
Compositional Asynchronous Timed Refinement

Massimo Bartoletti1, Laura Bocchi2, and Maurizio Murgia2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 University of Kent, Canterbury, UK

Abstract. We develop a theory of refinement for timed asynchronous systems, in the
setting of Communicating Timed Automata. Our notion of refinement is compositional
(i.e., the refinement of a system is obtained by refining its components independently)
and decidable. We establish a decidable condition under which our refinement preserves
behavioural properties of systems, such as their global and local progress. Our theory
provides guidelines on how to implement timed protocols using the real-time primitives
of programming languages. We validate our theory though a series of experiments, sup-
ported by an open-source tool which implements our verification techniques.

1 Introduction
Formal reasoning of real-time computing systems is supported by well-established the-
ories and frameworks based, for instance, on timed automata [1, 28, 40]. In the stan-
dard theory of timed automata, communication between components is synchronous:
a component can send a message only when its counterpart is ready to receive it.
However, in many concrete scenarios, such as web-based systems, communications
are asynchronous and often implemented through middlewares supporting FIFO mes-
saging [2, 38]. These systems can be modelled as Communicating Timed Automata
(CTA) [26], an extension of timed automata with asynchronous communication. Asyn-
chrony comes at the price of an increased complexity: interesting behavioural prop-
erties, starting from reachability, become undecidable in the general case, both in the
timed [19] and in the untimed [11] setting. Several works propose restrictions of the
general model, or sound approximate techniques for the verification of CTAs [8, 19].
These works leave one important problem unexplored: the link between asynchronous
timed models and their implementations.

The relationship between models at different levels of abstraction is usually ex-
pressed as a refinement relation. Refinements have been used, for instance, to create
abstract models which enhance effectiveness of verification techniques (e.g., abstrac-
tion refinement [22, 39], time-wise refinement [36]), or to concretize abstract models
into implementations [18, 20]. Existing notions of refinement between timed models
are based on synchronous communications [4,14,23,29]. Asynchronous refinement has
been investigated in the untimed setting, under the name of subtyping between session
types [5,17,21,30–32]. To our knowledge, no notion of refinement has been yet investi-
gated in the asynchronous timed setting. The only work that studies a notion close to that
of refinement is [9], which focusses on the relation between timed multiparty session
types and their implementations (processes in an extended π-calculus). The work in [9]
has two main limitations. First, their model is not as general as CTAs: in particular, it
does not allow states with both sending and receiving outgoing transitions (so-called

mixed states). Mixed states are crucial to capture common programming patterns like
timeouts [34] (e.g. a server waiting for a message that sends a timeout notification after
a deadline). Some programming languages provide specific primitives to express time-
outs, e.g. the receive/after construct of Erlang [3]. The second limitation of [9] is that
its calculus is very simple (actions are statically set to happen at precise points in time),
and cannot express common real-world blocking receive primitives (with or without
timeout) that listen on a channel until a message is available.

To be usable in practice, a theory of refinements for timed asynchronous systems
should support real-world programming patterns (e.g., timeouts à la Erlang) and primi-
tives, and feature decidable notions of refinement. Further, refinement should be compo-
sitional (i.e. a system can be refined by refining its single components, independently),
and preserve desirable properties (e.g., progress) of the abstract system being refined.

1.1 Contributions
We develop a theory of asynchronous timed refinement for CTAs. Our main purpose
is to study preservation of behavioural properties under refinement, focussing on two
aspects: timed behaviour and progress. The former kind of preservation, akin timed
similarity [15], ensures that the observable behaviour of the concrete system can be
simulated by the abstract system. The latter requires that refinement does not introduce
deadlocks, either globally (i.e., the whole system gets stuck), or locally (i.e., a single
CTA gets stuck, although the whole system may still proceed).

Refinement We introduce a new refinement relation. This relation is decidable, and
compositional (i.e., the refinement of a system of CTAs is obtained by refining its com-
ponents, independently) so to enable modular development of systems of CTA. Our
refinement operates on time constraints: it may restrict time constraints of any (send
or receive) action. Further, for receive actions, the refined constraint must include the
deadline of the original constraint (i.e., the receiving component must be ready to re-
ceive until the very last moment allowed of the original constraint). We anticipate that
this way of refining receive actions is key to obtain positive results.

Positive results Our main positive result (Theorem 3) is a decidable condition called
Locally Latest-Enabled Send Preservation (LLESP) ensuring preservation of timed be-
haviour, global and local progress under our refinement. To assess the practicality of our
theory we develop a tool and apply, with the help of the tool, instances of our refinement
to a portfolio of case studies from literature. Our refinement and the LLESP condition
naturally apply to most of the case studies in our portfolio. In Section 6 we show how
our tool and results can be used to guide the implementation of timed protocols with
the Go programming language.

Negative results We also considered other refinement strategies: (i) arbitrary restriction
of constraints of send and receive actions (similarly to [9]), and (ii) asymmetric restric-
tion where constraints of send actions may be restricted, while those of receive actions
may be relaxed (this is the natural timed extension of the subtyping relation in [21]).
Besides being relevant in literature, (i) and (ii) ultimately reflect common programming
practices: (i) caters for e.g. non-blocking receive with constraint reduced to an arbitrary
point in the model’s guard, and (ii) caters e.g. for blocking receive without timeouts. For
(i) and (ii) we only have negative results, even when LLESP holds, and even if mixed

2

states are forbidden (Fact 4). Our negative results have a practical relevance on their
own: they establish that if you implement a CTA as described above, you may have no
guarantees of behaviour/progress preservation.

A new semantics for CTAs The original semantics for CTAs [26] was introduced for
studying decidability issues for timed languages. To achieve such goals, [26] adopts the
usual language-based approach of computability theory: (1) it always allows time to
elapse, even when this prevents the system from performing any available action, and
(2) it rules out ‘bad’ executions a posteriori, e.g. only keeping executions that terminate
in final states. Consider, for example, the following two CTAs:

As : q0 q1
sr!a(x ≤ 2) Ar : q′0 q′1

sr?a(y ≤ 3)

The CTA As models a sender s who wants to deliver a message a to a receiver r. The
guard x ≤ 2 is a time constraint, stating that the message must be sent within 2 time
units. The receiver wants to read the message a from s within 3 time units. In [26], a
possible (partial) computation of the system (As,Ar) would be the following:

γ0 = ((q0, q
′
0), (ε, ε), {x, y 7→ 0}) 5−→ ((q0, q

′
0), (ε, ε), {x, y 7→ 5})

The tuple γ0 at the LHS of the arrow is the initial configuration of the system, where
both CTAs are in their initial states; the pair (ε, ε) means that the communication queues
between r and s are empty (in both directions); the last component means that the
clocks x and y are set to 0. The label on the arrow represents a delay of 5 time units. This
computation does not correspond to any reasonable behaviour of the given protocol.
What we would expect, is that the send action is performed before the deadline expires.

To capture this intuition, we introduce a semantics of CTAs, requiring that the elaps-
ing of time does not disable the send action in As. Namely, we can procrastinate the send
for 2 time units; then, time cannot delay further, and the only possible action is the send:

γ0
2−−−→ ((q0, q

′
0), (ε, ε), {x, y 7→ 2}) sr!a−−−→ ((q1, q

′
0), (a, ε), {x, y 7→ 2})

In Theorem 1 we prove that our semantics enjoys a form of persistency: if at least one
receive action is guaranteed to be enabled in the future (i.e. a message is ready in its
queue and its time constraint is still satisfiable now or at some point in the future) then
time passing has to preserve at least one these guaranteed actions. Instead, time passing
can disable all send actions, but only if it preserves at least one guaranteed receive.

It is well known that language-based approaches are not well suited to deal with
concurrency issues like those addressed in this paper. To see this, consider the following
CTAs, where the states with a double circle are accepting:

q0 q1
Ap : pq!a(y ≤ 1)

p0 p1
Aq : pq?a(x ≤ 1)

q0 q1
A′
p : pq!a(y ≤ 2)

The systems S = (Ap,Aq) and S′ = (A′p,Aq) accept the same language, namely
t0 pq!a t1 pq?a t2 with t0 + t1 ≤ 1 and t2 ∈ R≥0. So, the language-based approach
does not capture a fundamental difference between S and S′: S enjoys progress, while

3

receive {s,a1} -> Body1
. . .

{s,ak} -> Bodyk
after 10 -> p!b

q0 · · ·

q1

qk

q′

sr?a1(x
< 10)

sr?ak(x < 10)

rp!b(x = 10)

Fig. 1: The receive/after pattern of Erlang (left), and the corresponding CTA (right).

S′ does not. Our approach to defining CTA semantics provides us with a natural way
to reason on standard properties of protocols like progress, and to compare behaviours
using e.g., (bi)simulation.

Our semantics allows for CTAs with mixed states, by suitably extending the one
in [8] (where, instead, mixed states are forbidden). As said above, mixed states enable
useful programming patterns. Consider e.g. the code snippet in Figure 1 (left), showing
a typical use of the receive/after construct in Erlang. The snippet attempts to receive
a message matching one of the patterns {s,a1},. . . ,{s,ak}, where s represents the
identifier of the sender, and a1,. . . ,ak are the message labels. If no such message arrives
within 10 ms, then the process in the after branch is executed, sending immediately a
message b to process p. This behaviour can be modelled by the CTA in Figure 1 (right),
where q0 is mixed. Our semantics properly models the intended behaviour of timeouts.

Urgency. Another practical aspect that is not well captured by the existing seman-
tics of CTAs [8, 26] is urgency. Indeed, while in known semantics [8, 26] receive ac-
tions can be deferred, the receive primitives of mainstream programming languages
unblock as soon as the expected message is available. These primitives include e.g.
the non-blocking (resp. blocking) WaitFreeReadQueue.read() (resp. WaitFree
ReadQueue.waitForData()) of Real-Time Java [13], and receive...after in Er-
lang, just to mention some. The consequence of analysing a system only on the basis
of a non-urgent semantics may be a (risky) inconsistence between the behaviour of the
model and that of the final implementation.

To correctly characterise urgent behaviour, we introduce a second semantics for
CTAs (Definition 13), that is urgent in what it forces receive actions as soon as the ex-
pected message is available. Theorem 5 shows that the urgent semantics preserves the
behaviour of the non-urgent. However, the urgent semantics does not enjoy the preser-
vation results of Theorem 3. Still, it is possible to obtain preservation under refinement
by combining Theorem 3 with Theorem 6. More specifically, the latter ensures that, if
a system of CTAs enjoys progress in the non-urgent semantics, then it will also enjoy
progress in the urgent one, under a minor and common assumption on the syntax of
time constraints. So, one can use Theorem 3 to obtain a refinement which guarantees
progress (in the non-urgent semantics), and then lift the preservation result to the urgent
semantics through Theorem 6.

Overall, our theory suggests that, despite the differences between semantics of
CTAs and programming languages, verification techniques based on CTAs can be help-
ful for implementing distributed timed programs.

4

Additional material The proofs of our statements and additional examples are in the
appendix. We make available a tool (the link is omitted to preserve anonymity) which
implements our verification techniques, and our suite of experiments.

2 Communicating Timed Automata
We assume a finite set P of participants, ranged over by p, q, r, s, . . . , and a finite
set A of messages, ranged over by a, b, . . . We define the set C of channels as C =
{pq | p, q ∈ P and p 6= q}. We denote with A∗ the set of finite words on A (ranged over
by w, w′, . . .), with ww′ the concatenation of w and w′, and with ε the empty word.

Clocks and guards. Given a (finite) set of clocks X (ranged over by x, y, . . .), we
define the set ∆X of guards over X (ranged over by δ, δ′, . . .) as follows:

δ ::= true | x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2 (c ∈ Q≥0)

Clock valuations. We denote with V = X → R≥0 the set of clock valuations on X .
Given t ∈ R≥0, λ ⊆ C, and a clock valuation ν, we define the clock valuations: (i) ν+t
as the valuation mapping each x ∈ X to ν(x)+t; (ii) λ(ν) as the valuation which resets
to 0 all the clocks in λ ⊆ X , and preserves to ν(x) the values of the other clocks x 6∈ λ.
Furthermore, given a set K of clock valuations, we define the past of K as the set of
clock valuations ↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K}.
Semantics of guards. We define the function J·K : ∆X → ℘(V) as follows:

JtrueK = V Jx ≤ cK = {ν | ν(x) ≤ c} Jδ1 ∧ δ2K = Jδ1K ∩ Jδ2K

J¬δK = V \ JδK Jc ≤ xK = {ν | c ≤ ν(x)}

Actions. We denote with Act = C × {!, ?} × A the set of untimed actions, and with
TActX = Act×∆X × 2X the set of timed actions (ranged over by `, `′, . . .). A (timed)
action of the form sr!a(δ, λ) is a sending action: it models a participant s who sends
to r a message a, provided that the guard δ is satisfied. After the message is sent, the
clocks in λ ⊆ X are reset. An action of the form sr?a(δ, λ) is a receiving action:
if the guard δ is satisfied, r receives a message a sent by s, and resets the clocks in
λ ⊆ X afterwards. Given ` = pr!a(δ, λ) or ` = qp?a(δ, λ), we define: (i) msg(`) = a,
(ii) guard(`) = δ, (iii) reset(`) = λ, (iv) subj(`) = p, and (v) act(`) is pr! (in the first
case) or qp? (in the second case). We omit δ if true, and λ if empty.

CTAs. A communicating timed automaton A is a tuple of the form (Q, q0, X,E), where
Q is a finite set of states, q0 ∈ Q is the initial state, X is a set of clocks, and E ⊆
Q × TActX ×Q is a set of edges, such that the set

⋃
{subj(e) | e ∈ E} is a singleton,

that we denote as subj(A). We write q `−→ q′ when (q, `, q′) ∈ E. We say that a state is
sending (resp. receiving) if it has some outgoing sending (resp. receiving) edge. We say
that A has mixed states if it has some state which is both sending and receiving. We say
that a state q is final if there exist no ` and q′ such that (q, `, q′) ∈ E.

Systems of CTAs. Systems of CTAs (ranged over by S, S′, . . .) are sequences (Ap)p∈P ,
where each Ap = (Qp, q0p, Xp, Ep) is a CTA, and (i) for all p ∈ P , subj(Ap) = p;
(ii) for all p 6= q ∈ P , Xp ∩Xq = ∅ = Qp ∩Qq.

5

Configurations. CTAs in a system communicate via asynchronous message passing on
FIFO queues, one for each channel. For each couple of participants (p, q) there are two
channels, pq and qp, with corresponding queues wpq (containing the messages from
p to q) and wqp (messages from q to p). The state of a system S, or configuration, is
a triple γ = (q,w, ν) where: (i) q = (qp)p∈P is the sequence of the current states
of all the CTAs in S; (ii) w = (wpq)pq∈C with wpq ∈ A∗ is a sequence of queues;
(iii) ν :

⋃
p∈P Xp → R≥0 is a clock valuation. The initial configuration of S is γ0 =

(q0, ε, ν0) where q0 = (q0p)p∈P , ε is the sequence of empty queues, and ν0(x) = 0
for each x ∈

⋃
p∈P Xp. We say that (q,w, ν) is final when all q ∈ q are final.

We introduce a new semantics of systems of CTAs, that generalises Definition 9
in [8] to account for mixed states. To this aim, we first give a few auxiliary definitions.
We start by defining when a guard δ′ is satisfiable later than δ in a clock valuation.

Definition 1 (Later satisfiability). For all ν, we define the relation ≤ν as:

δ ≤ν δ′ ⇐⇒ ∀t ∈ R≥0 : ν + t ∈ JδK =⇒ ∃t′ ≥ t : ν + t′ ∈ Jδ′K

The following lemma states some basic properties of later satisfiability.

Lemma 1. The relation ≤ν is a total preorder, for all clock valuations ν. Further, for
all guards δ, δ′, for all t ∈ R≥0, and c, d ∈ Q≥0: (a) (x ≤ c) ≤ν (x ≤ c+d) ⇐⇒ d ≥ 0;
(b) δ ∧ δ′ ≤ν δ′; (c) δ ≤ν δ′ =⇒ δ ≤ν+t δ′.

Definition 2 (FE, LE, ND). In a configuration (q,w, ν), we say that an edge (q, `, q′) ∈
Ep is future-enabled (FE), latest-enabled (LE), or non-deferrable (ND) iff, respectively:

– ∃t ∈ R≥0. ν + t ∈ Jguard(`)K (FE)
– ∀`′, q′′ : (q, `′, q′′) ∈ Ep =⇒ guard(`′) ≤ν guard(`), and (q, `, q′) is FE (LE)
– ∃s, w′ : act(`) = sp?,wsp = msg(`)w′ and (q, `, q′) is FE (ND)

An edge is FE when its guards can be satisfied at some time in the future; it is LE
when no other edge (starting from the same state) can be satisfied later than it. The type
of action (send or receive) and the co-party involved are immaterial to determine FE and
LE edges. A receiving edge is ND when the expected message is already at the head of
the queue, and there is some time in the future when it can be read. Note that an edge
(q, sp?a(δ, λ), q′) is deferrable when wsp = bw′ and a 6= b (i.e., the first message in
the queue is not the expected one). Non-deferrability is not affected by the presence of
send actions in the outgoing edges. It could happen that two receiving edges in a CTA
are ND, if both expected messages are in the head of each respective queue.

The semantics of systems of CTAs is defined in terms of a timed transition system
(TLTS) between configurations.

Definition 3 (Semantics of systems). Given a system S, we define the TLTS JSK =
(Q,L,→), where (i) Q is the set of configurations of S, (ii) L = Act ∪ R≥0, and
(iii) γ = (q,w, ν) α−→ (q′,w′, ν′) = γ′ holds when one of the following rules apply:

1. α = sr!a, (qs, α(δ, λ), q
′
s) ∈ Es, and (a) q′p = qp for all p 6= s; (b) w′sr = wsra

and w′pq = wpq for all pq 6= sr; (c) ν′ = λ(ν) and ν ∈ JδK;

6

2. α = sr?a, (qr, α(δ, λ), q
′
r) ∈ Er, and (a) q′p = qp for all p 6= r; (b)wsr = aw′sr

and w′pq = wpq for all pq 6= sr; (c) ν′ = λ(ν) and ν ∈ JδK;
3. α = t ∈ R≥0, and (a) q′p = qp for all p ∈ P; (b) w′pq = wpq for all pq ∈ C;

(c) ν′ = ν + t; (d) for all p ∈ P , if some sending edge starting from qp is LE in γ,
then such edge is LE also in γ′; (e) for all p ∈ P , if some edge starting from qp is
ND in γ, then there exists an edge starting from qp that is ND in γ′.

We write γ−→γ′ when γ α−→γ′ for some label α, and γ α−→ if γ α−→γ′ for some configura-
tion γ′. We denote with −→∗ the reflexive and transitive closure of −→. We write γ 6−→p

when, in configuration γ, condition (3) is violated by the CTA p.

Rules (1), (2) and the first three items of (3) are adapted from [8]. In particular,
(1) allows a CTA s to send a message a on channel sr if the time constraints in δ
are satisfied by ν; dually, (2) allows r to consume a message from the channel, if δ is
satisfied. In both rules, the clocks in λ are reset. Rule (3) models the elapsing of time.
Items (a) and (b) require that states and queues are not affected by the passing of time,
which is implemented by item (c). Items (d) and (e) put constraints on when time can
pass. Condition (d) requires that time passing preserves LE sending edges: this means
that if the current state of a CTA has the option to send a message (possibly in the
future), time passing cannot prevent it to do so. Instead, condition (e) ensures that, if at
least one of the expected messages is already at the head of a queue, time passing must
still allow at least one of the messages already at the head of some queue to be received.

Our semantics (Definition 3) enjoys two classic properties [34] of timed systems.

Lemma 2. The semantics of CTAs enjoys time determinism and time additivity [34].

Our semantics does not, instead, enjoy persistency [34], because the passing of time
can suppress the ability to perform some actions. However, it enjoys a weaker persis-
tency property, stated by Theorem 1. More specifically, if a receive action is ND, then
time passing cannot suppress all receive actions: at least a ND action (not necessarily
the first one) always remains FE after a delay. Instead, time passing can disable all send
actions, but only if it preserves at least a ND receive action.

Theorem 1 (Weak persistency). For all configurations γ, γ′:

γ t
′
−→ rp?−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t

′′
−→γ′′ ∧ (γ′′ sp?−−→ ∨ γ′′ 6−→s)

γ t
′
−→ pr!−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t

′′
−→γ′′ ∧ (γ′′ ps!−−→ ∨ γ′′ sp?−−→ ∨ γ′′ 6−→s)

Definition 4 below will be useful to reason on executions of systems.

Definition 4 (Maximal run). A run of a system S starting from γ is a (possibly infinite)
sequence ρ = γ1

t1−→ γ′1
α1−→ γ2

t2−→ · · · with γ1 = γ and αi ∈ Act for all i. We omit
the clause “starting from s” when γ = γ0. We call trace the sequence t1 α1 t2 · · · .
For all n > 0, we define the partial functions: conf n(ρ) = γn, delayn(ρ) = tn,
actn(ρ) = αn. We say that a run is maximal when it is infinite, or given its last element
γn it never happens that γn t−→ α−→, for any t ∈ R≥0 and α ∈ Act.

7

q0 q1

sr!a(x < 3)

sr!b(x < 2)

A1

q2 q3

sr?a(y ≤ 4)

sr?b(y = 5)

A2

q0 q1

rp?a(x < 2)

ps!b(x < 4)

A3

Fig. 2: A collection of CTAs, to illustrate the semantics of systems.

We show the peculiarities of our semantics through the CTAs in Figure 2. First,
consider the system composed of A1 and A2. A possible maximal run of (A1,A2) from
the initial configuration γ0 = ((q0, q2), ε, ν0) is the following:

γ0
2−−→ γ1 = ((q0, q2), (ε, ε), ν0 + 2) sr!a−−→ γ2 = ((q1, q2), (a, ε), ν0 + 2)
1.5−−−→ γ3 = ((q1, q2), (a, ε), ν0 + 3.5) rs?a−−−→ γ4 = ((q1, q3), (ε, ε), ν0 + 3.5)

The first delay transition is possible because there are no ND edges in A1 (both edges
are sending), and the LE edge (q0, sr!a(x < 3), q1), continues to be LE in ν0 + 2;
further, in A2 there are no LE sending edges, and no ND edges (since the queue sr

is empty). Note that condition (d) prevents γ0 from making transitions with label t ≥
3, since (q0, sr!a(x < 3), q1) is LE in γ0, but it is not LE in ν0 + t if t ≥ 3. The
transition from γ1 to γ2 corresponds to a send action. The delay transition from γ2 to
γ3 is possible because the state of A1 is final, while the state q2 of A2 has a ND edge,
(q2, sr?a(y ≤ 4), q3), which is still ND at ν0 + 3.5. Note instead that condition (e)
prevents γ2 from making a transition with t > 2, because no edge is ND in ν0 + 2 + t
if t > 2. Indeed, the last moment when the edge (q2, sr?a(y ≤ 4), q3) is FE is y = 4.
Finally, the transition from γ3 to γ4 corresponds to a receive action.

The CTA A3 has mixed states, with the send action enabled for longer than the
receive action. We show the behaviour of A3 (abstracting from its co-parties that, we
assume, always allow delays e.g. have all guards set to true). This CTA has a LE send-
ing action (q0, ps!b(x < 4), q1) in the initial configuration γ0. Hence, condition (d) is
satisfied in γ0 iff the delay t is less than 4. Condition (e) is satisfied in γ0, as there are
no ND edges. When A3 is at state q0, with wrp = a and ν(x) = 0, the CTA allows a
delay t iff t < 2: later, no edge would be ND, so (e) would be violated. If the message
a is in the queue but it is too late to receive it (i.e., ν(x) ≥ 2), then the receive action
would be deferrable, and so a delay would be allowed — if condition (d) is respected.

3 Compositional asynchronous timed refinement
In this section we introduce a decidable notion of refinement for systems of CTAs. In
the general case (e.g. when refinements may arbitrarily alter the interaction structures),
establishing if an asynchronous (FIFO-based) communication model is a refinement of
another is undecidable, even in the untimed scenario [12,27]. Our system refinement is
defined point-wise on its CTAs. Point-wise refinement A′ v1 A only alters the guards,
in the refined CTA A′, while leaving the rest unchanged. The guards of A′ — both in
send and receive actions — must be narrower than those of A. Further, the guards in
receive actions must have the same past in both CTAs.

Formally, to define the relation A′ v1 A we use structure-preserving functions that
map the edges of A into those of A′, preserving everything but the guards.

8

Definition 5 (Structure-preserving). Let E,E′ be sets of edges of CTAs. We say that
a function f : E → E′ is structure-preserving when, for all (q, `, q′) ∈ E, f(q, `, q′) =
(q, `′, q′) with act(`) = act(`′), msg(`) = msg(`′), and reset(`) = reset(`′).

Definition 6 (Refinement). Let A = (Q, q0, X,E) and A′ = (Q, q0, X,E
′) be CTAs.

The relation A′ v1 A holds whenever there exists a structure-preserving isomorphism
f : E → E′ such that, for all edges (q, `, q′) ∈ E, if f(q, `, q′) = `′, then:
(a) Jguard(`′)K ⊆ Jguard(`)K;
(b) if (q, `, q′) is a receiving edge, then ↓ Jguard(`′)K = ↓ Jguard(`)K.

Condition (a) allows the guards of send/receive actions to be restricted. For receive
actions, condition (b) requires restriction to preserve the final deadline.

System refinement reflects a modular engineering practice where parts of the system
are implemented independently, without knowing how other parts are implemented.

Definition 7 (System Refinement). Let S = (A1, . . . ,An), and let S′ = (A′1, . . . ,A
′
n).

We write S v S′ iff Ai v1 A′i for all i ∈ 1 . . . n.

Example 1. With the CTAs below, we have: A′s v1 As, A′r v1,Ar, and A′′r 6v1 Ar.

As : q0 q1
sr!a(x ≤ 2) A′s : q0 q1

sr!a(x > 1.5 ∧ x ≤ 1.8)

Ar : q′0 q′1
sr?a(y ≤ 2) A′r : q′0 q′1

sr?a(y = 2) A′′r :
q′0 q′1

sr?a(y = 1.8)

Theorem 2 establishes decidability ofv1. This follows by the fact that CTAs have a
finite number of states and that: (i) the function ↓ JδK is computable, and the result can
be represented as a guard [7, 24]; (ii) the relation ⊆ between guards is computable.

Theorem 2. Establishing whether A′ v1 A is decidable.

We now formalise properties of systems of CTAs that one would like to be pre-
served upon refinement. Behaviour preservation, which is based on the notion of timed
similarity [15], requires that an implementation (refining system) at any point of a run
allows only actions that are allowed by its specification (refined system). Below, we use
] to denote the disjoint union of TLTSs, i.e. (Q1, Σ1,→1)] (Q2, Σ2,→2) = (Q1]
Q2, Σ1 ∪Σ2, {((i, q), a, (i, q′)) | (q, a, q′) ∈→i}), where Q1]Q2 = {(i, q) | q ∈ Qi}.

Definition 8 (Behaviour preservation). Let R be a binary relation between systems.
We say thatR preserves behaviour iff, whenever S1 R S2, we have (γ10 , 1) . (γ20 , 2) in
the TLTS JS1K] JS2K, where γ10 and γ20 are the initial configurations of S1 and S2.

Example 2 (Behaviour preservation). LetR be the inclusion of runs, let S1 = (As,A
′
r)

and S2 = (As,Ar), where:

q0 q1
As :

sr!a(x < 2)

sr!b(x > 2)

q2 q3
Ar :

sr?a(y < 2)

sr?b(true)

q2 q3
A′r :

sr?a(y < 2)

sr?b(y > 7)

9

We have that S2 R S1, while S1 R S2 does not hold, since the traces with b in S1

strictly include those of S2. The relation R preserves timed behaviour in {S1, S2}: in-
deed, (γ20 , 1) . (γ10 , 2) follows by trace inclusion and by the fact that S1, S2 have
deterministic TLTS. Now, let S3 be as S2, but for the guard of sr?b(true), which is re-
placed by y < 2. We have that S3 R S1, andR preserves timed behaviour in {S2, S3}.
However, S3 does not allow to continue with the message exchange: b is sent too late
to be received by r, who keeps waiting while b remains in the queue forever. ut

As shown by Example 2, behaviour preservation may allow a system (e.g., S3)
to remove “too much” from the runs of the original system (e.g., S2): while ensuring
that no new actions are introduced, it may introduce deadlocks. So, besides behaviour
preservation we consider below two other properties of systems: global progress of the
overall system, and local progress of each single participant.

Definition 9 (Global/local progress). We say that a system S enjoys:

global progress when: γ0−→∗γ not final =⇒ ∃t ∈ R≥0, α ∈ Act : γ t−→ α−→
local progress when: γ0−→∗γ = (q,w, ν) and qp not final =⇒

∀ maximal runs ρ starting from γ : ∃n : subj(actn(ρ)) = p

Lemma 3. If a system enjoys local progress, then it also enjoys global progress.

The converse of Lemma 3 does not hold, as witnessed by Example 3.

Example 3 (Global vs. local progress). Consider the following CTAs:

Ap :

q0

pq!a(x ≤ 2, {x})
Aq :

q1

pq?a(y < 1, {y})
A′q :

q2

pq?a(y = 2, {y})

The system (Ap,Aq) enjoys global progress, since, in each reachable configuration, Ap

can always send a message (hence the system makes an action in Act). However, if Ap

sends a after time 1, then Aq cannot receive it, since its guard y < 1 is not satisfied.
Formally, in any maximal run starting from ((q0, q1), (a, ε), {x, y 7→ 1}), there will
be no actions with subject q, so (Ap,Aq) does not enjoy local progress. The system
(Ap,A

′
q), instead, enjoys both global and local progress. ut

Definition 10 (Progress preservation). Let R be a binary relation between systems.
We say that R preserves global (resp. local) progress iff, whenever S1 R S2 and S2

enjoys global (resp. local) progress, then S1 enjoys global (resp. local) progress.

Example 4. Let S1, S2, S3 as in Example 2. Observe that S1 and S2 enjoy progress
(both local and global), while S3 does not enjoy progress (either local or global). Hence,
R = {(S2, S1), (S3, S1), (S3, S2)} (i.e., trace inclusion restricted to the three given
systems), does not preserve progress (either local or global). ut

10

4 Verification of properties of refinements
We now study preservation of behaviour/progress upon refinements. Our first result is
negative: in general, refinement does not preserve behaviour nor (local/global) progress,
even for CTAs without mixed states. This is shown by following example.

Example 5. Let S = (Ap,Aq), and let S′ = (A′p,Aq), where:

p0 p1
Ap :

qp?a(x ≤ 2)

pq!b(x ≤ 3)

p0 p1
A′p :

qp?a(x ≤ 2)

pq!b(x ≤ 1)

q0 q1
Aq : pq?b(y = 4)

We have that A′p v1 Ap, and so S′ v S. Behaviour is not preserved, because S′ allows
the run γ0 4−→, while S does not. Progress, which is enjoyed by S (both local and global)
does not hold in S′. Indeed, S′ allows γ0 2−→γ = ((p0, q0), ε, ν0 + 2), but there are no t
and α ∈ Act such that γ t−→ α−→. ut

The issue in Example 5 is that a LE sending edge, which was crucial for making
execution progress, is lost after the refinement. In Definition 12 we devise a decidable
condition — which we call LLESP after locally LE send preservation — that excludes
scenarios like the above. In Theorem 3 we show that, with the additional LLESP condi-
tion, v1 guarantees preservation of behaviour and progress. Unlike Definition 6, which
is defined “edge by edge”, LLESP is defined “state by state”. This is because LLESP
preserves the existence of LE sending edges (outgoing from the given state), and not
necessarily the LE sending edge himself, making the analysis more precise.

Definition 11. Let A = (Q, q0, X,E), let q ∈ Q, and letK be a set of clock valuations.
We define the following sets of clock valuations:

PreAq = {ν0 | q0 = q} ∪ {ν | ∃q ′, `, ν′ : (q ′, `, q) ∈ E , ν′ ∈ Jguard(`)K, ν = reset(`)(ν′)}
LesAq = {ν | q has a LE sending edge in ν}
PostAq (K) =

{
ν + t

∣∣ ν ∈ K ∧ (ν ∈ LesAq =⇒ ν + t ∈ LesAq)
}

We briefly comment the auxiliary definition above. The set LesAq is self-explanatory,
and its use is auxiliary to the definition of Post . The sets PreAq and PostAq (K) are useful
for obtaining an over-approximation, denoted PostAq (Pre

A
q), of the set of clock valua-

tions ν such that there is a configuration (q,w, ν), where q is in q, that can be reached
by the initial configuration of some system S containing A. The set PreAq contains all
(but not only) the clock valuations under which a configuration like the one above can
be reached with a label α ∈ Act fired by A. Instead, PostAq (K) computes a symbolic
step of timed execution, in the following sense: if ν ∈ K and γ t−→(q,w, ν′), where q is
in q, then ν′ ∈ PostAq (K). This is obtained by defining PostAq (K) as the set of clock
valuations that would satisfy item (d) of Definition 3 for A at runtime, when starting
from a configuration whose clock valuation is in K. Since every configuration reach-
able with a finite run and with an action in Act as last label can also be reached by a run
ending with a delay (the original run followed by a null delay), the set PostAq (Pre

A
q)

contains the clock valuations we were looking for.

11

Definition 12 (LLESP). We say that a relation R is locally LE send preserving (in
short, LLESP) iff, for all A = (Q, q0, X,E) and A′ = (Q, q0, X,E

′) such that A′ R A,
and for all q ∈ Q: PostA

′

q (Pre
A′

q) ∩ LesAq ⊆ PostA
′

q (Pre
A′

q) ∩ Les
A′

q . We define vL
1 as

the largest LLESP relation contained in v1.

Basically, LLESP requires that, whenever A′ R A, if q has a LE sending edge in ν
with respect to A, then q has a LE sending edge in ν with respect to A′, where ν ranges
over elements of PostA

′

q (Pre
A′

q).
It follows our main result: vL

1 preserves behaviour and progress (both global and
local). Further, LLESP is decidable, so paving the way towards automatic verification.

Theorem 3 (Preservation under LLESP). vL
1 preserves behaviour, and global and

local progress. Furthermore, establishing whether A′ vL
1 A is decidable.

Negative results on alternative refinement strategies As mentioned in Section 1,
besides introducing a new refinement we have investigated behavioural and progress
preservation using two refinement strategies known in literature. They are both variants
of our definition of refinement that alter conditions (a) and (b) in Definition 6. The first
strategy (e.g., [9]) is a naı̈ve variant of Definition 6 where (b) is dropped. The second
strategy (e.g., [21]) is an asymmetric variant of Definition 6 that allows to relax guards
of the receive actions: (a) is substituted by Jguard(`′)K ⊇ Jguard(`)K and (b) is dropped.

Fact 4 LLESP restrictions of ‘naı̈ve’ and ‘asymmetric’ refinements do not preserve
behaviour, global progress, nor local progress, not even if mixed states are ruled out.

Counter-examples of behaviour and progress preservation for LLESP restrictions of
‘naı̈ve’ and ‘asymmetric’ refinements without mixed states are relegated in Appendix C.4
(Examples 14 and 15, respectively). Note that Example 5 is also a counter-example for
‘naı̈ve’ and ‘asymmetric’ refinements, in the general case.
Experiments We evaluate our theory against a suite of timed protocols from literature.
To support the evaluation we built a tool that determines, given A and A′, if A′ v1 A and
if A′ vL

1 A. For each role of each protocol we construct three refinements as follows:
(i) for receiving edges, if the guard has a strict upper bound (e.g. x ≤ 10) then we
restrict the guard as its upper bound (e.g. x = 10); if the upper bound is not strict (e.g.
x < 10) we ‘procrastinate’ the guard, but making it fully left-closed (Definition 14)
(e.g. 10−ε ≤ x < 10, where we set ε as a unit of time); if there is no upper bound (e.g.
x > 10) the guard is left unchanged; (ii) for sending edges, if the guard has an upper
bound (e.g. x ≤ 10) then we refine it with, respectively, the lower bound (e.g. x = 0),
the average value (e.g. x = 5), and the upper bound (if any) (e.g. x = 10); Our tool
correctly classifies the pairs of CTAs defined above as refinements. In Table 1 we show
the output of the tool when checking LLESP. We can see that samples #2 and #3 never
break the LLESP property. While this should always hold for sample #3 (procrastinating
sending edges guarantees that LE sending edges are preserved), the case for sample #2
is incidental. Among the case studies, Ford Credit web portal and SMTP contain mixed
states (used to implement timeouts). The fact that, for each protocol, there is always
some sample refinement that satisfies LLESP (hence a provably safe way to implement
that protocol) witnesses the practicality of our theory. Quite surprisingly, the states that
falsify LLESP are not mixed.

12

Case study Sample #1 Sample #2 Sample #3
Ford Credit web portal [35] 7Server 3 Server
Scheduled Task Protocol [8] 3User 3Worker 3Aggregator 3User 3Worker 3Aggregator 3User 3Worker 3Aggregator

OOI word counting [33] 3Master 3Worker 3Aggregator 3Master 3Master
ATM [16] 7Bank, 3User 7Machine 3Bank 3User 3Machine 3Bank 3User

Fisher Mutual Exclusion [6] 3Producer 3Consumer 3Producer 3Producer
SMTP [37] 3Client 3Client

Table 1: Benchmarks. Roles satisfying LLESP are marked with 3, the others with 7.
We omitted roles for which the refinement strategy was not meaningful or gave identical
results to strategies in other columns.

5 Preservation under an urgent semantics
The semantics in Definition 3 does not force the receive actions to happen, (unless time
passing prevents the CTA from receiving in the future, by condition (e)). This behaviour,
also present in [8,26], contrasts with the actual behaviour of the receive primitives of
mainstream programming languages which return as soon as a message is available.

We now introduce a variant of the semantics in Definition 3 which faithfully models
this behaviour. We make receive actions urgent [10, 34] by forbidding delays when a
receiving edge is enabled and the corresponding message is at the head of the queue.
Below, Act? denotes the set of input labels.

Definition 13 (Urgent semantics of systems). Given a system S, we define the TLTS
JSKu = (Q,L,→u), where Q is the set of configurations of S, L = Act ∪ R≥0, and:

γ α−→uγ
′ ⇐⇒

{
γ α−→γ′ if α ∈ Act

γ t−→γ′ if α = t and ∀t′ < t, γ′′, α′ ∈ Act? : γ t
′
−→γ′′ =⇒ γ′′ 6 α

′
−−→

The non-urgent and the urgent semantics are very similar: they only differ in time
actions. In the urgent semantics, a system can make a time action t only if no receive
action is possible earlier than t (hence no message is waiting in a queue with ‘enabled’
guard). Theorem 5 formally relates the two semantics. Since the urgent semantics re-
stricts the behaviour of systems (by dropping some timed transitions), the urgent se-
mantics preserves the behaviour of the non-urgent one.

Theorem 5. For all systems S, the relation {((γ, 1), (γ, 2)) | γ is a configuration of S}
between states of JSKu] JSK is a timed simulation.

In general, however, a system that enjoys progress with the non-urgent semantics
may not enjoy progress with the urgent one. This is illustrated by Example 6.

Example 6. Consider the system S = (As,Ar), where:

As : q0 q1
sr!a(y = 0) Ar : q′0 q′1

sr?a(x > 3)

With the non-urgent semantics, γ0 sr!a−−→ 3−→γ = ((q1, q
′
0), (a, ε), ν0 + 3) t−→ sr?a−−−→, for all

t ∈ R≥0. With the urgent semantics, γ0 sr!a−−→u
3−→uγ 6 α−→u, for all α 6= 0. Hence, the

non-urgent semantics leads to a final state, whereas the urgent semantics does not. ut

13

The issue highlighted by Example 6 is subtle (but known in literature [10]): if there
is no precise point in time in which a guard becomes enabled (e.g. in x > 3), then
the run may get stuck. In Definition 14 we deal with this issue through a restriction on
guards, which guarantees that urgent semantics preserves progress. Our restriction, gen-
eralising the notion of right-open time progress [10] (to deal with non-convex guards),
corresponds to forbidding guards defined as the conjunction of sub-guards of the form
x > c (but we allow subguards of the form x ≥ c). To keep our results independent
from the syntax of guards, our definition is based on sets of clock valuations.

Definition 14 (Fully left closed). For all ν, and for all sets of clock valuations K, let
Dν(K) = {t | ν + t ∈ K} and let inf Z denote the infimum of Z. We say that a guard
δ is fully left closed iff: ∀ν : ∀K ⊆ JδK :

(
Dν(K) 6= ∅ =⇒ ν + infDν(K) ∈ JδK

)
.

We say that a CTA is input fully left closed when all guards in its receiving edges are
fully left closed. A system is input fully left closed when all its components are such.

Fully left closed guards ensure that there is an exact time instant in which a guard of
an urgent action becomes enabled. The requirement that left closedness must hold for
any subset K of the semantics of the guards is needed to cater for non-convex guards
(i.e. guards with disjunctions). Consider e.g. δ = 1 ≤ x ≤ 3 ∨ x ≥ 4. While δ is
left closed, it is not fully left closed: indeed, for K = Jx ≥ 4K ⊆ JδK, it holds that
infDν0(K) = 4, but ν + 4 6∈ JδK.

Example 7. The guard x > 3 in Example 6 is not fully left closed, as infDν0(Jx > 3K) =
inf {t | t > 3} = 3, but ν0+3 6∈ Jx > 3K. Instead, guard x ≥ 3 is fully left closed. Con-
sider now a variant of the system of Example 6 where guard x > 3 is replaced by x ≥ 3.
The run γ0 sr!a−−→u

3−→uγ would not get stuck and allow γ sr?a−−−→. ut

The following theorem states that urgent semantics preserves progress with respect
to non-urgent semantics, when considering fully left closed systems.

Theorem 6 (Preservation of progress vs. urgency). Let S be input fully left closed.
If S enjoys global (resp. local) progress under the non-urgent semantics, then S enjoys
global (resp. local) progress under the urgent semantics.

6 Implementing protocols via refinement
In this section we show how our theory can be exploited when implementing timed
protocols. We consider a CTA inspired to a case study from [33], modelling a (fragment
of) a protocol for distributed computation of a word count over a set of logs. The system
has two nodes: a master AM and a worker AW. We focus on AM in Figure 3 (left). AM

repeatedly: sends a log to AW, either receives data from AW (if it arrives within timeout
x < 8) or sends a notice and terminates. We implement the CTA in Go, a popular
programming language with concurrency features.

A naı̈ve implementation in Go We first attempt to implement AM obliviously of our
results. We start from the edge from q0 to q1, assuming that the preparation of the log
to send takes 1 ms (with negligible jitter). This could result in the snippet below:

14

q0 q1 q2

q3

AM :

MW!log

(x < 2, {x})

WM?data
(x ≥ 3 ∧ x < 9)

MW!log

(x ≤ 15, {x})

MW!end

(9 ≤ x ≤ 15, {x})
q0 q1 q2

q3

A′
M :

MW!log

(x = 1, {x})

WM?data
(x ≥ 6 ∧ x ≤ 7)

MW!log

(x = 8, {x})

MW!end

(x = 9, {x})
q0 q1 q2

q3

A′′
M :

MW!log

(x = 1, {x})

WM?data
(x ≥ 7 ∧ x < 9)

MW!log

(x = 10, {x})

MW!end

(x = 10, {x})

Fig. 3: AM (left); A′M 6v1 AM (centre); A′′M v1 AM (right).

1 x := time.Now() // initial setting of clock x
2 time.Sleep(x.Add(time.Millisecond * 1).Sub(time.Now())) // sleep for 1ms
3 x = time.Now() // reset x
4 MW <- "log" // send string "log" on FIFO channel MW

The statement in line 2 represents the invocation of a time-consuming function that
prepares the log to be sent in line 4 (here we send the string "log"). In general, im-
plementations may be informed by estimated durations of code instructions. Providing
such information is made possible by orthogonal research on cost analysis, e.g. [25].

Next, we want to (i) implement the receive action from q1 to q3 as a blocking primi-
tive with timeout, (ii) minimise the waiting time of the master listening on the channel,
and restrict the interval to x ≥ 6 ∧ x ≤ 7. This could result in the following:

1 time.Sleep(x.Add(time.Millisecond * 6).Sub(time.Now()))
2 select {
3 case res := <- WM:
4 // here goes the implementation of edge q3 ---> q1
5 case <- time.After(x.Add(time.Millisecond * 7)
6 .Add(time.Nanosecond).Sub(time.Now())):
7 // here goes the implementation of edge q1 ---> q2

Next, we implement the edge from q1 to q2 by substituting line 6 above with:

1 time.Sleep(x.Add(time.Millisecond * 9).Sub(time.Now()))
2 x = time.Now() // reset x
3 MW <- "end" // send string "end"

The edge from q3 to q1 can be implemented in a similar way, where the sleep statement
represents a time-consuming log preparation of 1 ms, as before.

Assessing the implementation via our tool The sketch of implementation described
in the previous paragraphs corresponds to the CTA A′M in Figure 3. The analysis of
A′M with our tool points out that A′M 6v1 AM. In fact, the constraint of receiving edges
of AM have been restricted not respecting the final deadlines.From Section 4 we know
that A′M may not preserve behaviour and progress. Suppose that the worker node is set
to send the data to AM when x = 8.5: according to the original specification AM, this
message is in time hence the worker will expect to receive a log message back from the
master. However, in the implementation reflected in A′M, the master will reply with an
end message, potentially causing a deadlock. Thanks to Theorem 3 we know that we
can, instead, safely restrict the constraints in A′M using v1: guard x ≥ 6 ∧ x ≤ 7 can be
amended as x ≥ 7∧x < 9. After this amendment, however, the tool detects a violation
of LLESP: the deadlines set by guards of sending edges from q3 and q1 are after the
deadline of the receive action. A correct refinement A′′M vL

1 AM is shown in Figure 3
(right). A′′M can be used to produce the following implementation in Go:

15

MW := make(chan string, 100)
WM := make(chan string, 100)
go func(){
// q0 ---> q1
x := time.Now()
time.Sleep(x.Add(time.Millisecond*1)

.Sub(time.Now()))
x = time.Now()
MW <- "log"
// q1 ---> q3
time.Sleep(x.Add(time.Millisecond*7)

.Sub(time.Now()))
select {

case res := <- WM:
// q3 ---> q2
x = time.Now()
time.Sleep(x.Add(time.Millisecond*10)

.Sub(time.Now()))
MW <- "log"
case <- time.After(x.Add(time.

Millisecond * 8).Sub(time.Now())):
// q1 ---> q2
time.Sleep(x.Add(time.Millisecond*10)

.Sub(time.Now()))
x = time.Now()
MW <- "end" }}()}

Strategy of implementation The Go implementation could be simpler (e.g., specifying
absolute delays instead of using ‘clocks’). We chose this strategy of implementation to
highlight correspondences between patterns in CTA and Go programs, which we are
using, in ongoing work, as guidelines for semi-automated code derivation from CTA.

Strategy of refinement We implemented the receive action using a blocking primitive.
In some scenarios, one may want to use non-blocking receive primitives. These can be
modelled as CTA refinements where a constraint (e.g., x ≤ 9) is restricted to a point in
time (e.g., x = 9), although this may not be possible (e.g., if the original constraint was
x < 9). In some other cases, it may be desirable to not restrict the constraint of receive
actions, for example to be able to receive a message as soon as possible, and continue.

Accounting for other delays Delays of the communication medium can be represented
in the model e.g., by adding them at the receiver side. This is common when using
separated semantics (i.e., actions are timeless and delays are modelled separately), as
they can be encoded into semantics where actions have an associated duration.

7 Conclusions
The purpose of our work was to provide formal basis to support implementation of well-
behaved systems from well-behaved models. We have given a decidable refinement and
a condition (LLESP) that guarantee behaviour and progress preservation.

In general, establishing if an asynchronous communication model is a refinement of
another is undecidable [12,27]. We obtained decidability by focusing on “purely timed”
refinements (structure preserving mappings that only affect guards). While not fully
general (e.g., it does not affect the branching structures of CTAs), our refinement cap-
tures the practical relationship between models, and implementations obtained by fol-
lowing those models (as shown in Section 6). Moreover, our refinement and the LLESP
condition apply well to realistic protocols expressed as CTA (Section 4): for each role of
each protocol in our portfolio, there exist one or more non-trivial (i.e. not the identity)
LLESP refinements, from which one can derive behaviour- and progress-preserving im-
plementations of that protocol. Other “purely timed” refinements strategies inspired by
literature gave only negative results (Fact 4) when applied to the asynchronous timed
scenario, hence e.g., even if an implementation preserves the interactions structure of
the initial CTA, and even if the timings of actions chosen for the implementation are
within the range of the guards of the initial CTA, still that implementation may not
preserve behaviour or progress.

16

Technically, we focused on interaction-based rather than language-based semantics.
In this context, our semantics extend the state of the art in two ways: mixed choices
and urgency. Mixed choices cannot be expressed in models related to session types
of [8, 9]. There, the interactions are described in terms of two constructs: selection,
which corresponds to an internal choice of send actions, and branching, an external
choice of receive actions. The behaviour of mixed states captured by our semantics
falls somewhere in between internal and external choices, so it is not expressible in the
setting of [8, 9]. Besides, the known semantics [8, 9, 26] do not account for urgency.
The preservation results from non-urgent to urgent semantics in Section 5 pave the
way to implementations of refinements (e.g. derived incrementally using the non-urgent
semantics, and relying on the results in Section 4) that preserve behaviour and progress.

Evaluation of the theory was facilitated by a tool that can also be used to guide
implementations (shown in Section 6). The tool is the first necessary step towards a
framework for assisted implementation of CTA, which is an ongoing work.

17

References
1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Advanced Message Queuing protocols (AMQP) homepage. https://www.amqp.org/
3. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf

(2007)
4. Bartoletti, M., Cimoli, T., Murgia, M.: Timed session types. Logical Methods in Computer

Science 13(4) (2017)
5. Bartoletti, M., Scalas, A., Zunino, R.: A semantic deconstruction of session types. In: CON-

CUR. Lecture Notes in Computer Science, vol. 8704, pp. 402–418. Springer (2014)
6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: SFM. Lecture Notes in

Computer Science, vol. 3185, pp. 200–236. Springer (2004)
7. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lectures on

Concurrency and Petri Nets. Lecture Notes in Computer Science, vol. 3098, pp. 87–124.
Springer (2003)

8. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR. LIPIcs,
vol. 42, pp. 283–296. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

9. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: CONCUR. Lecture
Notes in Computer Science, vol. 8704, pp. 419–434. Springer (2014)

10. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: COMPOS. Lec-
ture Notes in Computer Science, vol. 1536, pp. 103–129. Springer (1997)

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

12. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session subtyping.
Inf. Comput. 256, 300–320 (2017)

13. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edn. (2009)

14. Cattani, S., Kwiatkowska, M.Z.: A refinement-based process algebra for timed automata.
Formal Asp. Comput. 17(2), 138–159 (2005)

15. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes. In: CAV.
Lecture Notes in Computer Science, vol. 663, pp. 302–315. Springer (1992)

16. Chandrasekaran, P., Mukund, M.: Matching scenarios with timing constraints. In: FOR-
MATS. Lecture Notes in Computer Science, vol. 4202, pp. 98–112. Springer (2006)

17. Chen, T., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of subtyping
in session types. Logical Methods in Computer Science 13(2) (2017)

18. Chilton, C., Kwiatkowska, M.Z., Wang, X.: Revisiting timed specification theories: A linear-
time perspective. In: FORMATS. Lecture Notes in Computer Science, vol. 7595, pp. 75–90.
Springer (2012)

19. Clemente, L., Herbreteau, F., Stainer, A., Sutre, G.: Reachability of communicating timed
processes. In: FoSSaCS, Lecture Notes in Computer Science, vol. 7794, pp. 81–96. Springer
(2013)

20. David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L., Wasowski, A.: Real-time
specifications. STTT 17(1), 17–45 (2015)

21. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear types. In:
CONCUR. Lecture Notes in Computer Science, vol. 6901, pp. 280–296. Springer (2011)

22. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed
automata. In: FORMATS. Lecture Notes in Computer Science, vol. 4763, pp. 114–129.
Springer (2007)

23. Fecher, H., Majster-Cederbaum, M.E., Wu, J.: Refinement of actions in a real-time process
algebra with a true concurrency model. Electr. Notes Theor. Comput. Sci. 70(3), 260–280
(2002)

18

https://www.amqp.org/

24. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

25. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In: ESOP. Lec-
ture Notes in Computer Science, vol. 9032, pp. 132–157. Springer (2015)

26. Krcál, P., Yi, W.: Communicating timed automata: The more synchronous, the more difficult
to verify. In: CAV. Lecture Notes in Computer Science, vol. 4144, pp. 249–262. Springer
(2006)

27. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping. In: FoS-
SaCS. Lecture Notes in Computer Science, vol. 10203, pp. 441–457 (2017)

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152 (1997)
29. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput. 185(1), 105–

157 (2003)
30. Mostrous, D.: Session Types in Concurrent Calculi: Higher-Order Processes and Objects.

Ph.D. thesis, Imperial College London (November 2009)
31. Mostrous, D., Yoshida, N.: Session-based communication optimisation for higher-order mo-

bile processes. In: TLCA. Lecture Notes in Computer Science, vol. 5608, pp. 203–218.
Springer (2009)

32. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commutative asyn-
chronous sessions. In: ESOP. Lecture Notes in Computer Science, vol. 5502, pp. 316–332.
Springer (2009)

33. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty conversa-
tions. Formal Asp. Comput. 29(5), 877–910 (2017)

34. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: CAV.
Lecture Notes in Computer Science, vol. 575, pp. 376–398. Springer (1991)

35. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service
protocols. ACM Trans. Softw. Eng. Methodol. 19(4), 11:1–11:38 (2010)

36. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley & Sons,
Inc., New York, NY, USA, 1st edn. (1999)

37. The Simple Mail Transfer Protocol. http://tools.ietf.org/html/rfc5321
38. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Computing 10(6), 87–89

(2006)
39. Wang, W., Jiao, L.: Trace abstraction refinement for timed automata. In: ATVA. Lecture

Notes in Computer Science, vol. 8837, pp. 396–410. Springer (2014)
40. Yovine, S.: Kronos: A verification tool for real-time systems. (kronos user’s manual release

2.2). STTT 1(1-2), 123–133 (1997)

19

http://tools.ietf.org/html/rfc5321

A Proofs and additional material for Section 2
Definition 15 (Timed LTS). A timed labelled transition system (in short, TLTS) is a
triple (Q,L,→), where Q is the set of states, L ⊇ R≥0 is the set of labels, and→⊆
Q× L×Q is the transition relation. We use α, β, . . . to range over L.

Example 8. In the initial clock valuation ν0, we have that:

(x ≤ 2) ≤ν0 (x ≤ 3) (x ≤ 2) ≤ν0 (x = 3) (x ≤ 3) 6≤ν0 (x ≤ 2)

Note that the relation ≤ν is not antisymmetric: e.g., for all c, c′ ∈ R≥0, we have
that (x > c) ≤ν (x > c′) ≤ν (x > c), even if c 6= c′.

Proof of Lemma 1
Proving reflexivity and transitivity is straightforward. To prove that≤ν is total, we show
that if δ 6≤ν δ′, then it must be δ′ ≤ν δ. Since δ 6≤ν δ′, then there exists some t0 ∈ R≥0
such that ν + t0 ∈ JδK, but:

6 ∃t′ ≥ t0 : ν + t′ ∈ Jδ′K (1)

To prove δ′ ≤ν δ, let t′ ∈ R≥0 such that ν + t′ ∈ Jδ′K (if no such t′ exists, we trivially
obtain the thesis). By (1), it must be t′ < t0. Hence, we have found a t0 > t′ such that
ν + t0 ∈ JδK, from which we conclude that δ′ ≤ν δ.

For item (a), assume that d ≥ 0. Let t ∈ R≥0 be such that ν + t ∈ Jx ≤ cK. Then,
ν(x) + t ≤ c, and so ν(x) + t ≤ c+ d. Choosing t′ = t, we have ν + t′ ∈ Jx ≤ c+ dK
from which we obtain the thesis (x ≤ c) ≤ν (x ≤ c + d). To prove the converse,
assume that d < 0. Let t = c − ν(x). Then, ν(x) + t ≤ c, but there exists no t′ ≥ t
such that ν(x) + t′ ≤ c+ d. Hence, (x ≤ c) 6≤ν (x ≤ c+ d).

For item (b), let t ∈ R≥0 be such that ν + t ∈ Jδ ∧ δ′K = JδK∩ Jδ′K. Choose t′ = t.
Then, ν + t ∈ Jδ′K, from which we obtain the thesis δ ∧ δ′ ≤ν δ′.

For item (c), assume that δ ≤ν δ′. Let t̃ ∈ R≥0 be such that (ν+ t)+ t̃ ∈ JδK. Since
δ ≤ν δ′, there exists t̃′ ≥ t+ t̃ such that ν + t̃′ ∈ Jδ′K. Choose t′ = t̃′− t. Then, t′ ≥ t̃,
and (ν + t) + t′ = (ν + t) + (t̃′ − t) = ν + t̃′ ∈ Jδ′K. Therefore, δ ≤ν+t δ′. ut

Example 9. Fix a configuration (q,w, ν) of some system that includes one of the CTAs
in Figure 4. The edge (q0, pr!b(x < 3), q2) of A1 is future-enabled iff ν(x) < 3; the
latest-enabled edge is (q0, ps!b(x < 5), q3) if ν(x) < 5, otherwise there are no latest-
enabled edges. Both outgoing edges of A2 are latest-enabled if ν(x) ≤ 2. In A3 we can

q0 q1

q2 q3

pr!a(x < 2)

p
r
!b
(x
<

3
) ps!b(x

<
5)

A1

q0 q1

q2

pr!a(x ≤ 2)

p
s
!b
(x

=
2
)

A2

q0 q1

q2 q3

rp?a(x < 2)

s
p
?
b
(x
<

3
) ps!c(x

≥
3)

A3

q0 q1

q2 q3

rp?a(x < 2)

r
p
?
b
(x
<

3
) ps!c(x

≥
3)

A4

Fig. 4: CTAs for Example 9.

20

have two non-deferrable edges: (q0, rp?a(x < 2), q1) ifwrp = aw′rp and ν(x) < 2, and
(q0, sp?b(x < 3), q2) if wsp = bw′sp and ν(x) < 3. In A4, if wrp = aw′rp and ν(x) < 2,
then the edge (q0, rp?a(x < 2), q1) is non-deferrable. Otherwise, if wrp = bw′rp and
ν(x) < 3, then (q0, rp?b(x < 3), q2)) is non-deferrable. In this CTA, only one of the
two edges can be non-deferrable, as they both receive from r. If the head of the queue
wrp is neither a nor b, then A4 does not have non-deferrable edges.

Lemma 4. Let e = (q, `, q′) ∈ Ep. Then:

e future-enabled in (q,w, ν + t) =⇒ e future-enabled in (q,w, ν)

Proof. Trivial. ut

Proof of Lemma 2
We have to prove that, for all configurations γ, γ′, γ′′, and for all t, t′ ∈ R≥0, we have
that:

γ t−→γ′ ∧ γ t−→γ′′ =⇒ γ′ = γ′′ (Time determinism)
γ t+ t′−−−→γ′ ⇐⇒ ∃γ̃ : γ t−→γ̃ ∧ γ̃ t

′
−→γ′ (Time additivity)

Time determinism follows immediately by definition 3. Time additivity follows by
lemma 4. ut

Proof of Theorem 1
For receive persistency, since γ t

′
−→ rp?−−→ then some message expected from p is already

at the head of the queue rp in configuration γ. Hence, there exists some edge in Ep

which is non-deferrable in γ. Since γ t−→γ′, condition ((e)) of Definition 3 ensures that
there exists some non-deferrable edge also in γ′. Since ≤ν is total, then there exists a
non-deferrable edge ewhich is enabled after all the other non-deferrable edges. Assume
that act(e) = sp?. Since non-deferrable edges are also future-enabled, there exists t′′

such that the guard of e is true in ν′+ t′′, where ν′ is the clock valuation of γ′. We show
that the transition γ′ t

′′
−→ is admitted by our semantics. Condition ((d)) of Definition 3

is satisfied, because if the latest-enabled edge is a sending edge, then the latest time
when it can be fired falls after t′′ (otherwise, the edge e would be the latest enabled
one). Condition ((e)) of Definition 3 holds as well, because the edge e itself remains
non-deferrable in ν′ + t′′. Therefore, by condition (2) of Definition 3, we obtain the
thesis γ′ t

′′
−→ sp?−−→.

For send persistency, since γ t
′
−→ pr!−−→ then there exists a sending edge in Ep which is

future-enabled. Since ≤ν is total, then there exists a sending edge es which is enabled
after all the other sending edges. Note that es is not necessarily latest-enabled, because
the latest-enabled edge could be a receiving one. There are two cases:

1. If there exist no non-deferrable receiving edges, let t′′ be such that the guard of
es is true in ν′ + t′′, where ν′ is the clock valuation of γ′ (such t′′ always exists,
because es is future-enabled). Assume that act(e) = ps!. We show that the transi-
tion γ′ t

′′
−→γ′′ is admitted by our semantics. Condition ((d)) of Definition 3 holds:

indeed, by the choice of es and of t′′ it follows that if es was latest-enabled in γ′,

21

then it is latest-enabled also in γ′′. Condition ((e)) holds trivially, because in this
case we are assuming all receiving edges to be deferrable. Further, by condition (1)
of Definition 3, γ′′ ps!−−→. Therefore we conclude that γ′ t

′′
−→ ps!−−→.

2. If there exists some non-deferrable receiving edges, let er be the latest-enabled
among them. Let tr be the latest delay where the guard of er is satisfied from ν′,
and let ts be the latest delay where the guard of es is satisfied from ν′. There are
two further subcases:
(a) if tr ≥ ts, we show that the latest sending action is preserved. Let t′′ = ts,

and let act(es) = ps!. We show that the transition γ′ t
′′
−→γ′′ is admitted by our

semantics. Condition ((d)) of Definition 3 holds: indeed, by the choice of es and
of t′′ it follows that if es was latest-enabled in γ′, then it is latest-enabled also
in γ′′. Condition ((e)) holds, because tr ≥ ts, and so the edge er is still non-
deferrable in γ′′. Since the guard of es is satisfied in ν′ + t′′, by condition (1)
of Definition 3, we obtain the thesis γ′ t

′′
−→ ps!−−→.

(b) otherwise, if tr < ts, we show that the latest receiving action is preserved. Let
t′′ = tr, and let act(er) = sp?. We show that the transition γ′ t

′′
−→γ′′ is admitted

by our semantics. Condition ((d)) of Definition 3 holds: indeed, by the choice
of es and of t′′ it follows that es is latest-enabled in γ′′. Condition ((e)) holds,
because tr is the longest delay such that er is still non-deferrable in γ′′. Since
the guard of er is satisfied in ν′+t′′, by condition (2) of Definition 3, we obtain
the thesis γ′ t

′′
−→ sp?−−→. ut

B Proofs and additional material for Section 3
Definition 16 (Timed similarity). Let (Q,L,→) be a TLTS. A timed simulation is a
relationR⊆ Q×Q such that, whenever γ1 R γ2:

∀α ∈ L : γ1
α−→γ′1 =⇒ ∃γ′2 : γ2

α−→γ′2 and γ′1 R γ′2

We call timed similarity (in symbols, .) the largest timed simulation relation.

Proof of Lemma 3
We prove the contrapositive. Assume that S does not enjoy global progress, i.e. by Def-
inition 9 there exists γ = (q,w, ν) not final such that γ0−→∗γ, but for no t and α ∈ Act
it holds that γ t−→ α−→. So, by Definition 4, ρ = γ is a maximal run of γ. Since γ is not
final, there exists a participant p such that qp is not final. Clearly, since the run γ has no
transitions, there is no n such that subj(actn(ρ)) = p. Therefore, by Definition 9, we
conclude that S does not enjoy local progress. ut

The following example shows a situation where all runs admit a continuation con-
taining send/receive actions of all CTAs (if not in a final state). Yet, local progress does
not hold, because there also exist (maximal) runs where a CTA is stuck.

Example 10. Consider the following CTAs (guards are true , and clocks are immate-
rial):

Ap :

p0 p1

pq!a

pq!b
Aq :

q0 q1

pq?a

pq?b

qr!a

Ar :

r0

qr?a

22

In any reachable configuration of (Ap,Aq,Ar) there is a continuation where any CTA
can make an action in Act. However, in runs where Ap always sends a to Aq, the CTA Ar

is stuck. Hence, the system enjoys global progress, but it does not enjoy local progress.

C Proofs and additional material for Section 4
This section contains the proof of the main result Theorem 3. The proof relies on prop-
erties of some subclasses of the “naı̈ve” refinement strategy mentioned in the main text
(and formally defined in Definition 20), which we will refer to with symbolvsr . In par-
ticular, we introduce two properties LESP and NDP (Definitions 18 and 19) on system
refinements that guarantees preservation of behaviour and progress ofvsr (Theorem 9).
Note that LESP and NDP are not direcly usable in practice due to their undecidability
(Theorems 7 and 8). We then show that v1 is a NDP restriction of vsr (Lemma 15),
and that if a point-wise refinement is LLESP, then the system refinement associated
with it is LESP (Theorem 11). From the above it follows that vL

1 preserves behaviour
and progress.

Additional counter-example of preservation in the general case. Note that all CTAs
are not mixed.

Example 11. Let S = (As,Ar), and and let S′ = (A′s,Ar), where:

q0 q1 q2
As : sr!a(x ≤ 2) sr!b(x ≤ 3)

q′0 q′1 q′2
Ar : rs?a(x ≤ 2) rs?b(x ≤ 3)

q0 q1 q2
A′
s : sr!a(1 < x ≤ 2) sr!b(x ≤ 1)

Note that A′s v1 As, and so S′ v S. Consider the run γ0 2−→γ1 sr!a−−→γ2 sr?a−−−→γ3 3−→ of S′,
where γi are uniquely determined by the labels. The last delay is possible since S′ has
no FE actions in γ3 (so, it is stuck). Instead, in S the last delay is not possible, since
As has a FE action in γ3, but no FE actions after a delay of 3 time units. Since S′ has a
trace not allowed by S, behaviour is not preserved. Similarly, S enjoys progress (both
global and local), while S′ gets stuck in ((q1, q

′
1), (ε, ε), ν), with 1 < ν(x) ≤ 2. So,

global and local progress are not preserved.

C.1 General properties
We start with some auxuliary definitions and lemmas about CTAs and refinements.

Definition 17. For all configurations γ = (q,w, ν) of a given system S, and for all
t ∈ R≥0, we define:

BSEγ(t) =

{
e

∣∣∣∣ ∃p, q′p, ` : e = (qp, `, q
′
p) latest enabled sending edge in γ

and not future enabled in (q,w, ν + t)

}

BREγ(t) =

{
e

∣∣∣∣ ∃p, q′p, ` : (qp, `, q′p) non-deferrable edge in γ and

∀`′, q′′p : (qp, `
′, q′′p) not non-deferrable in ν + t

}
BEγ(t) = BSEγ(t) ∪BREγ(t)

23

We then define the following family of sets (indexed over n ∈ N):

Rn(γ) = {γ′ | ∃t ∈ R≥0, α ∈ Act : γ′ = (q,w, ν + t) α−→ and |BEγ(t)| = n}

Intuitively, the setBEγ(t) contains the actions that prevent the timed transition γ t−→.
It is composed by the sets BSEγ(t) and BREγ(t), that contains the actions violating,
respectively, conditions ((d)) and ((e)) of Definition 3 in an attempt to derive γ t−→. Fi-
nally, the set Rn(γ) is composed of those configurations γ′ that can perform a discrete
transition immediately, and in a derivation of γ t−→γ′ there are exactly n edges that breaks
one among conditions ((e)), ((d)), while the other conditions hold. Such an apparently
contorted definition will be useful in proofs, as it enables us to perform inductions on
the index n of Rn(γ).

Lemma 5. Let γ = (q,w, ν) be such that γ0−→∗γ. For all t ∈ R≥0 and α ∈ Act:

γ t−→γ′ α−→ ⇐⇒ γ′ ∈ R0(γ)

Proof. Direct consequence of the fact that BSEγ(t) and BREγ(t) are composed by
those edges that, respectively, break conditions ((e)) and ((d)) of Definition 3. ut

Lemma 6. Let S be a system of machines, and let γ be any configuration such that
γ0−→∗γ. Then, for all t, t′, f ∈ {BSEγ , BREγ , BEγ}:

t ≤ t′ =⇒ f(t) ⊆ f(t′)

Proof. Let S and γ be as in the statement, and suppose t ≤ t′. We proceed by cases on
f .

– f = BSEγ . Suppose e = (qp, `, q
′
p) ∈ BSEγ(t). It must be ` latest enabled

sending in γ and not future enabled in ν+ t. It remains to show ` not future enabled
in ν + t′: an easy inspection of definition 2, using the assumption t < t′.

– f = BREγ . Similar to the above.
– f = BEγ . Immediate consequence of the above cases.

ut

Lemma 7. Let S be a system of machines, and let γ = (q,w, ν) be a configuration
such that γ0−→∗γ. Then, for all t and for all α 6∈ R≥0:

(q,w, ν + t) α−→∧BREγ(t) = ∅ =⇒ ∃t′, `′ : γ t
′
−→ `′−→

Proof. Let S and γ be as in the statement. Since, for all t, any γ′ in the form (q,w, ν + t)
and such that γ′ α−→ is a member of Rn(γ), for some n, we proceed by induction on n.
The base case follows by lemma 5.
For the inductive step, let n > 0 and let γ′ ∈ Rn(γ) be such that BREγ(t) = ∅. Pick
any member e of BEγ(t). Since BREγ(t) is empty, it must be e ∈ BSEγ(t), and thus
e = (qp, `, q

′
p) for some p, with ` latest enabled (and hence future-enabled) sending in

γ, but not future enabled in ν + t. Then, there is t′ < t such that ν + t′ ∈ Jguard(`)K.
Therefore, ` is future enabled in ν+ t′ and hence e 6∈ BEγ(t′). Thanks to this, together
with lemma 6, we can conclude BEγ(t′) ⊂ BEγ(t) and therefore (q,w, ν + t′) ∈
Rn

′
(γ) for some n′ < n. By the induction hypothesis, it follows γ t

′′
−→ `′−→ for some

t′′, α′ 6∈ R≥0. ut

24

Lemma 8. Let S1 and S2 be systems such that every maximal run ρ of S1 is a maximal
run of S2. Then, S2 has local progress =⇒ S1 has local progress.

Proof. Let S1 and S2 be as in the statement, and suppose S2 has strong local progress.
We have to show that S1 has strong local progress as well. So, suppose γ0−→∗S1

γ =
(q,w, ν), with run, say, ρ = γ0

t1−→S1
γ′0

α1−→S1
γ1 . . . γ. According to definition 9, we

have to show that, for all p such that qp is not final, and for all maximal runs ρ′ of S1

starting from γ, there is n such that subj(actn(ρ′)) = p. So, suppose qp is not final, and
let ρ′ be a maximal run of S1 starting from γ. Clearly, ρρ′ is a maximal run of S1 and
hence of S2. Thus, γ is reachable by S2 and ρ′ is a maximal run of S2 starting from γ.
Note that qp is not final with respect to S2 as well, and hence, since S2 has strong local
progress by assumption, there is n such that subj(actn(ρ′)) = p. ut

Lemma 9. Let S be a system that progress. Then, for all γ = (q,w, ν) not final such
that γ0−→∗γ, there is p such that qp has an edge ` such that ` is latest-enabled sending
in γ or ` is non-deferrable in γ.

Proof. Let S and γ be as in the statement. Suppose, by contradiction, that, for every
p, every edge of qp is neither latest-enabled sending nor non-deferrable in γ. As a con-
sequence, for all t and for all input labels α, (q,w, ν + t) 6 α−→. It is still possible that
(q,w, ν + t) α−→ for some t and some output label α. If this is not the case, system S
does not enjoy progress, and we are done by contradiction. Otherwise, there must be
some p such that qp has a future-enabled sending edge ` in γ. Since qp has no latest-
enabled sending edges, qp must have a reading edge `′ such that guard(`′) 6≤ν guard(`).
Then, there is t such that ν + t ∈ Jguard(`′)K and for all t′ ≥ t, ν + t′ 6∈ Jguard(`)K.
Then, (q,w, ν + t′) 6 act(`)msg(`)−−−−−−−→ for all t′ ≥ t. Since every machine has finitely many
edges, and S is composed by finitely many machines, iterating the above argument we
can find a t such that, for every t′ ≥ t, (q,w, ν + t′) 6 −→. Since, for every machine
of γ, conditions (d) and (e) of Definition 3 hold trivially for any delay by assumption,
γ t−→(q,w, ν + t), which is stuck. Hence S does not progress: contradiction. ut

C.2 LESP and NDP
Definition 18 (Latest-enabled send preservation). We say that a relation R between
systems is latest-enabled send preserving (in short, LESP) iff, whenever S1 R S2, for
all γ = (q,w, ν) such that γ0−→∗S1

γ, and for all p, if qp has a latest-enabled sending
edge in γ for S2, then qp has a latest-enabled sending edge in γ for S1.

Example 12. Recall S and S′ from Example 5. The relationR= {(S′, S)} is not LESP.
In S, the sending edge (p0, pq!b(x ≤ 3), p1) is latest-enabled in γ0, but the only sending
edge in S′, i.e. (p0, pq!b(x ≤ 1), p1), is not latest-enabled in γ0. Indeed, from state p0
of A′p there is a receiving edge with guard x ≤ 2, and (x ≤ 2) 6≤ν0 (x ≤ 1). Now, let
A′′p be equal to A′p but for the guard on the send action, which is replaced by x ≤ 2, and
let S′′ = (A′′p ,Aq). We have thatR′= {(S′′, S)} is LESP.

The LESP property is complex to check, in the general case, as it concerns the
behaviour of the whole system: in fact, we prove it is undecidable (Theorem 7).

25

Theorem 7 (Undecidability of LESP). Establishing whether restrictions of the system
refinement v1 are LESP is undecidable.

Proof (Sketch). The proof consist in showing that a solution to the problem in the
statement would solve (a variation of) the reachability problem for CTAs, known to be
undecidable. Let S be a system including a machine A owned by p, and let q be a state
of A. The reachability problem asks whether a configuration (q,w, ν), with qp = q,
is reachable from the initial configuration γ0. If the answer is positive we say that q is
reachable in S. Let A′ and A′′ be two slighly modified copies of A: they differ in the
fact that q has only one exiting edge. This edge is sending, and its guard is false for
A′ and true for A′′. Note that A′ v A′′ for v∈ {vsr ,va ,v1} by construction. Let S′

and S′′ be as S except for A, that is substituted with A′ and A′′ respectively. Note that
q is reachable in S is equivalent to q is reachable in S′ and to q is reachable in S′′. This
follows by the fact that S′ and S′′ are equal to S, except for the edges exiting from q.
We claim that the relation {(S′, S′′)} is not LESP iff q is reachable in S. This follows
by the above and by the fact that the only configurations that breaks the LESP property
of {(S′, S′′)} are those in the form (q,w, ν), with qp = q. Since a set is recursive if
and only if its complement is, LESP checking is undecidable. ut

Definition 19 (Non-deferrable preserving). We say that a relation R between sys-
tems is non-deferrable preserving (in short, NDP) iff, whenever S1 R S2, for all
γ = (q,w, ν) such that γ0−→∗S1

γ, and for all p, if qp has a non-deferrable future-
enabled edge in γ for S2, then qp has a non-deferrable future-enabled edge in γ for S1.

Example 13 (Non-deferrable preserving). Consider the following CTAs:

Ap : p0 p1
qp?a(x ≤ 4) Aq : q0 q1

qp!a(y ≤ 2)

A′p : p0 p1
qp?a(x ≤ 1) A′′p : p0 p1

qp?a(x ≤ 3)

Let S = (Ap,Aq), S′ = (A′p,Aq), S′′ = (A′′p ,Aq), let R′= {(S′, S)}, and R′′=
{(S′′, S)}. Clearly, both R′ and R′′ are LESP, because the configurations of S do not
have latest-enabled sending edges. We have that R′ is not NDP. To show that, let γ =
((p0, q1), (ε, a), ν0 + 2), which is reachable both in S and S′ since γ0 2−→ qp!a−−→γ. The
only edge of Ap is non-deferrable in γ, while the edge of A′p is deferrable, as it is not
future-enabled in γ. Instead,R′′ is NDP, because the edge of A′′p is non-deferrable in γ.

Similarly to LESP, also NDP is undecidable (Theorem 8).

Theorem 8 (NDP undecidability). Establishing whether restrictions of the system
refinements vsr , va , v1 are NDP is undecidable.

We now formally define naı̈ve (vsr) and asymmetric (va) refinements. vsr will be
useful for proving properties of v1.

Definition 20. Let A = (Q, q0, X,E) and A′ = (Q, q0, X,E
′) be CTAs. The relation

A′ vsr A holds whenever there exists a structure-preserving isomorphism f : E → E′

26

such that, for all edges (q, `, q′) ∈ E, if f(q, `, q′) = `′, then Jguard(`′)K ⊆ Jguard(`)K.
The relation A′ va A holds whenever there exists a structure-preserving isomorphism
f : E → E′ such that, for all edges (q, `, q′) ∈ E, if f(q, `, q′) = `′ and ` is sending,
then Jguard(`′)K ⊆ Jguard(`)K; if f(q, `, q′) = `′ and ` is reading, then Jguard(`)K ⊆
Jguard(`′)K

Lemma 10. Let v be a LESP & NDP restriction of vsr . Then, for all systems S1 and
S2 such that S1 v S2 and for all γ, γ′:

γ0−→∗S1
γ α−→S1

γ′ =⇒ γ α−→S2
γ′

Proof. Suppose S1 v S2, with isomorphism f , and γ0−→∗S1
γ = (q,w, ν) α−→S1

γ′ =
(q′,w′, ν′). We proceed by cases on the rule of Definition 3 used in the derivation
γ α−→S1

γ′.

For rule item 1, it must be α = pr!a and qp
`=pr!a(δ,λ)−−−−−−−→S1

q′p, for some p, r, a, δ, λ
such that ν ∈ JδK. By definition 6:

qp
f(`)=pr!a(δ′,λ)−−−−−−−−−−→S2 q

′
p

for some δ′ such that JδK ⊆ Jδ′K. Then, ν ∈ Jδ′K and hence, by rule item 1, γ α−→S2
γ′.

The case for rule item 2 is similar.
For rule item 3, it must be α = t, for some t, and γ′ = (q,w, ν + t). Hence, we

have to show:
γ t−→S2

γ′

The only possible rule for the above transition is item 3. Items (a),(b) and (c) clearly
hold for S2 as well. It remains to show it is the case also for items (d) and (e).

For item (d), suppose eS2 = (qp, `S2 , q
′
p) is a non-deferrable edge of qp with respect

to S2 in γ, for some p. We have to show there is an edge e′S2
= (qp, `

′
S2
, q′′p) in S2

that is non-deferrable in γ′. Since v is NDP, qp must have an edge `S1
non-deferrable

in γ for S1, and hence, since condition (d) holds for S1 by the assumption γ t−→S1
γ′,

it holds that qp `
′
S1−−→S1

q′′p for some q′′p , `
′
S1

such that `′S1
is non-deferrable in γ′. Now,

let (qp, `′S2
, q′′p) = e′S2

be the unique edge of S2 such that e′S1
= f(e′S2

). Since, by
definition 6, Jguard(`′S1

)K ⊆ Jguard(`′S2
)K, `′S2

is future-enabled in ν + t, and hence
item (d) holds for S2.

For item (e), suppose that, for some p, qp has a latest enabled (with respect to S2)
sending action ` in γ. We have to show ` is future enabled in ν′. Since v is latest-
enabled send preserving, qp has a latest-enabled (with respect to S1) sending edge
(qp, `

′, q′′p) in ν′. By definition 6, it follows that (qp, f(`
′), q′′p) ∈ Ep for S2, and

guard(`′) ⊆ guard(f(`′)), and hence (qp, f(`
′), q′′p) is future-enabled in ν′. Now, since

` is latest-enabled with respect to S2, by definition 2 it follows guard(f(`′)) ≤nu
guard(`). Hence ` is future-enabled in ν′ as well. ut

Lemma 11. LESP+NDP restrictions of vsr preserve behaviour.

Proof. Let v be a LESP & NDP restriction of vsr , and let S1 and S2 be systems
such that S1 vsr S2. We have to show there is a timed simulation r between states of

27

S1] S2 that relates the initial configuration of S1 with the initial configuration of S2,
i.e. ((1, s0), (2, s0)) ∈ r. Define:

r
def
=
{
((1, γ), (2, γ))

∣∣ γ0−→∗S1
γ
}

Clearly, ((1, γ0), (2, γ0)) is a member of r. The fact that r is a timed simulation is an
immediate consequence of lemma 10. ut

Lemma 12. LESP+NDP restrictions of vsr preserve global progress.

Proof. Let S1, S2 andv be as in the statement, and suppose that S2 has global progress.
We have to show that S1 progress. Suppose γ0−→∗S1

γ = (q,w, ν). If γ is final we
are done. If not, by lemma 11, it follows γ0−→∗S2

γ as well. Since γ is not final also
with respect to S2, γ t−→S2

α−→S2
, for some t, α. By lemma 5, BRES2

γ (t) = ∅, and, by
lemma 6, BRES2

γ (0) = ∅ as well. We wish to prove there is a t and a α 6∈ R≥0 such
that (q,w, ν + t) α−→S1

and BRES1
γ (t) = ∅. Since S2 progress, there is a machine qp of

S2 that has a latest-enabled sending or a non-deferrable edge in γ. Then, by the LESP &
NDP assumption, qp enjoys the same property with respect to S1. Now, among the set of
non-deferrable edges in γ with respect to S1, pick a minimal element eS1 = (qp, `S1 , q

′
p

with respect to the preorder ≤ν . Such an element exists because ≤ν is total and the set
is finite and not empty. Then, since `S1

is future-enabled in γ, there is some t such that
(q,w, ν + t) α−→S1

, where α is the action associated to `S1
. Since eS1

is minimal with
respect to ≤ν , every non-deferrable edge in γ of S1 is non-deferrable in (q,w, ν + t).
Therefore, by lemma 7, γ t

′
−→S1

α′
−→S1 for some t′ and α′ 6∈ R≥0. ut

Lemma 13. Let S1 and S2 be systems of machines such that S2 progress S1 v S2 for
some LESP & NDP restriction v of vsr . Then:

ρ is a maximal run of S1 =⇒ ρ is a maximal run of S2

Proof. Let S1 and S2 be as in the statement, and suppose ρ is a maximal run of S1. We
first show that ρ is a run of S2, and then we show it is maximal for S2. For the first
part, it suffice to show that, for all i such that γi ti−→S1

γ′i
αi−→S1

γi+1 appairs in ρ, it holds
that γi ti−→S2

γ′i
αi−→S2γi+1. But this follows by lemma 10. For the second part, i.e. ρ is

maximal with respect to S2, first note that if ρ is infinite the thesis is trivial. So, suppose
ρ is finite, with last state γn. Since ρ is maximal with respect to S1, ¬γn t−→S1

α−→S1
for

all t, α. But then, since S2 progress, by lemma 12 S1 progress as well, and thus γn is
final for S1. Therefore, γn is final for S2 too, and ρ is maximal for S2. ut

Lemma 14. LESP+NDP restrictions of vsr preserve local progress.

Proof. Suppose S2 has local progress. By lemma 3, S2 has global progress as well.
Then, by lemma 13, maximal runs of S1 are maximal runs of S2. Therefore, by lemma 8,
S1 has local progress. ut

Theorem 9. LESP+NDP restrictions ofvsr preserve behaviour, global and local progress.

Proof. Composition of lemma 11, lemma 12 and lemma 14. ut

28

Lemma 15. v1 is a NDP restriction of vsr .

Proof. The fact that v1 is a restriction of vsr follows by an easy inspection of defi-
nition 6. It remains to show v1 is NDP. Let A1 and A2 be systems of machines such
that A1 v1 A2, with isomorphism f , and let γ = (q,w, ν) be such that γ0−→∗S1

γ =
(q,w, ν). Suppose qp has a non-deferrable future-enabled edge e = (qp, `, q

′
p) in γ for

S2. Then, f(e) = (qp, `
′, q′p), for some `′. Note that `′ is non-deferrable in γ for S1. It

remains to show `′ is future-enabled in γ. Since ` is future-enabled in γ and, by defini-
tion 6, ↓ Jguard(`)K ⊆ ↓ Jguard(`)K, `′ is future-enabled in γ. ut

Theorem 10. LESP restrictions of v1 preserve behaviour, global and local progress.

Proof. Composition of theorem 9 and lemma 15. ut

C.3 Local LESP

Lemma 16. For all S = (Ap)p∈P , for all γ = (q,w, ν) such that γ0−→∗γ, and for all
p: ν ∈ PostAp

qp (Pre
Ap
qp).

Proof. Let S be as in the statement. We show the thesis holds for all γ = (q,w, ν) and
for all n such that γ0−→∗γ. By induction on n. For the base case, it must be γ = γ0,
and since all qp are initial in the respective machines, ν0 ∈ Pre

Ap
qs ⊆ Post

Ap
qs (Pre

Ap
q)

for all p. For the inductive case, let γ = (q,w, ν) be such that γ0−→nγ′−→γ for some
γ′ = (q′,w′, ν′). We proceed by cases on the rule of definition 3 used for deriving
γ′−→γ.

– Rule item 1. It must be α = pr!a, (q′p, α(δ, λ), qp) ∈ Ep, ν = λ(ν′) and ν′ ∈ JδK.
Since machines do not share cloks, by the induction hypothesis it follows ν ∈
PostAs

qs (Pre
As
qs) for all participant s 6= p. For p, note that ν ∈ PreAp

qp . Therefore

ν ∈ PostAp
qp (Pre

Ap
qp).

– Rule item 2. Similar to the above.
– Rule item 3. It must be α = t, q = q′, w = w′, ν = ν′ + t and conditions (d) and

(e) hold. By the induction hypothesis ν′ ∈ PostAp
qp (Pre

Ap
qp). The thesis follows by

condition (d).
ut

We recall some operations on sets of clock valuations from [7], that can be lifted to
guards. They are instrumental in the proof of the decidability of LLESP.

Definition 21. For all sets of clock valuations K, and for all reset sets λ, we define:

↑ K def
= {ν + t | ν ∈ K}

λ(K)
def
= {λ(ν) | ν ∈ K}

Below we define the sets of clock valuations that satisfies, respectively, the guard of
a sending edge and the guard of a receiving edge.

29

Definition 22. For all A and for all q state of A, we define the following sets of clock
valuations:

q!
def
= {ν | ∃p, r, a, δ, λ : q pr!a(δ, λ)−−−−−−→∧ ν ∈ JδK}

q?
def
= {ν | ∃p, r, a, δ, λ : q rp?a(δ, λ)−−−−−−→∧ ν ∈ JδK}

We define the set of guards RGuards(q) in the following way (λ below is lifted to
guards):

RGuards(q)
def
= {λ(δ) | ∃` : q `−→∧ δ = guard(`) ∧ λ = reset(`)}

And we let δ0 be the guard that equals every clock to zero.

Below, the symbol \ denotes set difference.

Lemma 17. For all A, for all q state of A, and for all K, we have that:

1. PreAq =

{
J(
∨
δ∈RGuards(q) δ) ∨ δ0K if q = q0

J
∨
δ∈RGuards(q) δK otherwise

2. LesAq = ↓ (q ! \ ↓ (q? \ ↓ q !)).
3. PostAq (K) = ↑ (K \ LesAq) ∪ (↑ K ∩ LesAq).

Proof. Item 1 follows immediately by the semantics of guards in section 2. For item 2,
first note that ↓ (q! \ ↓ (q? \ ↓ q!)) ={

ν
∣∣ ∃t : ν + t ∈ q! ∧ (∀t′ ≥ t : ν + t′ ∈ q? =⇒ ∃t′′ ≥ t′ : ν + t′′ ∈ q!)

}
(2)

Indeed:

↓ (q! \ ↓ (q? \ ↓ q!)) =
↓ (q! \ ↓ (

{
ν
∣∣ ν ∈ q?} \ {ν ∣∣∃t : ν + t ∈ q!

}
)) =

↓ (q! \ ↓ (
{
ν
∣∣ ν ∈ q? ∧ ∀t : ν + t 6∈ q!

}
)) =

↓ (q! \
{
ν
∣∣∃t : ν + t ∈ q? ∧ ∀t′ ≥ t : ν + t′ 6∈ q!

}
) =

↓
{
ν
∣∣ ν ∈ q! ∧ (∀t : ν + t ∈ q? =⇒ ∃t′ ≥ t : ν + t′ ∈ q!)

}
={

ν
∣∣ ∃t : ν + t ∈ q! ∧ (∀t′ ≥ t : ν + t′ ∈ q? =⇒ ∃t′′ ≥ t′ : ν + t′′ ∈ q!)

}
Now, suppose that ν ∈ LesAq , i.e. q has a latest-enabled sending edge in ν. Then, q `−→
for some sending action ` with guard δ such that there is t : ν + t ∈ JδK and, for
all `′ such that q `

′
−→, it holds that guard(`′) ≤ν δ. Then, since ` is sending, it follows

ν + t ∈ q! with t as above. By definition of ≤ν (definition 2), it follows that ν satisfies:
(∀t′ ≥ t : ν + t′ ∈ q? =⇒ ∃t′′ ≥ t′ : ν + t′′ ∈ q!). Therefore, by eq. (2),
ν ∈ ↓ (q! \ ↓ (q? \ ↓ q!)). For the converse, suppose ν ∈ ↓ (q! \ ↓ (q? \ ↓ q!)). Then, q
has some future-enabled sending edge in ν. Let ` be the action associated to the latest-
enabled (in ν) among sending edges of q. It must exists because≤ν is total, q has finitely
many edges, and a latest-enabled sending edge of q exists. Now, suppose q `

′
−→, for some

`′. We have to show guard(`′) ≤ν guard(`). If `′ is sending the thesis follows by the
assumption that ` is latest-enabled among sending edges. If `′ is receiving, suppose
ν + t′ ∈ guard(`′), for some t′. By eq. (2), there is some t such that ν + t ∈ q!. If
t′ ≥ t, there is some t′′ ≥ t such that t′′ ∈ q!, and hence, since ` is latest-enabled

30

among sending edges, ` is future-enabled in ν+ t′′ and we are done. If t′ < t, it follows
` future-enabled in t′ with an argument similar to above, and we are done.

For item 3:

PostAq (K) =
{
ν + t

∣∣ ν ∈ K ∧ (ν ∈ LesAq =⇒ ν + t ∈ LesAq)
}

=
{
ν + t

∣∣ ν ∈ K ∧ (ν 6∈ LesAq ∨ ν + t ∈ LesAq)
}

=
{
ν + t

∣∣ (ν ∈ K ∧ ν 6∈ LesAq) ∨ (ν ∈ K ∧ ν + t ∈ LesAq)
}

=
{
ν + t

∣∣ ν ∈ K ∧ ν 6∈ LesAq
}
∪
{
ν + t

∣∣ ν ∈ K ∧ ν + t ∈ LesAq
}

= ↑
{
ν
∣∣ ν ∈ K ∧ ν 6∈ LesAq

}
∪ ({ν + t | ν ∈ K} ∩

{
ν
∣∣ ν ∈ LesAq

}
)

= ↑ (K \ LesAq) ∪ (↑ K ∩ LesAq)

ut

Theorem 11 (From LLESP to LESP). System refinements induced by LLESP point-
wise refinements are LESP.

Proof. Let v be a system refinement induced by some locally LESP point-wise refine-
ment, and let S1 = (A1

p)p∈P and S2 = (A2
p)p∈P be systems of machines such that

S1 v S2. Suppose that γ0−→∗S1
γ = (q,w, ν), and that qp has a latest-enabled sending

edge eS2
in γ for S2, i.e. ν ∈ Les

A2
p

qp . We have to show that qp has a latest-enabled

sending edge eS2
in γ for S1, i.e. ν ∈ Les

A1
p

qp . By lemma 16, ν ∈ Post
A1

p
qp (Pre

A1
p

qp).

Hence, since v is locally LESP by assumption, ν ∈ Post
A1

p
qp (Pre

A1
p

qp) ∩ Les
A1

p
qp and

hence ν ∈ LesA
1
p

qp . ut

Proof of Theorem 3
Preservation follows by theorems 10 and 11. Decidability follows by the fact that, by
lemma 17, we can effectively construct guards that represents PostAq (Pre

A
q) ∩ Les

A′

q

and PostAq (Pre
A
q) ∩ LesAq respectively, and checking wether JδK ⊆ Jδ′K is decidable.

ut

C.4 Counter-examples for alternative refinement strategies
Both ‘naı̈ve’ and ‘asymmetric’ strategies have been formally defined elsewhere in this
appendix (Definition 20) and give two refinements denoted with vsr and va , respec-
tively.

Example 14 (Fact 4: counter-example for naı̈ve strategy (vsr)). Consider the following
system composed of two CTAs:

As : q0 q1
sr!a(x ≤ 2) Ar : q′0 q′1

sr?a(y ≤ 2)

As and Ar can be refined, using vsr . We let As unchanged and narrow guards in Ar,
yielding Ar

N below, with Ar
N vsr Ar:

Ar
N :

q′0 q′1
sr?a(y ≤ 1)

31

Let S = (As,Ar), and S′ = (As,Ar
N). The relation R= {(S′, S)} is LLESP, as the

sending edge remains such in S′. Consider the following run (common to S and S′):

γ0
2−→ sr!a−−→ γ = ((q1, q

′
0), (a, ε), ν0 + 2)

In S′ we have γ 1−→, while in S the only possible timed transition is γ 0−→. Hence,
behaviour is not preserved. Since, in S, γ can perform the receive and reach the final
configuration, then S enjoys (local/global) progress. Instead, in S′ it is too late to receive
(y ≤ 1 is unsatisfiable from ν0 + 2), hence S′ does not enjoy (local/global) progress.

Intuitively, the problem with Example 14 is that narrowing the constraints of receiving
edges may disable them before the message has been sent.

Example 15 (Fact 4: counter-example for asymmetric strategy (va)).
Consider the following CTAs:

Ap : p0 p1 p2
qp?a(1 < x ≤ 2, {x}) pq!b(x ≤ 1)

Aq : q0 q1 q2
qp!a(y ≤ 1) pq?b(y ≤ 3)

A′
p : p0 p1 p2

qp?a(1 < x ≤ 3, {x}) pq!b(x ≤ 1)

Let S = (Ap,Aq) and S′ = (A′p,Aq). We have that A′p va Ap. The relation {(A′p,Ap)}
is LLESP. However, behaviour is not preserved, because in S′ we have the run γ0 qp!a−−→ 3−→,
while in S we have γ0 qp!a−−→ t−→ only if t ≤ 2. Progress is not preserved as well. Indeed,
S enjoys global/local progress, while in S′ we have:

γ0
qp!a−−→ ((p0, q1), (ε, a), ν0)
3−−→ ((p0, q1), (ε, a), ν0 + 3)

qp?a−−−→ ((p1, q1), (ε, ε), {x 7→ 0, y 7→ 3})
1−−→ ((p1, q1), (ε, ε), {x 7→ 1, y 7→ 4})

pq!b−−→ ((p2, q1), (b, ε), {x 7→ 1, y 7→ 4})

Since the last configuration in the run is stuck, S′ does not enjoy progress.

C.5 Proofs for Section 5
Example 16. Consider again the system (A1,A2) with the CTAs in Figure 2. According
to the non-urgent semantics, a possible run would be (recalling from Section 2):

γ0
2−−→ γ1

sr!a−−→ γ2
1.5−−−→ γ3

rs?a−−−→ γ4

Note that γ2 rs?a−−−→. Hence, the second clause of Definition 13 states that γ2 6 t−−→ for all
t > 0. Then, a maximal run of (A1,A2) under the urgent semantics would be:

γ0
2−−→u γ1

sr!a−−→u γ2
rs?a−−−→u γ

′
4 = ((q1, q3), (ε, ε), ν0 + 2)

Proof of Theorem 5
A simple inspection of definition 13. ut

32

Proof of Theorem 6
Let S be as in the statement, and suppose S has global progress. We have to show S
has global progress also with the urgent semantics. So, suppose γ0−→∗uγ = (q,w, ν).
First note that, by theorem 5, γ0−→∗γ as well. If γ is final, we are done. If not, there are
t and α such that γ t−→ α−→. If γ t−→u we are done. If not, there must be some p and t′ < t
such that qp has non-deferrable edge in (q,w, ν + t′). Among these edges, pick the
minimum element e = qp, `, q

′
p with respect to ≤ν . It exists because there are finitely

many such edges and ≤ν is total. Now, take the least t such that ν + t ∈ Jguard(`)K.
The existence of such a t follows by the fully left closed assumption. Clearly, γ t−→u

α−→,
where α is the label associated to `. ut

D Additional material for Section 6
Below we give a (non exhaustive) illustrative set of implementation patterns from CTA
to Go programs: sending (resp. receiving) edge implemented with a non-blocking prim-
itive, receiving edge implemented with a blocking primitive with timeout, and mixed
choice with timeout implemented with non-blocking send and blocking receive. We as-
sume that variable u contains the time unit used in the application. This can be set to,
say, one millisecond, with the following line of code:
1 u := time.Millisecond

We also assume a ≤ b.

q0 q1

MW!l(x ≤ a ∧ x ≥ b, x := 0)
1 x := time.Now() // x initially 0
2 time.Sleep(time.Now().Add(n * u).Sub(x)) //a<=n<=b
3 x = time.Now() // x is reset
4 MW <- "lab"

q0 q1

MW?l(x ≤ a ∧ x ≥ b, x := 0)

1 time.Sleep(time.Now().Add(a * u).Sub(x))
2 select {
3 case res := <- WM: //message received in time
4 ...
5 case <- time.After(time.Now().Add(b * u).
6 Sub(x)): //timeout
7 ...

q0 q1

q2

MW?l(x ≤ a)

MW!m(x ≥ b)

1 select {
2 case res := <- WM:
3 //implementation of q1
4 case <- time.After(time.Now().Add(a * u).Sub(x)):
5 time.Sleep(time.Now().Add(n * u).Sub(x)) //b<=n
6 MW <- "m"

33

	Compositional Asynchronous Timed Refinement

