
Multiparty Session Types
BETTY Summer School 2016

Laura Bocchi, University of Kent, l.bocchi@kent.ac.uk

Lecture 4 : advanced

mailto:l.bocchi@kent.ac.uk

• MPSTs extensions

• Design by Contract

• Beyond static typing

• Relationship with automata

• Time

• Realizability

Agenda

MPSTs extensions
• Structure of interactions

• Symmetric sum types  
[Nielsen,Yoshida,Honda@Express’10][Henriksen et al.@FHIES’12]

• Exceptions/Escapes  
[Capecchi,Giachino,Yoshida@FTTCS’10][Carbone,Yoshida,Honda@SFM’09]

• Dynamic multirole session types  
[Denielou,Yoshida@POPL’11]

• Parameterised sessions  
[Denielou et al.@LMCS’12]

• Nested sessions  
[Demangeon,Honda@CONCUR’12]

• Design by Contract (assertions on message content)
[Bocchi,Honda,Tuosto,Yoshida@CONCUR’10] [Bocchi,Demangeon,Yoshida@TGC’12]

• Time [Bocchi,Yang,Yoshida@CONCUR’14]

int hello(int i)• Type signature

• Assertion
int hello(int i){!
 pre: {i>10}!
 post: {result>0}!
}

Assertions = Types + Logical Formulae

• Building systems on the basis of precise contracts
• restrain defensive programming
• provide robustness

[Bertrand Meyer,1992]

Design by Contract

Global Type User Agent

 Command

Instrument

Command

 Response

 Response

User ! Agent : s1(Command).
Agent ! Instrument : s2(Command).
Instrument ! Agent : s1(Response).
Agent ! User : s3(Response)

A theory of DbC for concurrency

Bocchi,Honda,Tuosto,Yoshida@CONCUR’10
“A theory of Design by Contract for Distributed Multiparty Interactions”

Global Type User Agent

 Command

Instrument

Command

 Response

 Response

User � Agent : s1(xc : Command){xc ⇥= reset}.
Agent � Instrument : s2(xcc : Command){xcc = xc}.
Instrument � Agent : s1(xr : Response).
Agent � User : s3(xrr : Response){xrr = xr}

Global Assertion
xc ≠ "reset"

User Agent

 xcc : Command

Instrument

 xc : Command

 xr : Response

 xrr : Response

xcc = xc

xrr = xr

A theory of DbC for concurrency

Bocchi,Honda,Tuosto,Yoshida@CONCUR’10
“A theory of Design by Contract for Distributed Multiparty Interactions”

Global Type
Global Assertion

• Participants have different views of the contract

• Responsibilities spread among the participants

is this predicate a
pre-condition or a

post-condition?

xc ≠ "reset"

User Agent

 xcc : Command

Instrument

 xc : Command

 xr : Response

 xrr : Response

xcc = xc

xrr = xr

• e.g., a predicate associated to an interaction is

• a pre-condition for the receiver

• a post-condition for the sender

A theory of DbC for concurrency

x3 > x1

Alice Bob Carol

 x1 : int

 x2 : int

 x3 : int

Rethinking realizability
• Is this a good choreography?

• No, Carol does not have enough information to fulfil her obligation

Rethinking realizability
• Is this a good choreography?

• Yes, Carol knows the variables in the predicate she must guarantee

x3 > x2

Alice Bob Carol

 x1 : int

 x2 : int

 x3 : int

x2 > x1

• Is this a good choreography?

x1 ≤ x2 ≤ 10

Alice Bob

 x1 : int
0 < x1

 x2 : int

Rethinking realizability

• No, Bob may “find” his obligation unsatisfiable

x1 ≤ x2 ≤ 10

Alice Bob

 x1 : int
0 < x1 ≤ 10

 x2 : int

Rethinking realizability
• Is this a good choreography?

• Yes, there is always a solution to the constraint Bob must guarantee

• We want to prevent:

• that a participant does not have enough information to make correct choices

• that a participant has no other alternatives than violating the contract

Rethinking realizability

Bocchi,Lange,Tuosto@ICE’11,SACS’12
Amending Contracts for Choreographies

x3 > x1

Alice Bob Carol

 x1 : int

 x2 : int

 x3 : int

History Sensitivity:  
“a predicate only contains variables  
 that are known to the sender”

Temporal Satisfiability:  
“a process can find a valid forward
path at each interaction point”

x1 ≤ x2 ≤ 10

Alice Bob

 x1 : int
0 < x1

 x2 : int

x3 > x2

Alice Bob Carol

 x1 : int

 x2 : int

 x3 : int

x2 > x1

x1 ≤ x2 ≤ 10

Alice Bob

 x1 : int
0 < x1 ≤ 10

 x2 : int

[Apt, Francez & Katz, POPL’87]!
Similar to feasibility in

Projecting assertions
• Projection - build the strongest set of preconditions for each role 
 

?(Buyer, (pay : Int)){pay � cost}.end

9cost .cost > 10 ^ pay � cost

assertion environment

typing environment

session environment

Typing (some ideas…)

• Soundness : the behaviour of the system can be  
 mimicked by the types

• Decidability of type-checking depends on the logics
(e.g., some fragment of Presburger arithmetic)

• Completeness : if a process is well-behaved then it can  
 be typed (for a class of processes that do not “get stuck”  
 at a session initiation)

Properties

Static typing
type check!

project!
type check!global

type

local  
type

program

local  
type

local  
type

program

type check!
program

If all programs are well typed then the system is well behaved
(communication safety, session fidelity, progress)If all programs are well typed then the system is well behaved

type check!

project!
type check!global

type

local  
type

program

local  
type

local  
type

program

program

Static typing

trusted environment

untrusted environment 
dynamically checked

runtime
monitor

• Monitors between trusted network and untrusted apps
• drop violating incoming/outgoing messages

• ensure interoperability (no access to source code)

Monitoring with MPST

Bocchi,Chen,Demangeon,Honda,Yoshida@FORTE’13
Monitoring Networks through Multiparty Session Types

Run-time monitoring

routing information

specification (with assertions)

Properties (1/2)
Safety

a monitored process satisfies its specification

a monitored network satisfies its (global) specifications

Properties (2/2)
Transparency

a well-behaved monitored process (resp. network)  
remains so when monitored

• It allows mixed network with statically checked processes
• Extended with time [Neykova,Bocchi,Yoshida@BEAT’14]
• Transparency may not hold in the timed scenario…why?

• MPSTs extensions

• Design by Contract

• Beyond static typing

• Relationship with automata

• Time

• Realizability

Agenda

MPST & CFSM

Deniélou,Yoshida@ICALP’13
“Multiparty Compatibility in Communicating Automata:  
Characterisation and Synthesis of Global Session Types.”

basic = deterministic, directed, no mixed state
multiparty compatible = in all reachable stable
states, all possible (I/O) action can be matched with
a complementary (O/I) action of the rest of the system
after some 1-bounded executions

MPST, Automata & time

Timed Multiparty Session Types 
Bocchi,Yang,Yoshida@CONCUR’14

Time-sensitive choreographies
•  Protocol specification: deadlines, timeouts, repeated constraints, …!

•  Web Services: “Reconnect no more than twice every four minutes …”!
 [Twitter Streaming API]!

•  Sensor Networks (on busy waiting): “Main sources of energy inefficency in Sensor
Networks are collisions and listening on idle channels” [Ye, Heidemann & Estrin, 2002]!

}W
(send immediately)

iterate

Master

<task>

⊕

Worker Aggregator

<data>

MORE<data>

MORE<task>

STOP<data>

STOP

x = 0

x = 2L+W, x := 0

L ≤ 0 < L+1, y := 0

y ≤ W

0 ≤ x ≤ D

x := 0
y = 2L+D

y = 2L+D

3L+W+D ≤ z

3L+W+D ≤ z

 x, y, z := 0

Delays (in milliseconds)
L = 400 (latency)
W = 300,000 (sampling time)
D = 2000 (decision time)

x y z

• Each role owns a local clock

• All clocks synchronised at the beginning of the session

• Thereafter time flows at the same pace for all participants

• Send/receive actions guarded by constraints on clocks

• Clocks can be reset when sending or receiving

Time model

Timed MPST
G ::= p ! q : {lihSii{Ai, A

0
i}.Gi}i2I | µt.G | t | end

µt. M ! W : htaski {x = 0, ;, L  y  L+ 1, y}.
W ! M : hdatai {y  W, ;, x = 2L+W, x}.
M ! A : {MOREhdatai {x  D, ;, z � 3L+W +D, z}.

M ! W : MOREhtaski {x  D, x, y = 2L+D, y}.
t ,

STOPhdatai {x  D, x, z � 3L+W +D, ;}.
M ! W : STOP {x  W, x, y = 2L+D, ;}.
end

}

Separated semantics

x = 0 
y = 0	

z = 0

x = 0 
y = 0	

z = 0

L x = L  
y = L	

z = L

x = L  
y = 0	

z = L

• Actions (send, receive, “storage into queues”) take no time
• Time is modelled separately as time actions

µt. M ! W : htaski {x = 0, ;, L  y  L+ 1, y}.
W ! M : hdatai {y  W, ;, x = 2L+W, x}.
M ! A : {MOREhdatai {x  D, ;, z � 3L+W +D, z}.

M ! W : MOREhtaski {x  D, x, y = 2L+D, y}.
t ,

STOPhdatai {x  D, x, z � 3L+W +D, ;}.
M ! W : STOP {x  W, x, y = 2L+D, ;}.
end

}

…

Specified semantics

Specified semantics

Specified semantics

Rethinking realizability
• Is this a good choreography?

p ! q : hInti{x > 3, ;, y = 4, ;}.end

• No, constraints may become unsatisfiable for q at
some point

xp = 0 
xq = 0

xp = 5 
xq = 5

5 xp = 5 
xq = 5

pq!Int

p ! q : hInti{x > 3 ^ x  4, ;, y = 4, ;}.end

p ! q : hInti{x > 3, ;, y � 4, ;}.end

Feasibility : “a process can find a valid forward path until it reaches the end”

Rethinking realizability

• Some feasible alternatives…

p ! q : hInti{x > 3, ;, y = 4, ;}.end

• Not feasible

• Is this a good choreography?

p ! q : hInti{xp < 3 _ xp > 3, xq < 3 _ xq > 3}.G

Wait-freedom: The constraint of each receive action must not admit, as a solution,
a time which is earlier than some solution of the corresponding send action. !

Rethinking realizability

• No, it may lead to inconsistent implementations

A (very) simple timed calculus

• Session pi-calculus +delay:

Typing (some ideas…)
typing environment

session environment

virtual clock

�`PB{ci:(⌫i+t,Ti)}i2I

�`delay(t).PB{ci:(⌫i,Ti)}i2I
[Delay]

j2I �`e:Sj ⌫|=�j � ` P B �,c:([�j 7!0]⌫,Tj)
� ` c[p]Cljhei;P B �,c:(⌫,p�{lihSii{�i,�i}.Ti}i2I)

[Select]

c : (⌫, T)

Properties
• Verification of real-time interactions with Multiparty Session Types

• time-error freedom: interactions are punctual
• time-progress: each reachable states is not a deadlock state and

time can diverge (no Zeno)

Theorem (Time-error freedom) If � ` P B�, and P �!⇤ P 0

then P 0 6= error

Timed MPST & CTA

Bocchi,Wang,Yoshida@CONCUR’14
“Timed Multiparty Session Types”

Theorem (Soundness and completeness) (1) Let G be projectable then

A(G) is basic and multiparty compatible. Furthemore with a specified seman-

tics G ⇡ A(G). (2) If C is basic, multiparty compatible and with a specified

semantics then there exists G such that C ⇡ A(G).

Timed MPST & CTA

Bocchi,Wang,Yoshida@CONCUR’14
“Timed Multiparty Session Types”

Theorem (Progress and liveness of CTA) If C is basic, multiparty compat-

ible and with a specified semantics and there exists a feasible G s.t. C ⇡ A(G),

then C satisfies progress and liveness.

• Progress: each reachable state is non-deadlock and allows time divergence

• Liveness: a final state can be reached from all reachable states

Bocchi,Lange,Yoshida@CONCUR’15
“Meeting Deadlines Together”

• More permissive notion of feasibility, synthesis, more properties

Wrapping up
• Practical enough for a prototype 
 
 

• Several aspects of current work uncritical for wide use

• Separated semantics

• Semantics closer to automata models than real world

• Very prescriptive timing in choreographies

• Inflexible (strictly static) definition of delays in programs

Neykova,Bocchi,Yoshida@BEAT’14
“Timed Runtime Monitoring for Multiparty Conversations”

Future work
• Time-sensitive protocol design and implementation  

EPSRC - EP/N035372/1

• expressiveness

• set flexible schedules for the timing of actions

• support run-time adjustments

• tractability

• practicality

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N035372/1

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N035372/1

• MPSTs extensions

• Design by Contract

• Beyond static typing

• Relationship with automata

• Time

• Realizability

Agenda

Back to choreographies
• Are all choreographies realisable as the composition

of concurrent processes ?

• Choreographies and realisations are sets of traces

• Correct realisation (for now)

Traces(R) ✓ Traces(C)

Realizability

1

2

3

AB!U1 , AB?U1 , BA!U2 , BA?U2 , CA!U3 , CA?U3• What we want :

Realizability
AB!U1 , AB?U1 , BA!U2 , BA?U2 , CA!U3 , CA?U3• What we want :

AB!U1

AB?U1 BA!U2

BA?U2 CA?U3 CA!U3

Realizability
AB!U1 , AB?U1 , BA!U2 , BA?U2 , CA!U3 , CA?U3• What we want :

CA!U3, AB!U1 , AB?U1 , BA!U2 , BA?U2 , CA?U3• What we may get :

AB!U1

AB?U1 BA!U2

BA?U2 CA?U3 CA!U3

Realizability with MPST

AB!U1 , AB?U1 , BA!U2 , BA?U2 , CA!U3 , CA?U3

• You cannot model the choreography that only allows trace  
 
 
using global types

• E.g., A ! B : hU1 i. B ! A : hU2 i. C ! A : hU3 i. end

also allows CA!U3, AB!U1 , AB?U1 , BA!U2 , BA?U2 , CA?U3

• Another example, that we have already seen is:

G ::= M ! W : htaski.
W ! A{ ok : W ! A : hdatai. A ! M : hresulti.end,

stop : A ! M : herror codei.end }

which is not projectable (on M)

• Projectable global types model realizable choreographies:
Realizable

Realizability with MPST

it would be nice!

Projectable Realizable

yes

References
 Design by Contract
• [Bocchi et al.@CONCUR’10] A theory of Design by Contract for

Distributed Multiparty Interactions
• [Bocchi,Demangeon,Yoshida@TGC’13] A Multiparty Multi-Session

Logic. (extension with persistent variables)
• [Bocchi,Demangeon@PLACES’13] Embedding Session Types in HML

Multiparty + Time!
• [Bocchi,Yang,Yoshida@CONCUR’14] Timed Multiparty Session Types
• [Neykova,Bocchi,Yoshida@BEAT’14] Timed Runtime Monitoring for

Multiparty Conversations
• [Bocchi,Lange,Yoshida@CONCUR’15] Meeting Deadlines Together

References
Dynamic Monitoring!
• [Bocchi et al.@FORTE’13] A theory of Design by Contract for

Distributed Multiparty Interactions
• [Chen et al.@TGC’13] Monitoring Networks through Multiparty Session

Types.

Automata!
• [Deniélou,Yoshida@ESOP’12] Multiparty Session Types Meet

Communicating Automata
• [Deniélou,Yoshida@ICALP’13] Multiparty Compatibility in Communicating

Automata: Characterisation and Synthesis of Global Session Types
• [Lange,Tuosto,Yoshida@POPL’15] From communicating machines to

graphical choreographies
• [Bocchi,Lange,Yoshida@CONCUR’15] Meeting Deadlines Together

References
• Mobility Reading Group’s home page http://mrg.doc.ic.ac.uk !

 Binary !
• [Takeuchi,Honda,Kubo@PARLE’94] An Interaction-Based Language

and its Typing System
• [Honda,Vasconcelos,Kubo@ESOP’98] Language Primitives and Type

Disciplines for Structured Communication-based Programming

 Multiparty
• [Honda,Yoshida,Carbone@POPL’08] Multiparty asynchronous session types
• [Bettini et al.@CONCUR’08] Global Progress in Dynamically Interleaved

Multiparty Sessions
• [Castagna, Dezani-Ciancaglini, Padovani@FTDS’12] On Global Types and

Multi-Party Sessions
• [Deniélou,Yoshida@POPL’11] Dynamic multirole session types
• [Coppo et al.@SFM’15] Gentle Introduction to Multiparty Asynchronous

Session Types

http://mrg.doc.ic.ac.uk

References
 Others
• [Deniélou,Yoshida@POPL’11] Dynamic Multirole Session Types.
• [Beljeri,Yoshida@PLACES’08] Synchronous Multiparty Session types

• [Kouzapas,Yoshida@CONCUR’13] Globally Governed Session
Semantics

• [Honda et al@COB’12] Structuring Communication with Session Types
• [Bocchi,Melgratti,Tuosto@ESOP’15] Resolving Non-Determinism in

Choreographies
Scribble!

• [Honda et al@COB’12] Structuring Communication with Session Types
• [Yoshida et al.@TGC’13] The Scribble protocol language  
 

