different parts of the problem—i.e., reduces (decomposes)
the problem into a sequence of simpler problems, each consisting in creating a
solution for a subset of the input cases.

At each iteration of the SCGP procedure, a partial solution is evolved using a
GP.2 The fitness cases for the GP consists of the available input cases—the ones
that have not been correctly predicted previously. The best (fittest) candidate
solution evolved by the GP is designated as the partial solution of the iteration.
There are two possible outcomes as a result of the GP search: the partial solution
produces the correct output for all available input cases (i.e., it is the optimal
solution for the subproblem represented by the available input cases), or the
partial solution produces the correct output for a subset of the input cases. If
the partial solution is the optimal solution for the subproblem, it is added as
a leaf component to the solution tree and the SCGP procedure finishes, since
the solution tree is able to generate the correct output for all input cases. If the
partial solution only solves a subset of the input cases, a mask selector is created
to combine the newly created partial solution with the remaining solutions of the

1 Here we assume that the solution tree is where all the partial solutions (the solution
to individual subproblems) are combined into the complete solution to the problem.

2 Each iteration of SCGP involves the execution of a GP algorithm, which also evolve
for a number of iterations.

1. training← all input cases;
2. solution← ∅;
3. while |training| not empty do

4. partial ← EvolveSolution(training);
5. if Errors(partial, training) = 0 then

6. solution ← AddLeafComponent(partial, solution);
7. else

8. mask ← GenerateTestMask(partial, training);
9. solution ← AddMaskComponent(partial, mask, solution);
10. end if

11. training ← RemoveCorrectCases(solution, training);
12. end while

13. solution ← Simplify(solution); /* optional */

14. return solution;

Fig. 2. High-level pseudocode of the Sequential Covering GP (SCGP).

solution tree. The cases for which the (extended) solution tree gives the correct
output are removed and a new iteration of the procedure starts.

So far, we have demonstrated how we can use a heuristic to decompose the
problem and use a GP to produce the solutions to the subproblems, which an-
swers our first posed question. The remaining issue is how to combine the solu-
tions to the subproblem into a single solution. We have mentioned that individual
solutions are structured in a solution tree and combined together using a mask
selector. Given that each partial solution in the solution tree is solving a different
subproblem, their output vectors (the vector V of the outputs of the partial solu-
tion Pi when queried with the input cases C, i.e., V (Pi) = {Pi(c1), . . . , Pi(cN)})
are complementary.3 Therefore, a natural way of combining the partial solutions
is to combine their output vectors. To that end, we use the semantic crossover
proposed by Moraglio et al. [17] to generate mask selectors, which act as tests
to inform which of the partial solutions to use for a given input.

The geometric semantic crossover [17] is a semantic operator that works
on the output vector of two individuals (candidate solutions). For the Boolean
domain, the semantic crossover (SGXB) returns an individual T3 = (M ∧ T1) ∨
(M∧T2), whereM is a randomly generated boolean crossover mask. The Boolean
expression represented by individual T3 outputs the value of T1 or T2 depending
on the value of M—i.e., for each input case c, it outputs the value T1(c) if M(c)
evaluates to true; otherwise it outputs the value T2(c). The construction of the
individual T3 is illustrated in Figure 3. We will focus on the Boolean domain
from now on; refer to [17] for details of how to apply the semantic crossover in
other domains.

3 There might be overlaps between different vectors, but the important aspect is that
for every input case at least one of the vectors provides the correct output.

ANDAND

OR

M

M NOT

(a)

ANDAND

OR

T1 T2

M

M NOT

(b)

Fig. 3. In (a), the semantic crossover scheme for Boolean functions (M is the randomly
generated crossover mask); in (b), the resultant individual T3 obtained by applying the
semantic crossover with individuals T1 and T2.

SGXB

(M1)

undefT1

(a) iteration 1

SGXB

(M1)

SGXB

(M2)

T2

T1

undef

(b) iteration 2

SGXB

(M1)

SGXB

(M2)

T2 T3

T1

(c) iteration 3

Fig. 4. The sequential solution construction procedure of SCGP: in (a) the solution
tree after the first iteration, consisting of the partial solution T1 and an incomplete
semantic crossover using mask M1; (b) the solution tree after the second iteration,
after the addition of the partial solution T2 and the incomplete semantic crossover
using mask M2; the complete solution tree, obtained by adding the partial solution T3.

Recall that solutions are sequentially discovered by the SCGP procedure, so
when a partial solution Ti (the solution created in the i-th iteration) is added
to the solution tree, the Ti+1 solution is unknown. The semantic crossover is
usually incomplete, i.e., we do not have two individuals to recombine. To solve
this dependency, we use the concept of partial solutions and assume that the
solution tree returns an undef value for the cases where the mask Mi evaluates
to false. Therefore, the crossover mask Mi acts as a selector to inform when the
output of individual Ti should be used, independently of the other individuals.
To ensure this property of the crossover mask, we need to impose a restriction
on the creation of the (random) crossover mask Mi: Mi is a randomly generated

boolean crossover mask that, for every input case c, if Mi(c) evaluates to true,

Ti(c) produces the correct output.
Let us consider a simple example: assume that we would like to search for

a boolean function with the following output [1, 1, 0, 1, 0, 1]. The first
iteration of SCGP produces an individual T1 with the output vector [0, 1, 0,

0, 1, 0] (an individual that generates the correct output for input cases 2 and
3). If we generate a crossover mask M1 that returns true for input cases 2 and

3 and add both to the the solution tree, we end up with a partial solution with
the output vector [undef, 1, 0, undef, undef, undef]. Before we start the
next iteration of the SCGP, we remove the input cases for which the solution
tree is generating the correct output, so the desired output is [1, -, -, 1, 0,

1] (the positions marked as ‘-’ are not used in the evaluation). This will focus
the search on the input cases where the (current) solution tree is not generating
the correct output (the input cases for which an undef value is generated). The
second iteration of SCGP produces an individual T2 with the output vector [1,
0, 0, 0, 1, 1]. Applying the same procedure to generate a mask M2 and
adding both T2 and M2 to the solution tree, we end up with a partial solution
with the output vector [1, 1, 0, undef, undef, 1]. Removing the correct
input cases, the desired output is [-, -, -, 1, 0, -]. The next iteration of
SCGP produces an individual T3 with the output vector [1, 1, 1, 1, 0, 0].
Since T3 generates the correct output for the remaining input cases, we don’t
need to create a crossover mask. Adding T3 to the solution tree completes the
SCGP procedure (there are no input cases for which the solution tree generates
an undef value) and the solution tree represents the Boolean function with
the desired output. The sequential solution construction procedure of SCGP is
illustrated in Figure 4.

Note that the sequential construction of the solution avoids the problem of
exponential growth of the size of GP individuals and the need for a simplification
step [17], observed when semantic operators are used (especially the semantic
crossover, since both parents are included in the offspring). The sequential proce-
dure of the SCGP decomposes (reduces) the original problem, and each iteration
is searching for a solution to a subproblem. The subproblem solutions are not
used during the search of the GP, therefore the size of the current solution tree
(the solution being sequentially constructed) does not affect the GP search. On
the other hand, the complete solution (solution tree at the end of SCGP) can
become syntactically large, depending on the number of iterations required to
create the optimal solution. For applications where the size of the complete so-
lution is important, a single simplification step can be used at the end of SCGP.

5 Computational Results

In this section we present the results of the proposed SCGP in two Boolean logic
problems.4 We used a standard tree GP to create a solution at each iteration of
SCGP, using a generational scheme with tournament selection (size 5), ramped-
half-and-half initialisation, subtree crossover (0.9 probability), subtree mutation
(0.1 probability) and elitism (1 individual). We varied the GP parameters pop-
ulation size {10, 50, 100, 500, 1000}, maximum number of iterations {1, 10, 50,
100} and the maximum tree depth {2, 4, 8} to determine their effects on the
overall performance of the SCGP. Greater values of the population size and the
maximum number of iterations only increased the total number of fitness eval-
uations without any improvements on the overall performance of SCGP. The

4 The SCGP algorithm was implemented using the EpochX framework [18].

only GP parameter that seems to directly affect the performance was the max-
imum tree depth, where a greater value allows the SCGP algorithm to create
a complete solution in a smaller number of sequential covering iterations. The
results reported in this section correspond to the runs of SCGP using a GP with
a population size of 10, maximum number of iterations of 1 and maximum tree
depth of 8—the combination that produced the best average number of fitness
evaluations.

The SCGP was compared against a standard tree GP, semantic GP (SGP)
and semantic stochastic hill climber (SSHC), using the same setup as in [17]:
GP and SGP using a generational scheme with tournament selection (size 5),
crossover and mutation; other parameters set to ECJ’s defaults [19]. We selected
two standard GP Boolean benchmark problems, the even-parity and multiplexer
[1]. These problems present scalability issues for standard GP—solutions for
lower-order versions are easily found, while solutions for higher-order versions
are not found in most cases using standard GP. The function set used for both
problems comprised the Boolean operators {AND, OR, NOT}. All algorithms were
allocated a maximum of 2n × 2n fitness evaluations, where n is the number of
input variables of the problem.

Discussion: Table 1 presents the average number of SCGP (sequential covering)
iterations and fitness evaluations required by SCGP to create the complete op-
timal solution for each problem, calculated over 30 runs of the algorithm. In all
problems, the total number of fitness evaluation required is below the allocated
maximum evaluations. The average number of SCGP iterations can be seen as
the number of semantic crossover operations required to create the optimal solu-
tion. This shows an interesting aspect of SCGP: while the SGP algorithm applies
the semantic crossover selecting two individuals at random, the SCGP algorithm
applies the semantic operator in a more directed way. It first selects an individ-
ual and the crossover mask, and then tries to evolve the best individual that
would fit the remaining input cases to complete the crossover. This advantage
is highlighted in the results concerning the average number of training examples
correctly predicted by the best solution, presented in Table 2. SCGP is the only
algorithm to be able to find the optimal solution in all the problems; neither
SGP or SSHC, which also use the semantic crossover, found an optimal solution
to all the problems.

6 Conclusions and Future Work

We presented a new problem decomposition strategy in the context of GP. This
new strategy relies on a sequential covering approach, commonly used in ma-
chine learning, to divide the original problem into smaller subproblems. A GP
was used to find solutions for the subproblems and the individual subproblems’
solutions are combined using a semantic crossover operator. We conducted exper-
iments in two standard GP Boolean benchmark problems, comparing the SCGP
(sequential covering GP) against a standard tree GP, semantic GP (SGP) and

Table 1. Average (average ± standard deviation) number of SCGP iterations and
fitness evaluations required by SCGP to create the complete correct (optimal) solution
for each problem, calculated over 30 runs. In all problems, the total number of fitness
evaluations required is below the allocated maximum (budget) evaluations.

problem avg. SCGP iterations avg. evaluations budget

even-5-parity 23.4 ± 2.0 224.2 ± 20.1 320

even-6-parity 46.7 ± 4.4 457.1 ± 44.6 768

even-7-parity 90.5 ± 3.7 895.0 ± 10.4 1792

even-8-parity 181.7 ± 9.3 1814.1 ± 17.3 4096

even-9-parity 374.5 ± 7.5 3735.0 ± 75.4 9216

even-10-parity 767.6 ± 11.5 7666.6 ± 95.0 20480

multiplexer-6 20.9 ± 5.3 199.0 ± 53.4 768

multiplexer-11 136.1 ± 12.4 1350.7 ± 22.4 45056

Table 2. Average percentage (average ± standard deviation) of input cases correctly
predicted by the best solution for each of the algorithms, calculated over 30 runs.

problem GP SGP SSHC SCGP

even-5-parity 52.9 ± 2.4 98.1 ± 2.1 99.7 ± 0.9 100.0 ± 0.0

even-6-parity 50.5 ± 0.7 98.8 ± 1.7 99.7 ± 0.6 100.0 ± 0.0

even-7-parity 50.1 ± 0.2 99.5 ± 0.6 99.9 ± 0.2 100.0 ± 0.0

even-8-parity 50.1 ± 0.2 99.7 ± 0.3 100.0 ± 0.0 100.0 ± 0.0

even-9-parity 50.0 ± 0.0 99.5 ± 0.3 100.0 ± 0.0 100.0 ± 0.0

even-10-parity 50.0 ± 0.0 99.4 ± 0.2 100.0 ± 0.0 100.0 ± 0.0

multiplexer-6 70.8 ± 3.3 99.5 ± 0.8 99.8 ± 0.5 100.0 ± 0.0

multiplexer-11 76.4 ± 7.9 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0

semantic stochastic hill climber (SSHC). The proposed SCGP algorithm was the
only algorithm to find an optimal solution for all problems within the allocated
maximum number of fitness evaluations.

There are several future research directions. The increase in the number of
iterations of the GP search did not improve the overall performance of SCGP,
which could be an indication that the crossover mask is limiting the use of an
individual (one of the individuals in the crossover is only used when the mask
evaluates to true); it would be interesting to investigate the use of different
mask generation procedures. Another approach is to first select the crossover
mask, which effectively is responsible to divide the input cases, and then search
for each individual to complete the crossover; this would be similar to the top-
down approach commonly used by decision tree induction algorithms. Given the
nature of the sequential covering solution construction strategy, there is a risk of
overfitting the training data. Therefore it will be interesting to investigate how

the solutions found by SCGP generalise to unseen input cases. Additionally, a
semantic analysis of the crossover masks, responsible for partitioning the input
cases, might give interesting insights about the problems (e.g., characterise dif-
ferent regions of the problem space).

Acknowledgements The authors gratefully acknowledge the financial support
from the EPSRC grant EP/H020217/1.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

2. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press (1994)

3. Angeline, P.J., Pollack, J.B.: The evolutionary induction of subroutines. In: Proc.
of the 14th Annual Conference of the Cognitive Science Society. (1992) 236–241

4. Rosca, J., Ballard, D.: Learning by adapting representations in genetic program-
ming. In: Proc. of the IEEE WCCI. (1994) 407–412

5. Roberts, S., Howard, D., Koza, J.: Evolving Modules in Genetic Programming by
Subtree Encapsulation. In: Proc. of EuroGP 2001. LNCS 2038. (2001) 160–175

6. Keijzer, M., Ryan, C., Cattolico, M.: Run Transferable Libraries – Learning Func-
tional Bias in Problem Domains. In: Proc. of GECCO. LNCS 3103. (2004) 531–542

7. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.: Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann (1999)

8. Angeline, P.J., Pollack, J.B.: Coevolving High-level Representations. In Langton,
C., ed.: Artificial Life III, Addison-Wesley (1994) 55–71

9. Christensen, S., Oppacher, F.: Solving the Artificial Ant on the Santa Fe Trail
Problem in 20,696 Fitness Evaluations. In: Proc. of GECCO. (2007) 1574–1579

10. Hemberg, E., Gilligan, C., O’Neill, M., Brabazon, A.: A grammatical genetic
programming approach to modularity in genetic algorithms. In: Proc. of EuroGP.
LNCS 4445 (2007) 1–11

11. Swafford, J., Hemberg, E., O’Neill, M., Nicolau, M., Brabazon, A.: A Non-
Destructive Grammar Modification Approach to Modularity in Grammatical Evo-
lution. In: Proc. GECCO. (2011) 1411–1418

12. Walker, J., Miller, J.: The automatic acquisition, evolution and reuse of modules in
cartesian genetic programming. IEEE Transactions on Evolutionary Computation
12(4) (2008) 397–417

13. Spector, L., Martin, B., Harrington, K., Helmuth, T.: Tag-Based Modules in Ge-
netic Programming. In: Proc. of GECCO. (2011) 1419–1426

14. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11 (2010) 339–363

15. Jackson, D., Gibbons, A.: Layered Learning in Boolean GP Problems. In: Proc.
of EuroGP. LNCS 4445 (2007) 148–159

16. McKay, R.: Partial Functions in Fitness-Shared Genetic Programming. In: Proc.
of CEC. (2000) 349–356

17. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-
ming. In: Proc. of PPSN. LNCS 7491 (2012) 21–31

18. Otero, F., Castle, T., Johnson, C.: EpochX: Genetic Programming in Java with
Statistics and Event Monitoring. In: Proc. of GECCO Companion. (2012) 93–100

19. Luke, S.: ECJ: A Java-based Evolutionary Computation Research System.
http://cs.gmu.edu/ eclab/projects/ecj/ (2012)

