
Compositional Asynchronous Timed Refinement

Massimo Bartoletti1, Laura Bocchi2, and Maurizio Murgia2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 University of Kent, Canterbury, UK

Abstract. We develop a theory of refinement on timed asynchronous systems, in the
formal setting of Communicating Timed Automata. In particular, we introduce three
notions of refinement for systems of CTAs, which are compositional (i.e., the refine-
ment of a system is obtained by refining its components) and decidable. We establish
conditions under which our refinements preserve good behavioural properties of sys-
tems, like e.g. their global and local progress. Our theory can be used to refine abstract
models into concrete ones: our preservation results guarantee that, under some decid-
able conditions, the properties of the abstract model will still hold in the concrete one.
All our results build upon new semantics of CTAs which faithfully model the behaviour
of real-time primitives available in mainstream programming languages.

1 Introduction
Formal reasoning and verification of real-time computing systems are supported by
well-established theories and frameworks based, for instance, on timed automata [1,31,
42]. In the standard theory of timed automata, communication between components is
synchronous, i.e. a component can send a message only when its counterpart is ready
to receive it. However, in many concrete distributed systems, e.g. web-based systems,
communication is asynchronous, and it is often implemented through middlewares that
support for FIFO messaging [2,39]. These systems can be modelled as Communicating
Timed Automata (CTA) [29], an extension of timed automata featuring asynchronous
communication. Asynchrony comes at the price of an increased complexity: interesting
behavioural properties, starting from reachability, become undecidable in the general
case, both in the timed [21] and in the untimed [13] setting. Several works propose
restrictions of the general model, or sound approximate techniques, for the verification
of systems of CTAs [10, 21]. However, all these works leave one important problem
unexplored: the link between asynchronous timed models and their implementations.

The relationship between models at different levels of abstraction (and ultimately,
between models and implementations) is usually expressed as a refinement relation.
This notion has been used, for instance, to create abstract models which enhance ef-
fectiveness of verification techniques (e.g., abstraction refinement [24, 40], time-wise
refinement [38]), or to concretize abstract models into implementations [20, 22].

Existing notions of refinement between timed models are based on synchronous
communications [5, 17, 25, 32]. Asynchronous refinement has been investigated only
in the untimed setting, under the name of subtyping between session types [6, 19, 23,
33–35]. Remarkably, it was recently shown that asynchronous subtyping is undecid-
able [14, 30] in the untimed setting. To our knowledge, a notion of refinement in an
asynchronous and timed setting has only been studied in [11], as a relationship between
timed models (timed multiparty session types) and their implementations (processes in

an extended π-calculus). However, the work in [11] has two main limitations. First, the
model considered in [11] is not as general as Communicating Timed Automata. In par-
ticular it does not allow to express mixed states, namely states with both sending and
receiving outgoing transitions. Mixed states are, in fact, crucial to capture common pro-
gramming patterns like timeouts [36], used e.g. by a server which waits for a message,
and, if nothing is received within a certain deadline, sends a timeout notification. This
pattern is supported, for example, by the receive/after construct of Erlang [3], and by
some (untimed) session typed calculi [6, 16, 28]. The second limitation of [11] is that
in its calculus, the timing of an action is scheduled to be a precise point in time, which
is defined statically. Hence, the calculus cannot model e.g., real-world blocking receive
primitives.

To be usable in practice, a theory of refinements for timed asynchronous systems
should support for real-world programming patterns (e.g., timeouts à la Erlang), and
feature decidable notions of refinement. Further, refinement should be compositional
(namely, a system can be refined by refining its single components independently), and
preserve desirable properties (e.g., progress) of the abstract system being refined.

1.1 Contributions
We develop a theory of refinement on timed asynchronous systems, in the formal setting
of Communicating Timed Automata. In particular, we introduce three notions of refine-
ment for systems of CTAs, which are compositional (i.e., the refinement of a system
is obtained by refining its components) and decidable. We establish conditions under
which our refinements preserve good behavioural properties of systems, like e.g. their
global and local progress. Our theory can be used to refine abstract models into con-
crete ones: our preservation results guarantee that, under some decidable conditions,
the properties of the abstract model will still hold in the concrete one. All our results
build upon new semantics of CTAs which faithfully model the behaviour of real-time
primitives available in mainstream programming languages.

In the rest of this section we give a detailed outline of our contributions.

New semantics of CTAs. Our first contribution is a new semantics of systems of CTAs,
both in the non-urgent and urgent versions (Definitions 4 and 6, respectively). These se-
mantics depart from the original semantics in [29], which always allows time to elapse,
even when this prevents the system from performing any available action. For instance,
consider the following two CTAs, which we call As (for sender) and Ar (for receiver):

As : q0 q1
sr!a(x ≤ 2) Ar : q′0 q′1

sr?a(y ≤ 3)

The CTA As models a participant s who wants to send a message a to another par-
ticipant r. The guard x ≤ 2 on the edge between q0 and q1 is a time constraint, stating
that the message must be sent within 2 time units. Dually, Ar models a participant r
who wants to receive the message a from s within 3 time units.

In the semantics of [29], a possible (partial) computation of the system composed
of As and Ar would be the following:

((q0, q
′
0), (ε, ε), {x, y 7→ 0}) 5−→ ((q0, q

′
0), (ε, ε), {x, y 7→ 5})

2

receive {s,a1} -> Body1
. . .

{s,ak} -> Bodyk
after 10 -> p!b

q0 · · ·

q1

qk

q′

sr?
a1(

x <
10)

sr?ak (x < 10)

rp!b(x = 10)

Fig. 1: The receive/after pattern of Erlang (left), and the corresponding CTA (right).

The tuple at the LHS of the arrow is the initial configuration of the system, where both
CTAs are in their initial states; the pair (ε, ε) means that the communication queues
between r and s are empty (in both directions); the last component means that the
clocks x and y are set to 0. The label on the arrow represents a transition of the system,
which corresponds to a delay of 5 time units.

Note that this computation does not correspond to any reasonable behaviour of the
modelled protocol.3 What we would expect, is that the send action is performed before
the deadline expires. Our semantics faithfully models this intuition, by requiring that
the elapsing of time does not prevent the send action in As to be performed. This means
that we can procrastinate the send for 2 time units, but then time cannot pass any longer,
and the only possible action is the send:

((q0, q
′
0), (ε, ε), {x, y 7→ 0}) 2−−−→ ((q0, q

′
0), (ε, ε), {x, y 7→ 2})

sr!a−−−→ ((q1, q
′
0), (a, ε), {x, y 7→ 2})

Formally, in Theorem 1 we prove that our semantics enjoys a form of persistency, which
is asymmetric in the way it deals with send and receive actions. More specifically, if
there is at least one receive action that is guaranteed to be enabled in the future (i.e.
a message is ready in its queue and its time constraint is still satisfiable now or at
some point in the future) then time passing has to preserve at least one these guaranteed
receive actions. Instead, time passing can disable all send actions, but only if it preserves
at least one guaranteed receive action.

Our semantics extends the one proposed in [10] to the general case of CTAs with
mixed states, that is states which have both sending and receiving outgoing edges.
Mixed states are a practically relevant and non-trivial feature of CTAs. Consider, for
instance, the snippet of code in Figure 1 (left), which shows a typical usage of the
receive/after construct in Erlang. The code snippet attempts to receive a message
matching one of the patterns {s,a1},. . . ,{s,ak}, where s represents the identifier of
the sender, and a1,. . . ,ak are the message labels. If no such message arrives within 10
milliseconds, then the process in the after branch is executed. This process sends
immediately a message b to process p.

This behaviour can be modelled by the CTA in Figure 1 (right). Note that the state
q0 is mixed, because it has both receiving outgoing edges (labelled sr?ai(x < 10)),

3 The formal framework in [29] allows to rule out these executions at a later stage, using final
states and languages. See Section 6 for further discussion.

3

and one sending edge (labelled rp!b(x = 10)). When embedded in a system, this CTA
will attempt to receive one of the messages ai within 10 time units; if no message is
received by that deadline, it will send message b to participant p at time 10.

This behaviour can not be modelled either by the semantics in [10], because it
only deals with CTAs without mixed states, nor by timed multiparty session types
of [11]. Actually, in [11] the interactions of each participant are described in terms
of two constructs: selection, which corresponds to an internal choice of send actions,
and branching, which corresponds to an external choice of receive actions. The be-
haviour of mixed states captured by our semantics falls somewhere in between internal
and external choices, so it is not expressible in the setting of [11].

Besides mixed states, there is also another practical aspect that is not well cap-
tured by the existing semantics of CTAs. We illustrate the issue through the Erlang-like
process receive a -> end, which waits for a message a (potentially forever), and
terminates after receiving it. Intuitively, this process could be modelled as the CTA Ar

below on the left (the CTA As on the right is its communication partner):

Ar : q0 q1
sr?a(true) As : q′0 q′1

sr!a(x = 0)

A possible (partial) computation of the system (Ar,As) is:

((q0, q
′
0), (ε, ε), {x 7→ 0}) sr!a−−−→ ((q0, q

′
1), (ε, a), {x 7→ 0}) one billion years−−−−−−−−−→

The semantics of CTAs in [10, 29] would allow the above computation, whereas
receive primitives commonly used in mainstream programming languages have an ur-
gent behaviour, i.e. they unblock as soon as the expected message is available. These
include non-blocking input primitives (e.g., WaitFreeReadQueue.read() of Real-
Time Java [15], receive...after 0 of Erlang), blocking primitives (e.g., WaitFree
ReadQueue.waitForData() of Real-Time Java and receive...after infinity

of Erlang), and blocking primitives with deadline (e.g., receive...after d of Erlang).
To properly model the behaviour of these primitives, we also provide CTAs with an

urgent semantics (Definition 6), that forces receive actions as soon as the expected mes-
sage is available. The urgent semantics refines the non-urgent semantics, in the sense
that the former allows a subset of the executions of the latter (Theorem 9). Interest-
ingly enough, if a system of CTAs enjoys progress in the non-urgent semantics, then
it will also enjoy progress in the urgent one (Theorem 10) under a minor and common
assumption on the syntax of the time constraints (Definition 20).

Refinements. We propose three refinements of systems of CTAs. These refinements are
compositional, in the sense that they result from the point-wise refinements of the single
CTAs in the system. Compositionality is important as it enables modular development.
It allows, for example, different organisations to contribute to a system by implement-
ing only a part, independently. Our point-wise refinements (Definition 8) focus on the
timing of each action: basically, the refinement of a CTA A is a CTA A′ which has the
same structure of A, but different constraints for the timing of send and receive actions.
More specifically:

4

– In the first refinement, which we call send/receive restriction, the time constraints
of both send and receive actions can be restricted4. This reflects practical scenarios
in which the programmer sets narrower time windows than the specification.

– The second refinement, which we call send restriction/receive procrastination is
the special case of the first one where the constraint of receive actions is required
to respect the final deadline. Taken to the extreme, this refinement corresponds to
implementing receive actions with blocking primitives, in the very last moment
when the receive can be performed.

– In the asymmetric restriction refinement, the constraints for send actions can be
restricted, while those for receive actions can be relaxed. This refinement seems
the natural (timed) extension of the one used for subtyping on session types [23]5.

Preservation upon refinements. When refining a specification, one would like the con-
crete model to enjoy the same behavioural properties as the abstract one. For instance,
in the realm of session types it is usually required that refining a type into a process
preserves progress (i.e., execution never deadlocks), and enjoys session fidelity (i.e., the
process does not add actions that are not planned by the type [9]). By adapting these
properties to our timed and asynchronous setting, we obtain three properties: timed
behaviour preservation (Definition 12), and preservation of global and local progress
(Definitions 13 and 14, respectively). Behaviour preservation is defined in terms of
timed similarity [18], and it ensures that the observable behaviour of the abstract sys-
tem simulates that of the concrete one. Progress preservation requires that refinement
will not introduce deadlocks, either globally (i.e., the whole system gets stuck), or lo-
cally (i.e., a single CTA gets stuck).

Our first result is negative: the considered refinements do not preserve behaviour
nor progress, even in the simple case where mixed states are ruled out (Theorem 3).
This witnesses the difficulty of implementing a system which, at the same time, en-
joys progress and is coherent with the specification. The problem is particularly serious
for asymmetric refinement. Indeed, while in the untimed setting the contravariant re-
finement of inputs (i.e. adding branches to external choices) corresponds to offering
more options to the context, in the timed setting relaxing guards on receive actions
corresponds to deliberately taking more time for performing actions. This ‘selfish’ be-
haviour, intuitively, causes the protocol being changed, instead of being refined, and the
new protocol may no longer enjoy progress (as we will show in Example 14).

One of our main results is that the other refinements preserve behaviour and progress
under two quite general conditions on sending and receiving edges (Definitions 16
and 17, respectively). Although these conditions are undecidable in the general case
(Theorems 4 and 5), send restriction/receive procrastination enjoys the condition on
receiving edges by construction, and the condition on sending edges can be approxi-
mated by a decidable condition on point-wise refinements (Theorem 8).

4 This kind of refinement was the one used in [11] to relate session types and process calculi.
5 In the line of work that follows [23], subtyping is seen as co-variant with respect to output

behaviour and counter-variant w.r.t. input behaviour. Namely, a refining model is able to re-
ceive/handle a larger (or equal) set of inputs, and to send a smaller (or equal) set of outputs.
This asymmetry still allows one to substitute a part of a system with its refinement while
preserving the system’s behaviour and properties.

5

1.2 Structure of the paper
In Section 2 we introduce our semantics of systems of CTAs, both in the non-urgent
and in the urgent version. In Section 3 we define our CTA refinements. In Section 4
we define the properties of refinements we are interested in: behavioural preservation,
and global/local progress preservation; then, in Section 5 we state the preservation re-
sults. Section 6 concludes and discusses related work. The proofs of our statements and
additional examples are in the appendix.

2 Communicating Timed Automata
In Section 2.1 we recap the basic definitions related to CTAs. In Sections 2.2 and 2.3
we introduce two semantics for CTAs, in the non-urgent and urgent versions.

2.1 Background
We assume a finite set P of participants, ranged over by p, q, r, s, . . . , and a finite
set A of messages, ranged over by a, b, . . . We define the set C of channels as C =
{pq | p, q ∈ P and p 6= q}. We denote with A∗ the set of finite words on A (ranged over
by w, w′, . . .), with ww′ the concatenation of w and w′, and with ε the empty word.

Clocks and guards. Given a (finite) set of clocks X (ranged over by x, y, . . .), we
define the set ∆X of guards over X (ranged over by δ, δ′, . . .) as follows:

δ ::= true | x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2 (c ∈ Q≥0)

Clock valuations. We denote with V = X → R≥0 the set of clock valuations on X .
Given t ∈ R≥0, λ ⊆ C, and a clock valuation ν, we define the clock valuations:

– ν + t as the valuation mapping each x ∈ X to ν(x) + t.
– λ(ν) as the valuation which resets to 0 all the clocks in λ ⊆ X , and preserves to
ν(x) the values of the other clocks x 6∈ λ.

Furthermore, given a set K of clock valuations, we define the past of K as the set
of clock valuations ↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K}.
Semantics of guards. We define the function J·K : ∆X → ℘(V) as follows:

JtrueK = V Jx ≤ cK = {ν | ν(x) ≤ c} Jδ1 ∧ δ2K = Jδ1K ∩ Jδ2K

J¬δK = V \ JδK Jc ≤ xK = {ν | c ≤ ν(x)}

Actions. We denote with Act = C × {!, ?} × A the set of untimed actions, and with
TActX = Act×∆X × 2X the set of timed actions (ranged over by `, `′, . . .). A (timed)
action of the form sr!a(δ, λ) is a sending action: it models a participant s who sends
to r a message a, provided that the guard δ is satisfied. After the message is sent, the
clocks in λ ⊆ X are reset. An action of the form sr?a(δ, λ) is a receiving action:
if the guard δ is satisfied, r receives a message a sent by s, and resets the clocks in
λ ⊆ X afterwards. Given ` = pr!a(δ, λ) or ` = qp?a(δ, λ), we define: (i) msg(`) = a,
(ii) guard(`) = δ, (iii) reset(`) = λ, (iv) subj(`) = p, and (v) act(`) is pr! (in the first
case) or qp? (in the second case). We omit δ if true, and λ if empty.

6

CTAs. A communicating timed automaton A is a tuple of the form (Q, q0, X,E), where
Q is a finite set of states, q0 ∈ Q is the initial state, X is a set of clocks, and E ⊆
Q × TActX ×Q is a set of edges, such that the set

⋃
{subj(e) | e ∈ E} is a singleton,

that we denote as subj(A). We write q `−→ q′ when (q, `, q′) ∈ E. We say that a state is
sending (resp. receiving) if it has some outgoing sending (resp. receiving) edge. We say
that A has mixed states if it has some state which is both sending and receiving.

Systems of CTAs. Systems of CTAs (ranged over by S, S′, . . .) are sequences (Ap)p∈P ,
where each Ap = (Qp, q0p, Xp, Ep) is a CTA, and (i) for all p ∈ P , subj(Ap) = p;
(ii) for all p 6= q ∈ P , Xp ∩Xq = ∅ = Qp ∩Qq.

Configurations. CTAs in a system communicate via asynchronous message passing on
FIFO queues, one for each channel. For each couple of participants (p, q) there are two
channels, pq and qp, with corresponding queues wpq (containing the messages from
p to q) and wqp (messages from q to p). The state of a system S, or configuration, is
a triple γ = (q,w, ν) where: (i) q = (qp)p∈P is the sequence of the current states
of all the CTAs in S; (ii) w = (wpq)pq∈C with wpq ∈ A∗ is a sequence of queues;
(iii) ν :

⋃
p∈P Xp → R≥0 is a clock valuation. The initial configuration of S is γ0 =

(q0, ε, ν0) where q0 = (q0p)p∈P , ε is the sequence of empty queues, and ν0(x) = 0
for each clock x ∈

⋃
p∈P Xp.

2.2 A new semantics for systems of CTAs
We introduce a new semantics of systems of CTAs that generalizes Definition 9 in [10]
to account for mixed states. To this aim, we first give a few auxiliary definitions. We
start by defining when a guard δ′ is satisfiable later than δ in some clock valuation ν.

Definition 1 (Later satisfiability). For all ν, we define the relation ≤ν as:

δ ≤ν δ′ ⇐⇒ ∀t ∈ R≥0 : ν + t ∈ JδK =⇒ ∃t′ ≥ t : ν + t′ ∈ Jδ′K

Example 1. In the initial clock valuation ν0, we have that:

(x ≤ 2) ≤ν0 (x ≤ 3) (x ≤ 2) ≤ν0 (x = 3) (x ≤ 3) 6≤ν0 (x ≤ 2)

The relation≤ν is reflexive, transitive and total, but it is not antisymmetric: e.g., for
all c, c′ ∈ R≥0, we have that (x > c) ≤ν (x > c′) ≤ν (x > c), even if c 6= c′.

Lemma 1. The relation ≤ν is a total preorder, for all clock valuations ν.

Proof. See page 28.

The following lemma states some basic properties of later satisfiability.

Lemma 2. For all guards δ, δ′, for all t ∈ R≥0, and c, d ∈ Q≥0:

1. (x ≤ c) ≤ν (x ≤ c+ d) ⇐⇒ d ≥ 0
2. δ ∧ δ′ ≤ν δ′
3. δ ≤ν δ′ =⇒ δ ≤ν+t δ′

Proof. See page 28.

7

q0 q1

q2 q3

pr!a(x < 2)

p
r
!b
(x
<

3
) ps!b(x

<
5)

A1

q0 q1

q2

pr!a(x ≤ 2)

p
s
!b
(x

=
2
)

A2

q0 q1

q2 q3

rp?a(x < 2)

s
p
?
b
(x
<

3
) ps!c(x

≥
3)

A3

q0 q1

q2 q3

rp?a(x < 2)

r
p
?
b
(x
<

3
) ps!c(x

≥
3)

A4

Fig. 2: CTAs for Example 2.

Definition 2 (Future-enabled, latest-enabled, and deferrable edge). In a configura-
tion (q,w, ν), we say that an edge (q, `, q′) ∈ Ep is:

– future-enabled iff: ∃t ∈ R≥0. ν + t ∈ Jguard(`)K.
– latest-enabled iff: ∀`′, q′′ : (q, `′, q′′) ∈ Ep =⇒ guard(`′) ≤ν guard(`)

and (q, `, q′) is future-enabled
– non-deferrable iff: ∃s, w′ : act(`) = sp?, wsp = msg(`)w′

and (q, `, q′) is future-enabled

An edge is future-enabled when its guards can be satisfied at some time in the future;
it is latest-enabled when not other edge (starting from the same state) can be satisfied
later than it. Note that the type of action (send or receive) and the co-party involved
are immaterial to determine future-enabled and latest-enabled edges. A receiving edge
is non-deferrable when the expected message is already at the head of the queue, and
there is some time in the future when it can be read. Note that an edge (q, sp?a(δ, λ), q′)
is deferrable when wsp = bw′ and a 6= b (i.e., the first message in the queue is not the
expected one). Non-deferrability is not affected by the presence of send actions in the
outgoing edges. It could happen that two receiving edges in a CTA are non-deferrable,
if both expected messages are in the head of each respective queue.

Example 2. Fix a configuration (q,w, ν) of some system that includes one of the CTAs
in Figure 2. The edge (q0, pr!b(x < 3), q2) of A1 is future-enabled iff ν(x) < 3; the
latest-enabled edge is (q0, ps!b(x < 5), q3) if ν(x) < 5, otherwise there are no latest-
enabled edges. Both outgoing edges of A2 are latest-enabled if ν(x) ≤ 2. In A3 we can
have two non-deferrable edges: (q0, rp?a(x < 2), q1) ifwrp = aw′rp and ν(x) < 2, and
(q0, sp?b(x < 3), q2) if wsp = bw′sp and ν(x) < 3. In A4, if wrp = aw′rp and ν(x) < 2,
then the edge (q0, rp?a(x < 2), q1) is non-deferrable. Otherwise, if wrp = bw′rp and
ν(x) < 3, then (q0, rp?b(x < 3), q2)) is non-deferrable. In this CTA, only one of the
two edges can be non-deferrable, as they both receive from r. If the head of the queue
wrp is neither a nor b, then A4 does not have non-deferrable edges.

The semantics of systems of CTAs is defined in terms of a timed transition system
between configurations.

Definition 3 (Timed LTS). A timed labelled transition system (in short, TLTS) is a
triple (Q,L,→), where Q is the set of states, L ⊇ R≥0 is the set of labels, and→⊆
Q× L×Q is the transition relation. We use α, β, . . . to range over L.

8

Definition 4 (Semantics of systems). Given a system S, we define the TLTS JSK =
(Q,L,→), where (i) Q is the set of configurations of S, (ii) L = Act ∪ R≥0, and
(iii) γ = (q,w, ν) α−→ (q′,w′, ν′) = γ′ holds when one of the following rules apply:

1. α = sr!a, (qs, α(δ, λ), q
′
s) ∈ Es, and

(a) q′p = qp for all p 6= s;
(b) w′sr = wsra and w′pq = wpq for all pq 6= sr;
(c) ν′ = λ(ν) and ν ∈ JδK;

2. α = sr?a, (qr, α(δ, λ), q
′
r) ∈ Er, and

(a) q′p = qp for all p 6= r;
(b) wsr = aw′sr and w′pq = wpq for all pq 6= sr;
(c) ν′ = λ(ν) and ν ∈ JδK;

3. α = t ∈ R≥0, and
(a) q′p = qp for all p ∈ P;
(b) w′pq = wpq for all pq ∈ C;
(c) ν′ = ν + t;
(d) for all p ∈ P , if some sending edge starting from qp is latest-enabled in γ, then

such edge is latest-enabled also in γ′;
(e) for all p ∈ P , if some edge starting from qp is non-deferrable in γ, then there

exists an edge starting from qp that is non-deferrable in γ′.

We write γ−→γ′ when γ α−→γ′ for some label α, and γ α−→ if γ α−→γ′′ for some configura-
tion γ′. We denote with −→∗ the reflexive and transitive closure of −→. We write γ 6−→p

when, in configuration γ, condition (3) is violated by the CTA p.

Rules (1), (2) and the first three items of (3) are the adapted from [10]. In particular,
(1) allows a CTA s to send a message a on channel sr if the time constraints in δ
are satisfied by ν; dually, (2) allows r to consume a message from the channel, if δ is
satisfied. In both rules, the clocks in λ are reset. Rule (3) models the elapsing of time.
Items (3a) and (3b) require that states and queues are not affected by the passing of
time, which is implemented by item (3c). Items (3d) and (3e) put constraints on when
time can pass. In particular, condition (3d) requires that time passing preserves latest-
enabled sending edges: this means that if the current state of a CTA has the option to
send a message (possibly in the future), time passing cannot prevent it to do so. Instead,
condition (3e) ensures that, if some expected message is already at the head of the
queue, time passing cannot prevent that message to be received.

The following lemma states that our semantics enjoys two basic properties of timed
systems, namely time determinism and time additivity [36].

Lemma 3. For all configurations γ, γ′, γ′′, and for all t, t′ ∈ R≥0, we have that:

γ t−→γ′ ∧ γ t−→γ′′ =⇒ γ′ = γ′′ (Time determinism)

γ t+ t′−−−→γ′ ⇐⇒ ∃γ̃ : γ t−→γ̃ ∧ γ̃ t
′
−→γ′ (Time additivity)

Proof. See page 28.

9

q0 q1

sr!a(x < 3)

sr!b(x < 2)

A5

q2 q3

sr?a(y ≤ 4)

sr?b(y = 5)

A6

q0 q1

rp?a(x < 4)

ps!b(x < 2)

A7

q0 q1

rp?a(x < 2)

ps!b(x < 4)

A8

q0 q1

rp?a(x = 2)

ps!b(x = 2)

A9

q0 q1

rp?a(3 ≤ x ≤ 4 ∧ 1 ≤ y ≤ 2)

ps!b(x ≤ 3 ∧ y ≤ 1)

A10

Fig. 3: A collection of CTAs, to illustrate the semantics of systems.

Note that our semantics does not enjoy persistency [36], because the passing of time
can suppress the ability to perform some actions. For instance, in the system composed
of the CTAs A5 and A6 in Figure 3, from the initial configuration we can delay for 2.5
time units, so disabling the action sr!b in A5 (this example is elaborated further later
in this section). However, our semantics enjoys a weaker persistency property, stated
by Theorem 1. More specifically, if a receive action is non-deferrable, then time passing
cannot suppress all receive actions: at least a non-deferrable action (not necessarily the
first one) always remains future-enabled after a time delay. Instead, time passing can
disable all send actions, but only if it preserves at least a non-deferrable receive action.
All this is possible unless some other CTA s blocks time.

Theorem 1 (Weak persistency). For all configurations γ, γ′:

γ t
′
−→ rp?−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t

′′
−→γ′′ ∧ (γ′′ sp?−−→ ∨ γ′′ 6−→s)

γ t
′
−→ pr!−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t

′′
−→γ′′ ∧ (γ′′ ps!−−→ ∨ γ′′ sp?−−→ ∨ γ′′ 6−→s)

Proof. See page 28.

Definition 5 (Maximal run). A run of a system S starting from γ is a (possibly infinite)
sequence ρ = γ1

t1−→ γ′1
α1−→ γ2

t2−→ · · · with γ1 = γ and αi ∈ Act for all i. We omit the
clause “starting from s” when γ = γ0. We call trace the sequence t1 α1 t2 · · · . For all
n > 0, we define the partial functions:

conf n(ρ) = γn delayn(ρ) = tn actn(ρ) = αn

We say that a run is maximal when it is infinite, or given its last element γn it never
happens that γn t−→ α−→, for any t ∈ R≥0 and α ∈ Act.

Examples. We show the peculiarities of our semantics through the CTAs in Figure 3.
First, consider the system composed of A5 and A6. A possible maximal run of

(A5,A6) from the initial configuration γ0 = ((q0, q2), ε, ν0) is the following:

γ0
2−−→ γ1 = ((q0, q2), (ε, ε), ν0 + 2) by (3)

sr!a−−→ γ2 = ((q1, q2), (a, ε), ν0 + 2) by (1)
1.5−−−→ γ3 = ((q1, q2), (a, ε), ν0 + 3.5) by (3)
rs?a−−−→ γ4 = ((q1, q3), (ε, ε), ν0 + 3.5) by (2)

10

The first delay transition is possible because there are no non-deferrable edges in A5 (as
both edges are sending), and the latest enabled edge (q0, sr!a(x < 3), q1), continues
to be such in ν0 + 2; further, in A6 there are no latest-enabled sending edges, and no
non-deferrable edges (since the queue sr is empty). Note that condition (3d) prevents
γ0 from making transitions with label t ≥ 3, since (q0, sr!a(x < 3), q1) is latest-
enabled in γ0, but it is not latest enabled in ν0 + t if t ≥ 3. The transition from γ1 to γ2
corresponds to a send action. The delay transition from γ2 to γ3 is possible because the
state of A5 is final, while the state q2 of A6 has a non-deferrable edge, (q2, sr?a(y ≤
4), q3), which is still non-deferrable at ν0+3.5. Note instead that condition (3e) prevents
γ2 from making a transition with t > 2, because no edge is non-deferrable in ν0+2+ t
if t > 2. Indeed, the last moment when the edge (q2, sr?a(y ≤ 4), q3) is future-enabled
is y = 4. Finally, the transition from γ3 to γ4 corresponds to a receive action.

In the following examples we only consider a single CTA at a time (the other CTAs
in the system are immaterial to our illustration).

Receive/send mixed states. The CTA A7 has mixed states, because the state q0 is both
sending and receiving. Also, the receive action is enabled for longer than the send ac-
tion. In the initial configuration γ0, the only latest-enabled edge is the receiving one,
and since the queue wrp is empty in γ0, it is also deferrable. Therefore, relatively to A7,
condition (3d) is satisfied in γ0 because the only sending edge is not latest-enabled, and
condition (3e) is satisfied because there are no non-deferrable edges.

Send/receive mixed states. The CTA A8 has also mixed states, but now it is the send
action to be enabled for longer than the receive action. This CTA has a latest-enabled
sending action in the initial configuration, i.e. (q0, ps!b(x < 4), q1). Hence, condi-
tion (3d) is satisfied in γ0 if and only if the delay t is less than 4. Condition (3e) is
satisfied in γ0 because there are no non-deferrable edges. In the configuration where A8

is at state q0, with wrp = a and ν(x) = 0, the CTA allows a delay t iff t < 2: later,
no edge would be non-deferrable, so condition (3e) would be violated. Note that, if the
message a is in the queue but it is too late to receive it (i.e., ν(x) ≥ 2), then the receive
action would be deferrable, and so a delay would be allowed — if condition (3d) is
respected. The behaviour of this CTA can be seen as a timeout: first it tries to receive a
message, and after the deadline it does something else (in this case, sends a message).

Mixed states with equal constraints. In A9, the deadlines on the two edges are equal:
hence, both edges are latest-enabled in the initial configuration γ0. Only condition (3d)
(on the sending edge) is taken into account in γ0, because the receiving edge is de-
ferrable in γ0. The condition requires the sending edge to remain latest-enabled, hence
time can elapse only up to 2 time units. Instead, in the configuration where A9 is in q0,
ν(x) = 0, and the message a is the head of wrp, then the receive edge is non-deferrable.
Also in this case, condition (3e) allows time to elapse only up to 2 time units.

Mixed states and multiple clocks. Finally, consider the CTA A10, which uses two
clocks, x and y. The guard on the receiving edge is not future-enabled from the initial
configuration. Hence, it is not latest-enabled as well, and so the only latest-enabled
edge is the sending one. To remain latest-enabled, its guard requires y ≤ 1: hence,
condition (3d) only allows time to pass up to 1 time unit. Consider now a configuration
γ1 where A10 is in state q0, queues are empty, ν(x) = 2, and ν(y) = 0. From γ1,

11

the guard on the receiving edge is future-enabled (i.e., after a delay 1), hence this edge
becomes the latest-enabled one. Condition (3d) is satisfied for all delays (since there
are no latest-enabled sending edges), and condition (3e) is satisfied as well (no edge is
non-deferrable, since queues are empty).

2.3 An urgent variant of the semantics

The semantics in Definition 4 does not force the receive actions to happen, unless time
passing prevents the CTA from receiving in the future (as shown in the third example
in Section 1.1). This behaviour, shared also with the semantics in [10,29], contrasts with
the actual behaviour of the receive primitive of Erlang, as well as the one of similar
primitives in mainstream programming languages: there, the primitive returns as soon
as a message is available.

We now introduce a variant of the semantics in Definition 4 which faithfully models
this behaviour. Technically, we make receive transitions urgent [12, 36] by forbidding
delays when a receiving edge is enabled and the corresponding message is at the head
of the queue. With this semantics, receiving edges model blocking primitives, that wait
for input in exactly the time window prescribed by the guard.

Below, we let Act? ⊆ Act be the set of input labels.

Definition 6 (Urgent semantics of systems). Given a system S, we define the TLTS
JSKu = (Q,L,→u), where Q is the set of configurations of S, L = Act ∪ R≥0, and
→u is defined as follows:

γ α−→uγ
′ ⇐⇒

{
γ α−→γ′ if α ∈ Act

γ t−→γ′ if α = t and ∀t′ < t, γ′′, α′ ∈ Act? : γ t
′
−→γ′′ =⇒ γ′′ 6 α

′
−−→u

The non-urgent and the urgent semantics are actually very similar: they differ only
in that in the urgent one we forbid time to pass when in the current configuration there is
a CTA that has some outgoing reading edges with enabled guard, and the corresponding
message waiting in the queue.

Example 3. Consider again the system (A5,A6) with the CTAs in Figure 3. According
to the non-urgent semantics, a possible run would be (recalling from Section 2.2):

γ0
2−−→ γ1

sr!a−−→ γ2
1.5−−−→ γ3

rs?a−−−→ γ4

Note that γ2 rs?a−−−→. Hence, the second clause of Definition 6 states that γ2 6 t−−→ for all
t > 0. Then, a maximal run of (A5,A6) under the urgent semantics would be:

γ0
2−−→u γ1

sr!a−−→u γ2
rs?a−−−→u γ

′
4 = ((q1, q3), (ε, ε), ν0 + 2)

We will relate the non-urgent and the urgent semantics in Section 5.5. Hereafter,
where not specified otherwise, we will refer to the non-urgent semantics.

12

Send/receive restriction Send restriction/receive procrastination Asymmetric restriction
A′ vsr A A′ vsrp A A′ va A

se
nd Jδ′K ⊆ JδK Jδ′K ⊆ JδK Jδ′K ⊆ JδK

re
ce

iv
e

Jδ′K ⊆ JδK Jδ′K ⊆ JδK ↓ Jδ′K = ↓ JδK Jδ′K ⊇ JδK

Table 1: Three point-wise refinements. The conditions apply to all edges (q, `, q′) ∈ E,
where f(q, `, q′) = `′, guard(`) = δ and guard(`′) = δ′.

3 Refinements
In this section we introduce our refinements for systems of CTAs. Our refinement re-
lations (i) are decidable6, (ii) produce refinements which model implementations with
concrete programming primitives, and (iii) reflect a modular engineering practice where
parts of the system are implemented independently, without knowing how other parts
are implemented. This last goal is attained by defining system refinement (Definition 9)
as the independent, or point-wise, refinement of each single CTA (Definition 8).

3.1 Point-wise and system refinements
Our refinements operate on time constraints: more specifically, they only alter the guards,
in the refined CTA, while leaving all the rest (actions and resets) unchanged. To relate
two CTAs A and A′, we use structure preserving functions that map the edges of A into
those of A′, preserving everything but the guards.

Definition 7 (Structure-preserving). Let E,E′ be sets of edges of CTAs. We say that
a function f : E → E′ is structure-preserving when, for all (q, `, q′) ∈ E, f(q, `, q′) =
(q, `′, q′) with act(`) = act(`′), msg(`) = msg(`′), and reset(`) = reset(`′).

We introduce three point-wise refinements in Definition 8. We have a send/receive
restriction (written A′ vsr A) when the guards of A′— both in send and receive actions
— are narrower than those of A. A send restriction/receive procrastination (A′ vsrp A)
additionally requires that the guards in receive actions have the same past in both CTAs.
In an asymmetric restriction A′ va A, the guards of A′ restrict those in A for send
actions, while they relax those in A for receive actions.

Definition 8 (Point-wise refinement). A point-wise refinementv is a preorder relation
between CTAs, say A = (Q, q0, X,E) and A′ = (Q, q0, X,E

′), for which there exists
a structure-preserving isomorphism f : E → E′. In Table 1 we define three specific
point-wise refinements, by specifying conditions on the guards of A and A′.

A point-wise refinement induces a refinement relation between systems of CTAs.

Definition 9 (System Refinement). Let v be a point-wise refinement, and let S =
(A1, . . . ,An) and S′ = (A′1, . . . ,A

′
n). We write S v S′ iff Ai v A′i for all i ∈ 1 . . . n.

6 In general, establishing if an asynchronous communication model is a refinement of another is
undecidable, even in the untimed scenario [14, 30].

13

In Example 4 we illustrate the restrictions given in Definition 9, starting from a
common system to refine.

Example 4. Consider the following system composed of two CTAs:

As : q0 q1
sr!a(x ≤ 2) Ar : q′0 q′1

sr?a(y ≤ 2)

Refinement by send/receive restriction allows to refine As and Ar with CTAs having
narrower guards in both sending and receiving actions, like e.g.:

As
vsr : q0 q1

sr!a(1 ≤ x ≤ 1.05) Ar
vsr :

q′0 q′1
sr?a(y ≤ 1)

Refinement by send restriction/receive procrastination allows to restrict guards, as
in the case of send/receive restriction. In this case, however, the guards of receiving
actions will have to maintain the “latest” part of the time window, like e.g.:

As
vsrp : q0 q1

sr!a(x > 1.5 ∧ x ≤ 2) Ar
vsrp :

q′0 q′1
sr?a(y = 2)

Finally, asymmetric restriction allows to narrow the guards on send actions, and
relax the guards of receive actions, like e.g.:

As
va : q0 q1

sr!a(1 ≤ x ≤ 1.05) Ar
va :

q′0 q′1
sr?a(true)

Theorem 2 below establishes decidability of all the point-wise refinements in Ta-
ble 1. This follows by the fact that CTAs are finite state systems and that, using guards
as defined in Section 2.1:

– the function ↓ JδK is computable, and the result can be represented as a guard [8,27]
– the relation ⊆ between guards is computable.

Theorem 2. Establishing whether A′ v◦ A, for ◦ ∈ {sr, srp, a}, is decidable.

4 Characterising essential properties of refinements
In this section we formalise properties of systems of CTAs that we wish to be preserved
upon refinement. The first of these properties, which we call behaviour preservation
(Definition 12) is based on the notion of timed similarity [18].

Definition 10 (Timed similarity). Let (Q,L,→) be a TLTS. A timed simulation is a
relationR⊆ Q×Q such that, whenever γ1 R γ2:

∀α ∈ L : γ1
α−→γ′1 =⇒ ∃γ′2 : γ2

α−→γ′2 and γ′1 R γ′2

We call timed similarity (in symbols, .) the largest timed simulation relation.

14

Definition 11 (Disjoint union of TLTSs). We define the disjoint union of TLTSs as:

(Q1, Σ1,→1)](Q2, Σ2,→2) = (Q1]Q2, Σ1∪Σ2, {((i, q), a, (i, q′)) | (q, a, q′) ∈→i})

where Q1]Q2 = {(i, q) | q ∈ Qi}.

Behaviour preservation requires that an implementation (refining system) at any
point of a run allows only actions that are allowed by its specification (refined system).

Definition 12 (Behaviour preservation). LetR be a binary relation between systems.
We say thatR preserves behaviour iff, whenever S1 R S2, we have (γ10 , 1) . (γ20 , 2) in
the TLTS JS1K] JS2K, where γ10 and γ20 are the initial configurations of S1 and S2.

Example 5 (Behaviour preservation). Let R be the the inclusion of runs, and let S2 be
the system composed of the following CTAs:

As : q0 q1

sr!a(x < 2)

sr!b(x > 2)

Ar : q2 q3

sr?a(y < 2)

sr?b(true)

The system S2 has the following families of (maximal) traces:

t1 sr!a t2 sr?a t3 with t1 < 2, t2 < 2− t1, and t3 ∈ R≥0
t1 sr!b t2 sr?b t3 with t1 > 2 and t2, t3 ∈ R≥0

Let S1 be as S2 but for the guard of action sr?b(true), which is replaced by y > 7.
First, note that S2 R S1, while S1 R S2 does not hold: indeed, the traces with a are
unchanged, while the traces with b in S1 strictly include those of S2:

t1 sr!b t2 sr?b t3 with t1 > 2, t2 > 7− t1, and t3 ∈ R≥0

The relationR preserves timed behaviour in {S1, S2}: indeed, (γ20 , 1) . (γ10 , 2) follows
by trace inclusion and by the fact that S1, S2 have deterministic TLTS. Consider now
a system S3, where the guard of sr?b(true) is replaced by y < 2. The traces of S3

containing a are the same as S1, while those containing b are:

t1 sr!b t2 with t1 > 2, t2 ∈ R≥0

Hence, S3 R S1, and as before,R preserves timed behaviour in {S2, S3}. However, S3

does not allow the system to continue with the message exchange: b is sent too late to
be received by r, who keeps waiting while the message remain in the queue forever.

As shown by Example 5, behaviour preservation may allow a system (e.g., S3) to
‘remove too much’ from the runs of the original system (e.g., S2): while ensuring that
no new actions are introduced, it may produce executions that may get stuck. Another
desirable property refinements is then the preservation of progress, which we conjugate
below either as progress of the overall system (global progress, Definition 13), or as
progress of each single participant (local progress, Definition 14).

Below, we say that a state q is final if there exist no ` and q′ such that (q, `, q′) ∈ E,
and we say that a configuration (q,w, ν) is final when all q ∈ q are final.

15

Definition 13 (Global progress). We say that a system S enjoys global progress when:

γ0−→∗γ not final =⇒ ∃t ∈ R≥0, α ∈ Act : γ t−→ α−→

Definition 14 (Local progress). We say that a system S enjoys local progress when:

γ0−→∗γ = (q,w, ν) and qp not final =⇒
∀ maximal runs ρ starting from γ : ∃n : subj(actn(ρ)) = p

The following lemma states that local progress is stronger then global progress. The
converse does not hold, as witnessed by Example 6.

Lemma 4. If a system enjoys local progress, then it also enjoys global progress.

Proof. See page 29.

Example 6 (Global vs. local progress). Consider the following CTAs:

Ap :

q0

pq!a(x ≤ 2, {x})
Aq :

q1

pq?a(y < 1, {y})
A′q :

q2

pq?a(y = 2, {y})

The system (Ap,Aq) enjoys global progress, since, in each reachable state, it is always
possible for Ap to send a message (hence for the system to make an action in Act).
However, if Ap sends a after time 1, then Aq can not receive it, since its guard y < 1 is
not satisfied. Formally, in any maximal run starting from ((q0, q1), (a, ε), {x, y 7→ 1}),
there will be no actions with subject q, so (Ap,Aq) does not enjoy local progress. The
system (Ap,A

′
q), instead, enjoys both global and local progress.

The following example shows a situation where all runs admit a continuation con-
taining send/receive actions of all CTAs (if not in a final state). Yet, local progress does
not hold, because there also exist (maximal) runs where a CTA is stuck.

Example 7. Consider the following CTAs (guards are true , and clocks are immaterial):

Ap :

p0 p1

pq!a

pq!b
Aq :

q0 q1

pq?a

pq?b

qr!a

Ar :

r0

qr?a

In any reachable configuration of (Ap,Aq,Ar) there is a continuation where any CTA
can make an action in Act. However, in runs where Ap always sends a to Aq, the CTA Ar

is stuck. Hence, the system enjoys global progress, but it does not enjoy local progress.

Definition 15 (Progress preservation). Let R be a binary relation between systems.
We say that R preserves global (resp. local) progress iff, whenever S1 R S2 and S2

enjoys global (resp. local) progress, then S1 enjoys global (resp. local) progress.

Example 8. Let S1, S2, S3 as in Example 5. Observe that S1 and S2 enjoy progress
(both local and global), while S3 does not enjoy progress (either local or global). Hence,
R= {(S2, S1), (S3, S1), (S3, S2)} (i.e., trace inclusion restricted to the three given
systems), does not preserve progress (either local or global).

16

5 Preservation upon refinements
In this section we show results about preservation of behaviour/progress upon refine-
ments. Theorem 3 states that, in general, these properties are not preserved.

Theorem 3 (Negative preservation results). Send/receive restriction, send restric-
tion/receive procrastination, and asymmetric restriction do not preserve behaviour nor
(local/global) progress, even in the case of CTAs without mixed states.

We prove Theorem 3 through a counter-example (Example 9) that applies to all
given refinements, since we only restrict the guards of send actions.

Example 9. Let S = (As,Ar), and and let S′ = (A′s,Ar), where:

q0 q1 q2
As : sr!a(x ≤ 2) sr!b(x ≤ 3)

q′0 q′1 q′2
Ar : rs?a(x ≤ 2) rs?b(x ≤ 3)

q0 q1 q2
A′
s : sr!a(1 < x ≤ 2) sr!b(x ≤ 1)

Note that A′s v As for every point-wise refinement in Definition 8, and so S′ v S for
the corresponding system refinements. Neither behaviour nor progress are preserved.
To see why, consider the following run of S′:

γ0
2−→ γ1

sr!a−−→ γ2
sr?a−−−→ γ3

3−→ (γi uniquely determined by the labels)

In particular, the last delay is possible since S′ has no future-enabled actions in γ3 (so, it
is stuck). Instead, in S the last delay is not possible, since As has a future-enabled action
in γ3, but no future-enabled actions after a delay of 3 time units. Since S′ has a trace
not allowed by S, behaviour is not preserved. For similar reasons, S enjoys progress
(both global and local), while S′ gets stuck in ((q1, q

′
1), (ε, ε), ν), with 1 < ν(x) ≤ 2.

The rest of this section is organised as follows. Sections 5.1 and 5.2 introduce two
conditions (called LESP and NDP, respectively), which are then used in Section 5.3 to
establish our preservation results. Section 5.4 gives a decidable approximation of LESP,
which allows to exploit our results in practice. In Section 5.5 we prove that behaviour
and progress are preserved when passing from the non-urgent to the urgent semantics.

5.1 LESP: a property on sending edges
The problem observed in Example 9 could be approached by imposing some conditions
on the syntax of CTAs, to exclude those which, like A′s above, do not progress “by their
own”. Here we will focus instead on more general conditions on the semantics of CTAs,
that also avoid other counter-examples like the one below.

Example 10. Let S = (Ap,Aq), and let S′ = (A′p,Aq), where:

p0 p1
Ap :

qp?a(x ≤ 2)

pq!b(x ≤ 3)

p0 p1
A′p :

qp?a(x ≤ 2)

pq!b(x ≤ 1)

q0 q1
Aq : pq?b(y = 4)

17

We have that A′p v Ap for every point-wise refinement in Definition 8, and so S′ v S.
Behaviour is not preserved, because S′ allows the run γ0 4−→, while S does not. Progress,
which is enjoyed by S (both local and global) does not hold in S′. Indeed, S′ allows
γ0

2−→γ = ((p0, q0), ε, ν0 + 2), but there are no t and α ∈ Act such that γ t−→ α−→.

The problem in Examples 9 and 10 is that a latest-enabled sending edge, which was
crucial for making execution progress, is lost after the refinement. As we will show,
preserving latest-enabled sending edges is useful to preserve behaviour and progress.
We formalise this condition in Definition 16.

Definition 16 (Latest-enabled send preservation). We say that a relation R between
systems is latest-enabled send preserving (in short, LESP) iff, whenever S1 R S2, for
all γ = (q,w, ν) such that γ0−→∗S1

γ, and for all p, if qp has a latest-enabled sending
edge in γ for S2, then qp has a latest-enabled sending edge in γ for S1.

Example 11. Recall S and S′ from Example 10. The relation R= {(S′, S)} is not
LESP. In S, the sending edge (p0, pq!b(x ≤ 3), p1) is latest-enabled in γ0, but the only
sending edge in S′, i.e. (p0, pq!b(x ≤ 1), p1), is not latest-enabled in γ0. Indeed, from
state p0 of A′p there is a receiving edge with guard x ≤ 2, and (x ≤ 2) 6≤ν0 (x ≤ 1).
Now, let A′′p be equal to A′p but for the guard on the send action, which is replaced by
x ≤ 2, and let S′′ = (A′′p ,Aq). We have thatR′= {(S′′, S)} is LESP.

The LESP property is complex to check, in the general case, as it concerns the
behaviour of the whole system: in fact, we prove it is undecidable (Theorem 4). In Sec-
tion 5.4 we give a sound, compositional, and practically useful, approximation of LESP.

Theorem 4 (Undecidability of LESP). Establishing whether restrictions of the sys-
tem refinements vsr , va , vsrp are LESP is undecidable.

Proof. See page 30.

5.2 NDP: a property on receiving edges
The following example shows that LESP alone is not enough to preserve behaviour or
progress. In fact, further problems may arise when, after refinement, the ability of a
CTA to receive messages is compromised.

Example 12. Recall As, Ar, Ar
vsr from Example 4, and let S = (As,Ar), and S′ =

(As,Ar
vsr). We have S′ vsr S. The relation R= {(S′, S)} is LESP, as the sending

edge remains such in S′. Consider the following run (common to S and S′):

γ0
2−→ sr!a−−→ γ = ((q1, q

′
0), (a, ε), ν0 + 2)

In S′ we have γ 1−→, while in S the only possible timed transition is γ 0−→. Hence,
behaviour is not preserved. Since, in S, γ can perform the receive and reach the final
configuration, then S enjoys (local/global) progress. Instead, in S′ it is too late to receive
(y ≤ 1 is unsatisfiable from ν0 + 2), hence S′ does not enjoy (local/global) progress.

Intuitively, the problem is that narrowing the constraints of receiving edges may
disable them before the message has been sent. To detect this situation, we introduce a
property ensuring that a refinement preserves the non-deferrable actions (Definition 17).

18

Send/receive restriction Send restriction/receive procrastination Asymmetric restriction
7 NDP-only (Example 10)

7 LESP-only (Example 12)

3 LESP+NDP (Theorem 6)

7 NDP-only (Example 10)

3 LESP (Theorem 7)
7 LESP+NDP (Example 14)

Table 2: Summary of preservation results. 3 means that preservation (of any kind) holds
for a refinement under the given conditions, while 7 means it does not hold.

Definition 17 (Non-deferrable preserving). We say that a relation R between sys-
tems is non-deferrable preserving (in short, NDP) iff, whenever S1 R S2, for all
γ = (q,w, ν) such that γ0−→∗S1

γ, and for all p, if qp has a non-deferrable future-
enabled edge in γ for S2, then qp has a non-deferrable future-enabled edge in γ for S1.

Example 13 (Non-deferrable preserving). Consider the following CTAs:

Ap : p0 p1
qp?a(x ≤ 4) Aq : q0 q1

qp!a(y ≤ 2)

A′p : p0 p1
qp?a(x ≤ 1) A′′p : p0 p1

qp?a(x ≤ 3)

Let S = (Ap,Aq), S′ = (A′p,Aq), S′′ = (A′′p ,Aq), let R′= {(S′, S)}, and R′′=
{(S′′, S)}. Clearly, both R′ and R′′ are LESP, because the configurations of S do not
have latest-enabled sending edges. We have that R′ is not NDP. To show that, let γ =
((p0, q1), (ε, a), ν0 + 2), which is reachable both in S and S′ since γ0 2−→ qp!a−−→γ. The
only edge of Ap is non-deferrable in γ, while the edge of A′p is deferrable, as it is not
future-enabled in γ. Instead,R′′ is NDP, because the edge of A′′p is non-deferrable in γ.

Similarly to LESP, also NDP is undecidable (Theorem 5). Remarkably, we will
show later that vsrp guarantees NDP by construction.

Theorem 5 (NDP undecidability). Establishing whether restrictions of the system
refinements vsr , va , vsrp are NDP is undecidable.

Proof. See page 30.

5.3 Preservation results
In this section we present our main results about preservation upon refinements. Our
results, both positive and negative, are also summarized in Table 2.

We already know from Example 10 that neither behaviour nor progress are pre-
served in general. Since the refinement considered in that example is NDP but not
LESP, we also infer that preservation does not hold for NDP-only restrictions. Further,
from Example 12 we know that even LESP-only restrictions of vsr do not preserve
behaviour and progress One of our main positive results is that LESP+NDP restric-
tions of vsr (i.e., restrictions satisfying both conditions) do preserve both behaviour
and progress.

Theorem 6. LESP+NDP restrictions ofvsr preserve behaviour, global and local progress.

19

Proof. See page 34.

Since, by definition, the refinement vsrp is stricter than vsr , the positive result
about vsr in Theorem 6 also applies to vsrp . In Lemma 5 we will also show that vsrp

is a NDP restriction of vsr . Therefore, for vsrp we can weaken the hypotheses about
LESP+NDP used in the case of vsr , by only requiring LESP (Theorem 7). This has
useful practical consequences, since in the following section we will devise a decidable
approximation of LESP (recall from Theorem 4 that LESP is undecidable).

Lemma 5. vsrp is a NDP restriction of vsr .

Proof. See page 34.

Theorem 7. LESP restrictions of vsrp preserve behaviour, global and local progress.

Proof. See page 34.

Quite surprisingly, for asymmetric restriction refinement we only have negative
results about preservation. Indeed, Example 14 shows that va does not preserve be-
haviour nor progress, not even if considering LESP+NDP restrictions, not even if only
considering CTAs without mixed states.

Example 14 (Asymmetric restriction refinement). Consider the following CTAs:

Ap : p0 p1 p2
qp?a(1 < x ≤ 2, {x}) pq!b(x ≤ 1)

Aq : q0 q1 q2
qp!a(y ≤ 1) pq?b(y ≤ 3)

A′
p : p0 p1 p2

qp?a(1 < x ≤ 3, {x}) pq!b(x ≤ 1)

Let S = (Ap,Aq) and S′ = (A′p,Aq). We have that A′p va Ap, and so S′ va S. The
relation R = {(S′, S)} is LESP+NDP. However, behaviour is not preserved, because
in S′ we have the run γ0 qp!a−−→ 3−→, while in S we have γ0 qp!a−−→ t−→ only if t ≤ 2. Progress
is not preserved as well. Indeed, S enjoys global/local progress, while in S′ we have:

γ0
qp!a−−→ ((p0, q1), (ε, a), ν0)
3−−→ ((p0, q1), (ε, a), ν0 + 3)

qp?a−−−→ ((p1, q1), (ε, ε), {x 7→ 0, y 7→ 3})
1−−→ ((p1, q1), (ε, ε), {x 7→ 1, y 7→ 4})

pq!b−−→ ((p2, q1), (b, ε), {x 7→ 1, y 7→ 4})

Since the last configuration in the run is stuck, S′ does not enjoy progress.

20

5.4 A sound approximation of LESP
In this section we devise a decidable condition on point-wise refinements that implies
LESP of the corresponding system refinements. We stress that this condition is on
point-wise refinements, hence it is suitable for compositional reasoning. This condi-
tion, which we call LLESP after locally latest-enabled send preservation, is in fact an
approximation of LESP (Theorem 8). We start with some auxiliary definitions.

Definition 18. Let A = (Q, q0, X,E), let q ∈ Q, and letK be a set of clock valuations.
We define the following sets of clock valuations:

PreAq
def
= {ν0 | q0 = q} ∪ {ν | ∃q′, `, ν′ : (q′, `, q) ∈ E ∧ ν′ ∈ Jguard(`)K ∧

λ = reset(`) ∧ ν = λ(ν′)}
LesAq

def
= {ν | q has a latest-enabled sending edge in ν}

PostAq (K)
def
=
{
ν + t

∣∣ ν ∈ K ∧ (ν ∈ LesAq =⇒ ν + t ∈ LesAq)
}

We briefly comment the definition above. The set LesAq is self-explanatory, and its
use is auxiliary to the definition of Post . The sets PreAq and PostAq (K) are useful for
obtaining an over-approximation, denoted PostAq (Pre

A
q), of the set of clock valuations

ν such that there is a configuration (q,w, ν), where q is in q, that can be reached by
the initial configuration of some system S containing A. This is needed because the
LESP property on S′ R S (Definition 16) holds if latest-enabled sending edges are
preserved in reachable configurations of S′. The set PreAq contains all (but not only) the
clock valuations under which a configuration like the one above can be reached with
a label α ∈ Act fired by A. This is an over-approximation, as it only considers the
edges entering in q and not constraints of earlier parts of the run. Instead, PostAq (K)
computes a symbolic step of timed execution, in the following sense: if ν ∈ K and
γ t−→(q,w, ν′), where q is in q, then ν′ ∈ PostAq (K). This is obtained by defining
PostAq (K) as the set of clock valuations that would satisfy item 3d of Definition 4 for
A at runtime, when starting from a configuration whose clock valuation is in K. Since
every configuration reachable with a finite run and with an action in Act as last label
can also be reached by an run ending with a delay (the original run followed by a null
delay), the set PostAq (Pre

A
q) contains the clock valuations we were looking for.

We can now introduce a decidable and compositional approximation of LESP.

Definition 19 (Locally latest-enabled send preservation). We say that a point-wise
refinement v is locally latest-enabled send preserving (in short, LLESP) iff, for all A =
(Q, q0, X,E) and A′ = (Q, q0, X,E

′) such that A v A′, and for all q ∈ Q:

PostAq (Pre
A
q) ∩ Les

A′

q ⊆ PostAq (Pre
A
q) ∩ LesAq

Basically, LLESP requires that, whenever A v A′, if q has a latest-enabled sending
edge in ν with respect to A′, then q has a latest-enabled sending edge in ν with respect
to A, where ν ranges over elements of PostAq (Pre

A
q).

Theorem 8 (From LLESP to LESP). System refinements induced by LLESP point-
wise refinements are LESP. Furthermore, LLESP is decidable.

Proof. See page 36.

21

5.5 Refinements under the urgent semantics
We now relate the urgent and non-urgent semantics. Since the urgent semantics only re-
stricts the behaviour of systems (by dropping some timed transitions), it comes without
surprise that urgent semantics preserves the behaviour of the non-urgent one.

Theorem 9 (Preservation of behaviour). For all systems S, the relation

{((γ, 1), (γ, 2)) | γ is a configuration of S}

between states of JSKu] JSK is a timed simulation.

Proof. See page 37.

In general, however, a system that enjoys progress with the non-urgent semantics
may not enjoy progress with the urgent one. This is illustrated by Example 15.

Example 15 (Progress - non-urgent vs. urgent - part 1). Consider the following system:

As : q0 q1
sr!a(y = 0) Ar : q′0 q′1

sr?a(x > 3)

A run of (As,Ar) with the non-urgent semantics is:

γ0
sr!a−−→ 3−→γ = ((q1, q

′
0), (a, ε), ν0 + 3) t−→ sr?a−−−→ ∀t ∈ R≥0

The corresponding run with the urgent semantics would be:

γ0
sr!a−−→u

3−→uγ 6 α−→u ∀α 6= 0

Note that the run with the non-urgent semantics leads to a final state, whereas the one
with the urgent semantics does not.

The issue highlighted by Example 15 is subtle: if there is not a precise point in time
in which a guard becomes enabled (e.g. in x > 3), then the run may get stuck. This
problem is known in literature [12], and it can be dealt with a minor syntactic restric-
tion on the guards of CTAs. In Definition 20 we introduce a restriction on guards that
guarantees that urgent semantics preserves progress. The condition, which generalises
the notion of right-open time progress of [12] (to deal with non-convex guards), corre-
sponds to forbidding guards defined as the conjunction of subguards of the form x > c
(but still allowing subguards of the form x ≥ c). We provide a definition based on sets
of clock valuations, in order to keep our results independent from the syntax of guards.

Definition 20 (Fully left closed). For all ν, and for all sets of clock valuations K, let:

Dν(K)
def
= {t | ν + t ∈ K}

and let inf Z denote the infimum of a set Z. We say that guard δ is fully left closed iff:

∀ν : ∀K ⊆ JδK :
(
Dν(K) 6= ∅ =⇒ ν + infDν(K) ∈ JδK

)
We say that a CTA is input fully left closed when all guards in its receiving edges are
fully left closed. A system is input fully left closed when all its components are such.

22

Fully left closed guards ensure that there is an exact time instant in which a guard of
an urgent action becomes enabled. The requirement that left closedness must hold for
any subset K of the semantics of the guards is needed to cater for non-convex guards
(i.e. guards with disjunctions). Consider e.g. δ = 1 ≤ x ≤ 3 ∨ x ≥ 4. While δ is
left closed, it is not fully left closed: indeed, for K = Jx ≥ 4K ⊆ JδK, it holds that
infDν0(K) = 4, but ν + 4 6∈ JδK.

Example 16 (Progress - non-urgent vs. urgent - part 2). The guard x > 3 in Example 15
is not fully left closed. Indeed, infDν0(Jx > 3K) = inf {t | t > 3} = 3, but ν0 + 3 6∈
Jx > 3K. Instead, guard x ≥ 3 is fully left closed. Consider now a variant of the system
of Example 15 where guard x > 3 is replaced by x ≥ 3. The run

γ0
sr!a−−→u

3−→uγ

would not get stuck and allow γ sr?a−−−→.

The following theorem states that urgent semantics preserves progress with respect
to non-urgent semantics, when considering fully left closed systems.

Theorem 10 (Preservation of progress vs. urgency). For all input fully left closed
systems S, if S enjoys global (resp. local) progress under non-urgent semantics, then S
enjoys global (resp. local) progress under urgent semantics.

Proof. See page 37.

6 Conclusions and related work
We have introduced three decidable notions of compositional timed refinement for dis-
tributed systems with asynchronous communications, and studied their ability of pre-
serving three crucial properties: behaviour, global progress and local progress. Two of
these refinements, vsr and vsrp , restrict the model’s behaviour. One of them, va , re-
flects the asymmetric nature of (untimed) behavioural subtyping, in the sense that it
restricts outputs and relaxes inputs. All refinements, except va , turned out to preserve
behaviour, global progress and local progress of the original system, under a few ad-
ditional conditions. The negative results for va suggest that the asymmetric approach
does not scale to the timed scenario.

The purpose of our work was to provide formal basis to support implementation of
well-behaved systems from well-behaved models. However, as we have shown in Sec-
tion 1, the existing semantics of CTAs have limitations in this sense. We have therefore
introduced two new semantics of CTAs: (i) a more general non-urgent semantics that
is closer to known semantics, and (ii) an urgent semantics that models the behaviour of
concrete implementations. The more general semantics allows us to analyse the prop-
erties of systems upon incremental refinements (e.g. thanks to the results in Section 5).
Moreover, the preservation results from non-urgent to urgent semantics given in Sec-
tion 5.5 pave the way to implementations of refinements (e.g. derived incrementally
using the non-urgent semantics, and relying on the results in Section 5) still preserve
behaviour and progress.

23

Semantics. The semantics of CTAs in [29] was introduced for studying decidability
issues for timed languages: their decidability results are general, and apply also to our
semantics. To achieve such goals, [29] adopts the usual language-based approach used
in computability theory. However, it is well known that language-based approaches are
not well suited to deal with concurrency issues like those addressed in this paper. To see
this, consider the following CTAs, where the states with a double circle are final:

Ap : q0 q1
qp!a(y ≤ 1) Aq : p0 p1

qp?a(x ≤ 1)

A′p : q0 q1
qp!a(y ≤ 2)

The systems S = (Ap,Aq) and S′ = (A′p,Aq) accept the same language, namely
t0 qp!a t1 qp?a t2 with t0 + t1 ≤ 1 and t2 ∈ R≥0. However, the two systems
have a fundamental difference: S enjoys progress, while S′ does not. In general, as
discussed in Section 1, the semantics in [29] allows time steps that make the guards of
all the available actions unsatisfiable. Intuitively, one could rule out undesirable execu-
tions a posteriori by considering only those that terminate in final states, or visit them
infinitely often. However, it is much more standard to introduce some way for disciplin-
ing the flow of time, giving the power of enforcing the execution of discrete actions.
This is supported by automata-based formalisms through, e.g., invariants [8, 27] and
deadlines [12], and by a variety of primitives in timed process algebras [36]. Summing
up, the benefits of our semantics are: (i) they allow us to rule out undesirable executions
without filtering them a posteriori; (ii) they facilitate the comparison of behaviours,
based, e.g., on (bi)simulation; (iii) they allow us to reason on standard properties of
protocols (e.g., progress) without the need of introducing ad hoc final states.

Urgency. Our urgent semantics forbids delays when read actions are possible, hence
emulating the receive primitives of common programming languages. Some mecha-
nisms for expressing urgent behaviour are present in timed process algebras [36]. In
particular, our notion of urgency, being enforced by communications, can be seen as
an extension to the asynchronous setting of the maximal progress assumption in Timed
CCS [41]. This condition, also known as τ -urgency [36], disables time passing when a
synchronisation is possible. In the context of timed automata, some extensions to deal
with urgency have been introduced: urgent locations and channels in Uppaal [7,8], and
the already mentioned timed automata with deadlines of [12]. In [29], the term “urgent”
has been used to refer to their semantics. However, their notion of urgency is different
from ours: in [29], it means that read actions have priority over invisible actions. We
use the word urgency with the traditional meaning of [12, 36], instead.

Refinements. The notions of refinement introduced in this paper are related to the con-
cept of subtyping in session types [23, 26]. Asymmetric refinement is a naı̈ve attempt
to extend the output co-variant and input contra-variant approach to subtyping of [23]
to time constraints. Differently from these works, we focus on “purely timed” refine-
ments (structure preserving mappings that only affect guards). Other standard tech-
niques to deal with the branching structure of CTAs are orthogonal to the present work.
In [11] a (session) type system for a timed π-calculus was introduced. There, systems
are modelled as timed session types (which can be mapped into CTAs [10]). Systems

24

refinements are presented as processes in a calculus, for which (behavioural) typing
rules ensure properties similar to our behaviour preservation and global progress. The
input/output primitives in the calculus of [11] can roughly be modelled with CTAs
that contains only equality in guards. Therefore, our send/receive restriction refinement
could be seen, up to minor adaptation, a generalization of the type system in [11]. Other
notions of timed refinements in the timed setting have been studied in [5,20,22]. All of
them consider synchronous communication.

Properties and preservation. Timed simulation we used [18] is nowadays classical.
The notion of progress is well known both in the untimed [6] and timed setting [5,
10, 11, 37], called compliance in the last. Preservation of properties upon refinement
has traditionally an important role in session subtyping. Indeed, subtyping of binary
synchronous session types admits an elegant characterization as the largest progress
preserving relation [4]. There are some other interesting properties of systems, such as
non-zenoness and eventual reception of messages in a queue (studied in [10] for CTA)
which we have not studied. These properties seem not preserved by our refinements in
the general case. A characterization of the subclass of CTAs for which they are pre-
served is left as a future work.

25

References
1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
2. Advanced Message Queuing protocols (AMQP) homepage. http://jira.amqp.org/

confluence/display/AMQP/Advanced+Message+Queuing+Protocol
3. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf

(2007)
4. Barbanera, F., de’Liguoro, U.: Sub-behaviour relations for session-based client/server sys-

tems. MSCS 25(6), 1339–1381 (2015)
5. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: Compliance and subtyp-

ing in timed session types. In: FORTE. LNCS, vol. 9039, pp. 161–177. Springer (2015)
6. Bartoletti, M., Scalas, A., Zunino, R.: A semantic deconstruction of session types. In: Proc.

CONCUR. LNCS, vol. 8704, pp. 402–418. Springer (2014)
7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: SFM. LNCS, vol. 3185,

pp. 200–236. Springer (2004)
8. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lectures on

Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer (2003)
9. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida, N.:

Global progress in dynamically interleaved multiparty sessions. In: CONCUR. LNCS, vol.
5201, pp. 418–433 (2008)

10. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: 26th International Con-
ference on Concurrency Theory, CONCUR 2015. LIPIcs, vol. 42, pp. 283–296. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

11. Bocchi, L., Yang, W., Yoshida, N.: Timed Multiparty Session Types, LNCS, vol. 8704, pp.
419–434. Springer (2014)

12. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: COMPOS.
LNCS, vol. 1536, pp. 103–129. Springer (1997)

13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

14. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session subtyping.
Information and Computation (2017)

15. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edn. (2009)

16. Capecchi, S., Giachino, E., Yoshida, N.: Global Escape in Multiparty Sessions. In: FSTTCS.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 8, pp. 338–351 (2010)

17. Cattani, S., Kwiatkowska, M.Z.: A refinement-based process algebra for timed automata.
Formal Asp. Comput. 17(2), 138–159 (2005)

18. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes. In: CAV.
LNCS, vol. 663, pp. 302–315. Springer (1992)

19. Chen, T.c., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the Preciseness of Subtyping
in Session Types. LMCS 13(2) (2017)

20. Chilton, C., Kwiatkowska, M.Z., Wang, X.: Revisiting timed specification theories: A linear-
time perspective. In: FORMATS. LNCS, vol. 7595, pp. 75–90. Springer (2012)

21. Clemente, L., Herbreteau, F., Stainer, A., Sutre, G.: Reachability of communicating timed
processes. In: FOSSACS, LNCS, vol. 7794, pp. 81–96. Springer (2013)

22. David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L., Wasowski, A.: Real-time
specifications. STTT 17(1), 17–45 (2015)

23. Demangeon, R., Honda, K.: Full Abstraction in a Subtyped pi-Calculus with Linear Types,
LNCS, vol. 6901, pp. 280–296. Springer (2011)

24. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic Abstraction Refinement for Timed
Automata, LNCS, vol. 4763, pp. 114–129. Springer (2007)

26

http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol

25. Fecher, H., Majster-Cederbaum, M.E., Wu, J.: Refinement of actions in a real-time process
algebra with a true concurrency model. ENTCS 70(3), 260–280 (2002)

26. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42(2/3),
191–225 (2005)

27. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

28. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interruptible con-
versations - distributed dynamic verification with session types and Python. In: RV. LNCS,
vol. 8174, pp. 130–148 (2013)

29. Krcal, P., Yi, W.: Communicating timed automata: The more synchronous, the more difficult
to verify. In: CAV. LNCS, vol. 4144, pp. 243–257 (2006)

30. Lange, J., Yoshida, N.: On the Undecidability of Asynchronous Session Subtyping, pp. 441–
457. Springer (2017)

31. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. Journal on Software Tools
for Technology Transfer 1, 134–152 (1997)

32. Lynch, N., Segala, R., Vaandrager, F.: Hybrid i/o automata. Inf. Comput. 185(1), 105–157
(Aug 2003)

33. Mostrous, D.: Session Types in Concurrent Calculi: Higher-Order Processes and Objects.
Ph.D. thesis, Imperial College London (November 2009)

34. Mostrous, D., Yoshida, N.: Session-based communication optimisation for higher-order mo-
bile processes. In: TLCA. LNCS, vol. 5608, pp. 203–218 (2009)

35. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commutative asyn-
chronous sessions. In: ESOP. LNCS, vol. 5502, pp. 316–332 (2009)

36. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: CAV.
LNCS, vol. 575, pp. 376–398 (1991)

37. Padovani, L.: Fair subtyping for multi-party session types. MSCS 26(3), 424–464 (2016)
38. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley & Sons,

Inc., New York, NY, USA, 1st edn. (1999)
39. Vinoski, S.: Advanced Message Queuing Protocol. IEEE Internet Computing 10(6), 87–89

(2006)
40. Wang, W., Jiao, L.: Trace Abstraction Refinement for Timed Automata, LNCS, vol. 8837,

pp. 396–410. Springer (2014)
41. Yi, W.: CCS + time = an interleaving model for real time systems. In: ICALP. LNCS, vol.

510, pp. 217–228. Springer (1991)
42. Yovine, S.: Kronos: A verification tool for real-time systems. (kronos user’s manual release

2.2). International Journal on Software Tools for Technology Transfer 1, 123–133 (1997)

27

A Proofs for Section 2
Proof of Lemma 1
Proving reflexivity and transitivity is straightforward. To prove that≤ν is total, we show
that if δ 6≤ν δ′, then it must be δ′ ≤ν δ. Since δ 6≤ν δ′, then there exists some t0 ∈ R≥0
such that ν + t0 ∈ JδK, but:

6 ∃t′ ≥ t0 : ν + t′ ∈ Jδ′K (1)

To prove δ′ ≤ν δ, let t′ ∈ R≥0 such that ν + t′ ∈ Jδ′K (if no such t′ exists, we trivially
obtain the thesis). By (1), it must be t′ < t0. Hence, we have found a t0 > t′ such that
ν + t0 ∈ JδK, from which we conclude that δ′ ≤ν δ. ut

Proof of Lemma 2
For Item 1, assume that d ≥ 0. Let t ∈ R≥0 be such that ν + t ∈ Jx ≤ cK. Then,
ν(x) + t ≤ c, and so ν(x) + t ≤ c+ d. Choosing t′ = t, we have ν + t′ ∈ Jx ≤ c+ dK
from which we obtain the thesis (x ≤ c) ≤ν (x ≤ c + d). To prove the converse,
assume that d < 0. Let t = c − ν(x). Then, ν(x) + t ≤ c, but there exists no t′ ≥ t
such that ν(x) + t′ ≤ c+ d. Hence, (x ≤ c) 6≤ν (x ≤ c+ d).

For Item 2, let t ∈ R≥0 be such that ν + t ∈ Jδ ∧ δ′K = JδK ∩ Jδ′K. Choose t′ = t.
Then, ν + t ∈ Jδ′K, from which we obtain the thesis δ ∧ δ′ ≤ν δ′.

For Item 3, assume that δ ≤ν δ′. Let t̃ ∈ R≥0 be such that (ν + t) + t̃ ∈ JδK. Since
δ ≤ν δ′, there exists t̃′ ≥ t+ t̃ such that ν + t̃′ ∈ Jδ′K. Choose t′ = t̃′− t. Then, t′ ≥ t̃,
and (ν + t) + t′ = (ν + t) + (t̃′ − t) = ν + t̃′ ∈ Jδ′K. Therefore, δ ≤ν+t δ′. ut

Lemma 6. Let e = (q, `, q′) ∈ Ep. Then:

e future-enabled in (q,w, ν + t) =⇒ e future-enabled in (q,w, ν)

Proof. Trivial. ut

Proof of Lemma 3
Time determinism follows immediately by items 3a to 3c of definition 4. Time additivity
follows by lemma 6. ut

Proof of Theorem 1
For receive persistency, since γ t

′
−→ rp?−−→ then some message expected from p is already

at the head of the queue rp in configuration γ. Hence, there exists some edge in Ep

which is non-deferrable in γ. Since γ t−→γ′, condition (3e) of Definition 4 ensures that
there exists some non-deferrable edge also in γ′. Since ≤ν is total, then there exists a
non-deferrable edge ewhich is enabled after all the other non-deferrable edges. Assume
that act(e) = sp?. Since non-deferrable edges are also future-enabled, there exists t′′

such that the guard of e is true in ν′+ t′′, where ν′ is the clock valuation of γ′. We show
that the transition γ′ t

′′
−→ is admitted by our semantics. Condition (3d) of Definition 4

is satisfied, because if the latest-enabled edge is a sending edge, then the latest time
when it can be fired falls after t′′ (otherwise, the edge e would be the latest enabled
one). Condition (3e) of Definition 4 holds as well, because the edge e itself remains

28

non-deferrable in ν′ + t′′. Therefore, by condition (2) of Definition 4, we obtain the
thesis γ′ t

′′
−→ sp?−−→.

For send persistency, since γ t
′
−→ pr!−−→ then there exists a sending edge in Ep which is

future-enabled. Since ≤ν is total, then there exists a sending edge es which is enabled
after all the other sending edges. Note that es is not necessarily latest-enabled, because
the latest-enabled edge could be a receiving one. There are two cases:

1. If there exist no non-deferrable receiving edges, let t′′ be such that the guard of
es is true in ν′ + t′′, where ν′ is the clock valuation of γ′ (such t′′ always exists,
because es is future-enabled). Assume that act(e) = ps!. We show that the tran-
sition γ′ t

′′
−→γ′′ is admitted by our semantics. Condition (3d) of Definition 4 holds:

indeed, by the choice of es and of t′′ it follows that if es was latest-enabled in γ′,
then it is latest-enabled also in γ′′. Condition (3e) holds trivially, because in this
case we are assuming all receiving edges to be deferrable. Further, by condition (1)
of Definition 4, γ′′ ps!−−→. Therefore we conclude that γ′ t

′′
−→ ps!−−→.

2. If there exists some non-deferrable receiving edges, let er be the latest-enabled
among them. Let tr be the latest delay where the guard of er is satisfied from ν′,
and let ts be the latest delay where the guard of es is satisfied from ν′. There are
two further subcases:

(a) if tr ≥ ts, we show that the latest sending action is preserved. Let t′′ = ts,
and let act(es) = ps!. We show that the transition γ′ t

′′
−→γ′′ is admitted by our

semantics. Condition (3d) of Definition 4 holds: indeed, by the choice of es and
of t′′ it follows that if es was latest-enabled in γ′, then it is latest-enabled also
in γ′′. Condition (3e) holds, because tr ≥ ts, and so the edge er is still non-
deferrable in γ′′. Since the guard of es is satisfied in ν′ + t′′, by condition (1)
of Definition 4, we obtain the thesis γ′ t

′′
−→ ps!−−→.

(b) otherwise, if tr < ts, we show that the latest receiving action is preserved.
Let t′′ = tr, and let act(er) = sp?. We show that the transition γ′ t

′′
−→γ′′ is

admitted by our semantics. Condition (3d) of Definition 4 holds: indeed, by the
choice of es and of t′′ it follows that es is latest-enabled in γ′′. Condition (3e)
holds, because tr is the longest delay such that er is still non-deferrable in γ′′.
Since the guard of er is satisfied in ν′ + t′′, by condition (2) of Definition 4,
we obtain the thesis γ′ t

′′
−→ sp?−−→. ut

B Proofs for Section 4

Proof of Lemma 4

We prove the contrapositive. Assume that S has does not enjoy global progress, i.e.
by Definition 13 there exists γ = (q,w, ν) not final such that γ0−→∗γ, but for no t and
α ∈ Act it holds that γ t−→ α−→. So, by Definition 5, ρ = γ is a maximal run of γ. Since γ is
not final, there exists a participant p such that qp is not final. Clearly, since the run γ has
no transitions, there is no n such that subj(actn(ρ)) = p. Therefore, by Definition 14,
we conclude that S does not enjoy local progress. ut

29

C Proofs for Section 5
C.1 Proofs for Section 5.1
Proof of Theorem 4 (Sketch)
The proof consist in showing that a solution to the problem in the statement would solve
(a variation of) the reachability problem for CTAs, known to be undecidable. Let S be
a system including a machine A owned by p, and let q be a state of A. The reachability
problem asks whether a configuration (q,w, ν), with qp = q, is reachable from the
initial configuration γ0. If the answer is positive we say that q is reachable in S. Let
A′ and A′′ be two slighly modified copies of A: they differ in the fact that q has only
one exiting edge. This edge is sending, and its guard is false for A′ and true for A′′.
Note that A′ v A′′ for v∈ {vsr ,va ,vsrp} by construction. Let S′ and S′′ be as S
except for A, that is substituted with A′ and A′′ respectively. Note that q is reachable in
S is equivalent to q is reachable in S′ and to q is reachable in S′′. This follows by the
fact that S′ and S′′ are equal to S, except for the edges exiting from q. We claim that
the relation {(S′, S′′)} is not LESP iff q is reachable in S. This follows by the above
and by the fact that the only configurations that breaks the LESP property of {(S′, S′′)}
are those in the form (q,w, ν), with qp = q. Since a set is recursive if and only if its
complement is, LESP checking is undecidable. ut

C.2 Proofs for Section 5.2
Proof of Theorem 5 (Sketch)
The argument is similar to the one in the proof of theorem 4 above. We just show
how to construct the two systems S′ and S′′ from the system S (containing A) and
state q of A. Let A′ be as A, except that the only edge with source q is the self-loop
(q, pr!a(true), q), where r is not a participant in S. Let A′r be a CTA with just a state
q0 and a self loop (q0, pr?a(true), q0). Let S′ be as S, except for A′ in place of A and
A′r added. Let A′′r be a CTA with just a state q0 and a self loop (q0, pr?a(false), q0).
The relation {(S′, S′′)} is not NDP iff q is reachable in S, by construction. Hence NDP
checking is undecidible. ut

C.3 General properties
We start with some auxuliary definitions and lemmas about CTAs and refinements.

Definition 21. For all configurations γ = (q,w, ν) of a given system S, and for all
t ∈ R≥0, we define:

BSEγ(t) =

{
e

∣∣∣∣ ∃p, q′p, ` : e = (qp, `, q
′
p) latest enabled sending edge in γ

and not future enabled in (q,w, ν + t)

}

BREγ(t) =

{
e

∣∣∣∣ ∃p, q′p, ` : (qp, `, q′p) non-deferrable edge in γ and

∀`′, q′′p : (qp, `
′, q′′p) not non-deferrable in ν + t

}
BEγ(t) = BSEγ(t) ∪BREγ(t)

We then define the following family of sets (indexed over n ∈ N):

Rn(γ) = {γ′ | ∃t ∈ R≥0, α ∈ Act : γ′ = (q,w, ν + t) α−→ and |BEγ(t)| = n}

30

Intuitively, the setBEγ(t) contains the actions that prevent the timed transition γ t−→.
It is composed by the sets BSEγ(t) and BREγ(t), that contains the actions violating,
respectively, conditions (3d) and (3e) of Definition 4 in an attempt to derive γ t−→. Fi-
nally, the set Rn(γ) is composed of those configurations γ′ that can perform a discrete
transition immediately, and in a derivation of γ t−→γ′ there are exactly n edges that breaks
one among conditions (3e), (3d), while the other conditions hold. Such an apparently
contorted definition will be useful in proofs, as it enables us to perform inductions on
the index n of Rn(γ).

Lemma 7. Let γ = (q,w, ν) be such that γ0−→∗γ. For all t ∈ R≥0 and α ∈ Act:

γ t−→γ′ α−→ ⇐⇒ γ′ ∈ R0(γ)

Proof. Direct consequence of the fact that BSEγ(t) and BREγ(t) are composed by
those edges that, respectively, break conditions (3e) and (3d) of Definition 4. ut

Lemma 8. Let S be a system of machines, and let γ be any configuration such that
γ0−→∗γ. Then, for all t, t′, f ∈ {BSEγ , BREγ , BEγ}:

t ≤ t′ =⇒ f(t) ⊆ f(t′)

Proof. Let S and γ be as in the statement, and suppose t ≤ t′. We proceed by cases on
f .

– f = BSEγ . Suppose e = (qp, `, q
′
p) ∈ BSEγ(t). It must be ` latest enabled

sending in γ and not future enabled in ν+ t. It remains to show ` not future enabled
in ν + t′: an easy inspection of definition 2, using the assumption t < t′.

– f = BREγ . Similar to the above.
– f = BEγ . Immediate consequence of the above cases.

ut

Lemma 9. Let S be a system of machines, and let γ = (q,w, ν) be a configuration
such that γ0−→∗γ. Then, for all t and for all α 6∈ R≥0:

(q,w, ν + t) α−→∧BREγ(t) = ∅ =⇒ ∃t′, `′ : γ t
′
−→ `′−→

Proof. Let S and γ be as in the statement. Since, for all t, any γ′ in the form (q,w, ν + t)
and such that γ′ α−→ is a member of Rn(γ), for some n, we proceed by induction on n.
The base case follows by lemma 7.
For the inductive step, let n > 0 and let γ′ ∈ Rn(γ) be such that BREγ(t) = ∅. Pick
any member e of BEγ(t). Since BREγ(t) is empty, it must be e ∈ BSEγ(t), and thus
e = (qp, `, q

′
p) for some p, with ` latest enabled (and hence future-enabled) sending in

γ, but not future enabled in ν + t. Then, there is t′ < t such that ν + t′ ∈ Jguard(`)K.
Therefore, ` is future enabled in ν+ t′ and hence e 6∈ BEγ(t′). Thanks to this, together
with lemma 8, we can conclude BEγ(t′) ⊂ BEγ(t) and therefore (q,w, ν + t′) ∈
Rn

′
(γ) for some n′ < n. By the induction hypothesis, it follows γ t

′′
−→ `′−→ for some

t′′, α′ 6∈ R≥0. ut

31

Lemma 10. Let S1 and S2 be systems such that every maximal run ρ of S1 is a maximal
run of S2. Then, S2 has local progress =⇒ S1 has local progress.

Proof. Let S1 and S2 be as in the statement, and suppose S2 has strong local progress.
We have to show that S1 has strong local progress as well. So, suppose γ0−→∗S1

γ =
(q,w, ν), with run, say, ρ = γ0

t1−→S1
γ′0

α1−→S1
γ1 . . . γ. According to definition 14, we

have to show that, for all p such that qp is not final, and for all maximal runs ρ′ of S1

starting from γ, there is n such that subj(actn(ρ′)) = p. So, suppose qp is not final, and
let ρ′ be a maximal run of S1 starting from γ. Clearly, ρρ′ is a maximal run of S1 and
hence of S2. Thus, γ is reachable by S2 and ρ′ is a maximal run of S2 starting from γ.
Note that qp is not final with respect to S2 as well, and hence, since S2 has strong local
progress by assumption, there is n such that subj(actn(ρ′)) = p. ut

C.4 Proofs for Section 5.3

Lemma 11. Let v be a LESP & NDP restriction of vsr . Then, for all systems S1 and
S2 such that S1 v S2 and for all γ, γ′:

γ0−→∗S1
γ α−→S1

γ′ =⇒ γ α−→S2
γ′

Proof. Suppose S1 v S2, with isomorphism f , and γ0−→∗S1
γ = (q,w, ν) α−→S1

γ′ =
(q′,w′, ν′). We proceed by cases on the rule of Definition 4 used in the derivation
γ α−→S1γ

′.

For rule item 1, it must be α = pr!a and qp
`=pr!a(δ,λ)−−−−−−−→S1 q

′
p, for some p, r, a, δ, λ

such that ν ∈ JδK. By definition 8:

qp
f(`)=pr!a(δ′,λ)−−−−−−−−−−→S2 q

′
p

for some δ′ such that JδK ⊆ Jδ′K. Then, ν ∈ Jδ′K and hence, by rule item 1, γ α−→S2
γ′.

The case for rule item 2 is similar.
For rule item 3, it must be α = t, for some t, and γ′ = (q,w, ν + t). Hence, we

have to show:
γ t−→S2

γ′

The only possible rule for the above transition is item 3. Items 3a to 3c clearly hold for
S2 as well. It remains to show it is the case also for items 3d and 3e.

For item 3d, suppose eS2 = (qp, `S2 , q
′
p) is a non-deferrable edge of qp with respect

to S2 in γ, for some p. We have to show there is an edge e′S2
= (qp, `

′
S2
, q′′p) in S2

that is non-deferrable in γ′. Since v is NDP, qp must have an edge `S1
non-deferrable

in γ for S1, and hence, since condition (d) holds for S1 by the assumption γ t−→S1
γ′,

it holds that qp `
′
S1−−→S1

q′′p for some q′′p , `
′
S1

such that `′S1
is non-deferrable in γ′. Now,

let (qp, `′S2
, q′′p) = e′S2

be the unique edge of S2 such that e′S1
= f(e′S2

). Since, by
definition 8, Jguard(`′S1

)K ⊆ Jguard(`′S2
)K, `′S2

is future-enabled in ν + t, and hence
item 3d holds for S2.

For item 3e, suppose that, for some p, qp has a latest enabled (with respect to S2)
sending action ` in γ. We have to show ` is future enabled in ν′. Since v is latest-
enabled send preserving, qp has a latest-enabled (with respect to S1) sending edge

32

(qp, `
′, q′′p) in ν′. By definition 8, it follows that (qp, f(`

′), q′′p) ∈ Ep for S2, and
guard(`′) ⊆ guard(f(`′)), and hence (qp, f(`

′), q′′p) is future-enabled in ν′. Now, since
` is latest-enabled with respect to S2, by definition 2 it follows guard(f(`′)) ≤nu
guard(`). Hence ` is future-enabled in ν′ as well. ut

Lemma 12. LESP+NDP restrictions of vsr preserve behaviour.

Proof. Let v be a LESP & NDP restriction of vsr , and let S1 and S2 be systems
such that S1 vsr S2. We have to show there is a timed simulation r between states of
S1] S2 that relates the initial configuration of S1 with the initial configuration of S2,
i.e. ((1, s0), (2, s0)) ∈ r. Define:

r
def
=
{
((1, γ), (2, γ))

∣∣ γ0−→∗S1
γ
}

Clearly, ((1, γ0), (2, γ0)) is a member of r. The fact that r is a timed simulation is an
immediate consequence of lemma 11. ut

Lemma 13. Let S be a system that progress. Then, for all γ = (q,w, ν) not final such
that γ0−→∗γ, there is p such that qp has an edge ` such that ` is latest-enabled sending
in γ or ` is non-deferrable in γ.

Proof. Let S and γ be as in the statement. Suppose, by contradiction, that, for every
p, every edge of qp is neither latest-enabled sending nor non-deferrable in γ. As a con-
sequence, for all t and for all input labels α, (q,w, ν + t) 6 α−→. It is still possible that
(q,w, ν + t) α−→ for some t and some output label α. If this is not the case, system S
does not enjoy progress, and we are done by contradiction. Otherwise, there must be
some p such that qp has a future-enabled sending edge ` in γ. Since qp has no latest-
enabled sending edges, qp must have a reading edge `′ such that guard(`′) 6≤ν guard(`).
Then, there is t such that ν + t ∈ Jguard(`′)K and for all t′ ≥ t, ν + t′ 6∈ Jguard(`)K.
Then, (q,w, ν + t′) 6 act(`)msg(`)−−−−−−−→ for all t′ ≥ t. Since every machine has finitely many
edges, and S is composed by finitely many machines, iterating the above argument we
can find a t such that, for every t′ ≥ t, (q,w, ν + t′) 6 −→. Since, for every machine of γ,
conditions item 3d and item 3e of definition 4 holds trivially for any delay by assump-
tion, γ t−→(q,w, ν + t), which is stuck. Hence S does not progress: contradiction. ut

Lemma 14. LESP+NDP restrictions of vsr preserve global progress.

Proof. Let S1, S2 andv be as in the statement, and suppose that S2 has global progress.
We have to show that S1 progress. Suppose γ0−→∗S1

γ = (q,w, ν). If γ is final we
are done. If not, by lemma 12, it follows γ0−→∗S2

γ as well. Since γ is not final also
with respect to S2, γ t−→S2

α−→S2
, for some t, α. By lemma 7, BRES2

γ (t) = ∅, and, by
lemma 8, BRES2

γ (0) = ∅ as well. We wish to prove there is a t and a α 6∈ R≥0 such
that (q,w, ν + t) α−→S1

and BRES1
γ (t) = ∅. Since S2 progress, there is a machine qp of

S2 that has a latest-enabled sending or a non-deferrable edge in γ. Then, by the LESP &
NDP assumption, qp enjoys the same property with respect to S1. Now, among the set of
non-deferrable edges in γ with respect to S1, pick a minimal element eS1

= (qp, `S1
, q′p

33

with respect to the preorder ≤ν . Such an element exists because ≤ν is total and the set
is finite and not empty. Then, since `S1

is future-enabled in γ, there is some t such that
(q,w, ν + t) α−→S1

, where α is the action associated to `S1
. Since eS1

is minimal with
respect to ≤ν , every non-deferrable edge in γ of S1 is non-deferrable in (q,w, ν + t).
Therefore, by lemma 9, γ t

′
−→S1

α′
−→S1 for some t′ and α′ 6∈ R≥0. ut

Lemma 15. Let S1 and S2 be systems of machines such that S2 progress S1 v S2 for
some LESP & NDP restriction v of vsrp . Then:

ρ is a maximal run of S1 =⇒ ρ is a maximal run of S2

Proof. Let S1 and S2 be as in the statement, and suppose ρ is a maximal run of S1. We
first show that ρ is a run of S2, and then we show it is maximal for S2. For the first
part, it suffice to show that, for all i such that γi ti−→S1

γ′i
αi−→S1

γi+1 appairs in ρ, it holds
that γi ti−→S2

γ′i
αi−→S2

γi+1. But this follows by lemma 11. For the second part, i.e. ρ is
maximal with respect to S2, first note that if ρ is infinite the thesis is trivial. So, suppose
ρ is finite, with last state γn. Since ρ is maximal with respect to S1, ¬γn t−→S1

α−→S1 for
all t, α. But then, since S2 progress, by lemma 14 S1 progress as well, and thus γn is
final for S1. Therefore, γn is final for S2 too, and ρ is maximal for S2. ut

Lemma 16. LESP+NDP restrictions of vsr preserve local progress.

Proof. Suppose S2 has local progress. By lemma 4, S2 has global progress as well.
Then, by lemma 15, maximal runs of S1 are maximal runs of S2. Therefore, by lemma 10,
S1 has local progress. ut

Proof of Theorem 6

Composition of lemma 12, lemma 14 and lemma 16. ut

Proof of Lemma 5

The fact that vsrp is a restriction of vsr follows by an easy inspection of definition 8.
It remains to show vsrp is NDP. Let A1 and A2 be systems of machines such that
A1 vsrp A2, with isomorphism f , and let γ = (q,w, ν) be such that γ0−→∗S1

γ =
(q,w, ν). Suppose qp has a non-deferrable future-enabled edge e = (qp, `, q

′
p) in γ

for S2. Then, f(e) = (qp, `
′, q′p), for some `′. Note that `′ is non-deferrable in γ for

S1. It remains to show `′ is future-enabled in γ. Since ` is future-enabled in γ and, by
definition 8, ↓ Jguard(`)K ⊆ ↓ Jguard(`)K, `′ is future-enabled in γ. ut

Proof of Theorem 7

Composition of theorem 6 and lemma 5. ut

C.5 Local LESP

Lemma 17. For all S = (Ap)p∈P , for all γ = (q,w, ν) such that γ0−→∗γ, and for all
p: ν ∈ PostAp

qp (Pre
Ap
qp).

34

Proof. Let S be as in the statement. We show the thesis holds for all γ = (q,w, ν) and
for all n such that γ0−→∗γ. By induction on n. For the base case, it must be γ = γ0,
and since all qp are initial in the respective machines, ν0 ∈ Pre

Ap
qs ⊆ Post

Ap
qs (Pre

Ap
q)

for all p. For the inductive case, let γ = (q,w, ν) be such that γ0−→nγ′−→γ for some
γ′ = (q′,w′, ν′). We proceed by cases on the rule of definition 4 used for deriving
γ′−→γ.

– Rule item 1. It must be α = pr!a, (q′p, α(δ, λ), qp) ∈ Ep, ν = λ(ν′) and ν′ ∈ JδK.
Since machines do not share cloks, by the induction hypothesis it follows ν ∈
PostAs

qs (Pre
As
qs) for all participant s 6= p. For p, note that ν ∈ PreAp

qp . Therefore

ν ∈ PostAp
qp (Pre

Ap
qp).

– Rule item 2. Similar to the above.
– Rule item 3. It must be α = t, q = q′, w = w′, ν = ν′ + t and conditions (d) and

(e) hold. By the induction hypothesis ν′ ∈ PostAp
qp (Pre

Ap
qp). The thesis follows by

condition (d).
ut

We recall some operations on sets of clock valuations from [8], that can be lifted to
guards. They are instrumental in the proof of the decidability of LLESP.

Definition 22. For all sets of clock valuations K, and for all reset sets λ, we define:

↑ K def
= {ν + t | ν ∈ K}

λ(K)
def
= {λ(ν) | ν ∈ K}

Below we define the sets of clock valuations that satisfies, respectively, the guard of
a sending edge and the guard of a receive edge.

Definition 23. For all A and for all q state of A, we define the following sets of clock
valuations:

q!
def
= {ν | ∃p, r, a, δ, λ : q pr!a(δ, λ)−−−−−−→∧ ν ∈ JδK}

q?
def
= {ν | ∃p, r, a, δ, λ : q rp?a(δ, λ)−−−−−−→∧ ν ∈ JδK}

We define the set of guards RGuards(q) in the following way (λ below is lifted to
guards):

RGuards(q)
def
= {λ(δ) | ∃` : q `−→∧ δ = guard(`) ∧ λ = reset(`)}

And we let δ0 be the guard that equals every clock to zero.

Below, simbol \ denotes set difference.

Lemma 18. For all A, for all q state of A, and for all K, we have that:

1. PreAq =

{
J(
∨
δ∈RGuards(q) δ) ∨ δ0K if q = q0

J
∨
δ∈RGuards(q) δK otherwise

2. LesAq = ↓ (q ! \ ↓ (q? \ ↓ q !)).

35

3. PostAq (K) = ↑ (K \ LesAq) ∪ (↑ K \ LesAq).

Proof. Item 1 follows immediately by the semantics of guards in section 2.1. For item 2,
first note that ↓ (q! \ ↓ (q? \ ↓ q!)) ={

ν
∣∣∃t : ν + t ∈ q! ∧ (∀t′ ≥ t : ν + t′ ∈ q? =⇒ ∃t′′ ≥ t′ : ν + t′′ ∈ q!)

}
(2)

Indeed:

↓ (q! \ ↓ (q? \ ↓ q!)) =
↓ (q! \ ↓ (

{
ν
∣∣ ν ∈ q?} \ {ν ∣∣∃t : ν + t ∈ q!

}
)) =

↓ (q! \ ↓ (
{
ν
∣∣ ν ∈ q? ∧ ∀t : ν + t 6∈ q!

}
)) =

↓ (q! \
{
ν
∣∣∃t : ν + t ∈ q? ∧ ∀t′ ≥ t : ν + t′ 6∈ q!

}
) =

↓
{
ν
∣∣ ν ∈ q! ∧ (∀t : ν + t ∈ q? =⇒ ∃t′ ≥ t : ν + t′ ∈ q!)

}
={

ν
∣∣ ∃t : ν + t ∈ q! ∧ (∀t′ ≥ t : ν + t′ ∈ q? =⇒ ∃t′′ ≥ t′ : ν + t′′ ∈ q!)

}
Now, suppose that ν ∈ LesAq , i.e. q has a latest-enabled sending edge in ν. Then, q `−→
for some sending action ` with guard δ such that there is t : ν + t ∈ JδK and, for
all `′ such that q `

′
−→, it holds that guard(`′) ≤ν δ. Then, since ` is sending, it follows

ν + t ∈ q! with t as above. By definition of ≤ν (definition 2), it follows that ν satisfies:
(∀t′ ≥ t : ν + t′ ∈ q? =⇒ ∃t′′ ≥ t′ : ν + t′′ ∈ q!). Therefore, by eq. (2),
ν ∈ ↓ (q! \ ↓ (q? \ ↓ q!)). For the converse, suppose ν ∈ ↓ (q! \ ↓ (q? \ ↓ q!)). Then, q
has some future-enabled sending edge in ν. Let ` be the action associated to the latest-
enabled (in ν) among sending edges of q. It must exists because≤ν is total, q has finitely
many edges, and a latest-enabled sending edge of q exists. Now, suppose q `

′
−→, for some

`′. We have to show guard(`′) ≤ν guard(`). If `′ is sending the thesis follows by the
assumption that ` is latest-enabled among sending edges. If `′ is receiving, suppose
ν + t′ ∈ guard(`′), for some t′. By eq. (2), there is some t such that ν + t ∈ q!. If
t′ ≥ t, there is some t′′ ≥ t such that t′′ ∈ q!, and hence, since ` is latest-enabled
among sending edges, ` is future-enabled in ν+ t′′ and we are done. If t′ < t, it follows
` future-enabled in t′ with an argument similar to above, and we are done.

For item 3:

PostAq (K) =
{
ν + t

∣∣ ν ∈ K ∧ (ν ∈ LesAq =⇒ ν + t ∈ LesAq)
}

=
{
ν + t

∣∣ ν ∈ K ∧ (ν 6∈ LesAq ∨ ν + t ∈ LesAq)
}

=
{
ν + t

∣∣ (ν ∈ K ∧ ν 6∈ LesAq) ∨ (ν ∈ K ∧ ν + t ∈ LesAq)
}

=
{
ν + t

∣∣ ν ∈ K ∧ ν 6∈ LesAq
}
∪
{
ν + t

∣∣ ν ∈ K ∧ ν + t ∈ LesAq
}

= ↑
{
ν
∣∣ ν ∈ K ∧ ν 6∈ LesAq

}
∪ ({ν + t | ν ∈ K} ∩

{
ν
∣∣ ν ∈ LesAq

}
)

= ↑ (K \ LesAq) ∪ (↑ K \ LesAq)

ut

Proof of Theorem 8
Let v be a system refinement induced by some locally LESP point-wise refinement,
and let S1 = (A1

p)p∈P and S2 = (A2
p)p∈P be systems of machines such that S1 v S2.

Suppose that γ0−→∗S1
γ = (q,w, ν), and that qp has a latest-enabled sending edge eS2

in γ for S2, i.e. ν ∈ LesA
2
p

qp . We have to show that qp has a latest-enabled sending edge

36

eS2 in γ for S1, i.e. ν ∈ LesA
1
p

qp . By lemma 17, ν ∈ PostA
1
p

qp (Pre
A1

p
qp). Hence, since v is

locally LESP by assumption, ν ∈ PostA
1
p

qp (Pre
A1

p
qp) ∩ Les

A1
p

qp and hence ν ∈ LesA
1
p

qp .
Decidability follows by the fact that, by lemma 18, we can effectively construct

guards that represents PostAq (Pre
A
q) ∩ Les

A′

q and PostAq (Pre
A
q) ∩ LesAq respectively,

and checking wether JδK ⊆ Jδ′K is decidable. ut

C.6 Proofs for Section 5.5
Proof of Theorem 9
A simple inspection of definition 6. ut

Proof of Theorem 10
Let S be as in the statement, and suppose S has global progress. We have to show S
has global progress also with the urgent semantics. So, suppose γ0−→∗uγ = (q,w, ν).
First note that, by theorem 9, γ0−→∗γ as well. If γ is final, we are done. If not, there are
t and α such that γ t−→ α−→. If γ t−→u we are done. If not, there must be some p and t′ < t
such that qp has non-deferrable edge in (q,w, ν + t′). Among these edges, pick the
minimum element e = qp, `, q

′
p with respect to ≤ν . It exists because there are finitely

many such edges and ≤ν is total. Now, take the least t such that ν + t ∈ Jguard(`)K.
The existence of such a t follows by the fully left closed assumption. Clearly, γ t−→u

α−→,
where α is the label associated to `. ut

37

	Compositional Asynchronous Timed Refinement

