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Our Score

Position Team Name Score
1 shib 10.5036139488
2 ushitora 10.4169257879
3 ToBeWhatYouWhatToBe 9.9987525940
— 4 Markov_s_Principle 9.4928018749
= vha 9.4351277351
6 L7777 S.2227905095
The highest score 7 uwtacoma 9.1279414594
among methods that 8 Ping 9.0090818107
did not use Neural ° Rafaci-UoL 7.5950857401
Networks 10 MarlonTree 6.5513240695
11 codeBlue 4.7569596767
iz IGR 3.2075991929
13 Hunter 2.7801739872
14 dolboeb 2.4963775873
15 ValarMorghulis 2.4496953487
16 TubularBell 2.1567180753
17 TeamEigen 1.7499862611
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Initial Attempts
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R
Spectral learning for HMMs (Hsu et al. 2012)

Observable Operator Model for HMMs
Pr(zy,...,x) =1 A, ... Ay 7.

Empirical moment calculation:

P]_ERn [P]_]ZZPT(HS]_:Z)
P2,]_ - Rnxn [P2a1]ij — PT($2 — ia I :j)

PS,m,l S Ran [P3amvl]ij = P’T‘(:U;g = i,:ll'z =X, Tr1 — _j)
P,, = Usv*

U defines an m-dimensional subspace that preserves the state dynamics.

Transformed operators for HMMs

~

61 = [AJTpl; boo = (Pz—l:lﬁ)—i_pl; Ba’; == l—/\]—rﬁz}’m’l(ﬁ—r.ﬁb,l)—'_ Vm = [’!’L}

Pr(zy,...,x;) = bl By, ...By, b
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e
The Main Parameters of the Method

® The number of hidden states
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Main Methods
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Weighted Finite Automata and Sequence Prediction

Example with 2 states and alphabet £ = {a, b}

Operator Representation

o
a 0.4 a0.1 Xy =
a0.1 0.0
b 0.1 b o1 b 0.1 b
0.0
_>0'6 o |os)
0.4 0.2]
a0.2 Ay =
b 0.3 :0.1 0.1:
0.1 0.3
Av = 0.1 0.1

f(ab) =04 x 0.3 x 0.6 +0.2 x 0.1 x 0.6 = 0.084
Balle et. al. (EMNLP 2014)
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Hankel Matrix

a b
[ aa, b, bab, q, ) A | 1.31 156 |
g — bbab, abb, babba, abbb, > N - © .19 .62
ab, a, aabba, baa, b .56 50
| abbab, baba, bb, a ) ba | .06 31

Balle et al. (EMNLP 2014)
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The Basis
S
h?\S*“""-—-}—::—-— A a b aa ab
S = i A 9_52____9_?_5_ -
5 @ 0.3 005 025 0 —H
b 070106 0.1} 0,03 02 -
hm% 0.05 002 003 0.017 0.003 .- — .
’ ab | 025 023 002 011 0.12

Balle et al. (EMNLP 2014)
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The Main Parameters of the Method

® The number of hidden states

® The basis

* The basis can be chosen from a sub-block of the
Hankel matrix where the rows and columns
correspond to the substrings and the cells
correspond to the frequencies of the substrings in
the data.

* Therefore, the maximum length of the substrings can
be considered as a parameter
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Parameter Tuning

® A combination of (manual) coordinate ascent
and random search

® Why random search?

Grid Lavout Random Lavout
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(BERGSTRA AND BENGIO (2012))

University of Kent



e
Other Methods

® 3-gram model with smoothing worked better
than spectral learning on 3 problems
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Experimental results (1)

® The Spectral Method did well on problems 1, 2,
3, 9,12

® Presumably, those problems have small
numbers of hidden states

No of states vs Score (Small number of states)
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Experimental result (2)

® Score prediction is invariant to changes in the
number of states on problems 4, 5, 7,
8,10,11,13

No of states vs Score
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Experimental result (3)

® On problems 5, 8 and 10, 3-gram with
smoothing gave slightly batter results than the
corresponding spectral approach

spectral vs n-gram
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The Final Parameter Values for WFA

Problem Rank Irows lcolumns Score

No

1 4 5 5 0.8789916635
2 6 5 5 0.8731489778
3 5 10 3 0.8248148561
4 500 5 5 0.5272911191
5 3-gram with Kneser-Ney smoothing 0.6142422557
6 300 6 7 0.8096061349
7 500 4 4 0.4474728703
8 3-gram with Kneser—Ney smoothing 0.6235375404
9 57 8 7 0.9324635267
10 3-gram with Kneser—Ney smoothing 0.3965168893
11 100 5 5 0.4147772193
12 95 4 4 0.8113699555
13 500 5 5 0.4990697801
14 2 10 10 0.4649848044
15 3 6 6 0.2899561226
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