A Spectral Method that Worked Well in the SPiCe’16
Competition

Farhana Ferdousi Liza FL207QKENT.AC.UK
Marek Grzes M.GRZES@KENT.AC.UK
School of Computing

University of Kent

Canterbury, Kent, CT2 TNY, UK

Editor:

Abstract

We present methods used in our submission to the Sequence Prediction ChallengE (SPiCe’16)*.
The two methods used to solve the competition tasks were spectral learning and a count
based method. Spectral learning led to better results on most of the problems.

Keywords: Spectral Learning, Rank, Sequence Prediction, Hyperparameters

1. Description of the SPiCe 2016 Competition

The Sequence PredictIction ChallengE (SPiCe) was an on-line competition about guessing
the next element in a sequence. Training datasets consist of whole sequences and the aim is
to learn a model that allows the ranking of potential next symbols for a given test sequence
(prefix), that is, the most likely options for a single next symbol. The evaluation process
was interactive: on submission of an answer for a prefix, another prefix was presented and
so on. Once rankings for all prefixes were submitted then the score (NDCGj5 explained
below) of the submission was computed. The score is a ranking metric based on normalised
discounted cumulative gain computed from the ranking of 5 potential next symbols starting
from the most probable next symbol. Suppose the test set is made of prefixes y1,...,ym
and the distinct next symbols ranking submitted for y; is (a},...,al) sorted from more
likely to less likely. The target probability distribution of possible next symbols given the
prefix y;, (p(.|y;)), was known to the organisers. Thus, the exact measure for prefix y; could
be computed using the following equation:
aglyi

NDCG5(a,,. .., a%) = —Ek Gl
Zk 1 logz(k—l—l)
where p; > py > ... > ps are the top 5 values in the distribution p(.|y;).

The competition used real-world data from different fields (Natural Language Process-
ing, Biology, Signal Processing, Software Verification, etc.), and some synthetic data. The
data description was not available during the competition.

The distributions p(.|y;) were computed differently depending on whether the data is
synthetic (and the model that generated it is available) or real. For synthetic data, the true

1. http://spice.lif.univ-mrs.fr/data.php

http://spice.lif.univ-mrs.fr/data.php

conditional distribution over the next symbol was used. For real data, where the string y;
is obtained as a prefix of a longer string y;ax, the conditional distribution was computed
as follows p(a'|y) = d,_,- Note that in this case, py = 1 and po = ... = p5 = 0. Thus,
when applying this metric to real data, NDCGs(aj,...,a5) = m, where j is such
that a; = a (and j = oo if a is not in the list of predicted next symbols). The score of a
submission was the sum of the scores on each prefix in the test sample, normalised by the

number of prefixes in the test set.

2. Our Approach

Spectral learning algorithms (Balle et al., 2014; Hsu et al., 2012) are promising thanks to
their theoretical guarantees of consistency. Another advantage is that they require relatively
little parameter tuning, where the main parameter is the number of hidden states, n. Our
main approach was the method proposed by Balle et al. (2014), and we built our solutions
using its implementation described in Denis et al. (2016). We also used an n-gram model
with smoothing to compare results on different datasets, and in several cases, the n-gram
method was better than spectral learning.

3. Details of the Spectral Method

The approach that gave us the best score on most problems is the algorithm proposed by
(Balle et al., 2014). The algorithm follows from a duality result between minimal Weighted
Finite Automata (WFA) and factorisation of Hankel matrices (Hy). Weighted Finite Au-
tomata are classical finite automata and Hankel Matrix of a function is a bi-infinite matrix.
The method provides an efficient algorithm that implements the ideas of the following
Lemma to find a rank factorisation of a complete sub-block H of H; and obtains from it a
minimal WFA for a function f which maps strings to real numbers.

Lemma 1 If H = PS is a rank factorization, then the WFA A = (a1, 000, {As}) with
al = hI’SSJF,ozoo = P%hpy, and A, = PTH,S™, is minimal for f.

3.1 Description of the Algorithm

The purpose of the algorithm is to compute a minimal WFA for a function (f) defined on
strings f : ¥* — R with finite rank n. Here, ¥ be a finite alphabet, where o is an arbitrary
symbol in X, and the set of finite strings over 3 is denoted by >*. The algorithm assumes
that the B = (P, S) is a complete basis for f, and given that basis along with values of f (in
our case the values are frequency of substrings) on a set of strings W, where W = {\, X},
as input, the algorithm does a rank factorisation of a sub-block of the Hankel matrix to
be able to apply the formulas given in Lemma 1. Particularly, the algorithm assumes that
P Y SUPUS C W. Consequently, the values of f on a set of strings can compute the
vectors hy s and hpy, where A is an empty string. Thus, the algorithm only requires to
compute the rank factorisation of Hy to be able to apply the formulas given in Lemma 1.
The compact SVD for a matrix gives rank factorisation. The SVD of a p x s matrix Hy
of ranks n can be written as Hy = ULV", where U € RP*™ and V' € R**™ are orthogonal
matrices, and L € R™" is a diagonal matrix containing the singular values of H). In

the algorithm, this formulation has been written differently as follows Hy = (HA\V)V'T.
This can be written because V'V = I and V* = VT, when V is orthgonal. With this
factorization, the equations in Lemma 1 can be written as a; | = h. AsVs Qoo = (H)\V) hp

and A, = (H AV)JFHUV and these are used in the learning phase of the algorithm. One of
the applications of this algorithm is to determine the probabilities of sequences as follows:
P(x17) = (1) Agy - Agy oo

In practice, the H and H, are not known exactly because the number of finite strings
can be infinite and as a result there will be some estimation error. However, it is possible
to apply the algorithm on approximate H and H,. Here, approximation means the H and
H, can be calculated from a number of strings in W rather than from all strings of W.

3.2 Relevant Parameters

When this algorlthm is used for practical purposes with approximate H, and HU, for o €
by h>\ .5, and h p,x, the algorithm receives as input the number of states n of the target WFA.
This is due to the fact that noise can make the rank of H, - different from the rank of the H,
and the algorithm has to ignore some small singular values of H,, which correspond to zeros
in the original matrix. This is done by computing a truncated SVD of H) up to dimension
n. As the zeros in the original matrix do not have much impact on the final result, Bailly
(2011) has shown that when empirical Hankel matrices are sufficiently accurate, singular
values of H can yield accurate estimates of the number of states n in the target. Usually
the number of states is chosen based on some sort of cross-validation procedure.

The other important parameter to choose when using the algorithm is the basis. In
general there are infinitely many complete basis and for a function of rank n there always
exist complete basis with |P| = |S| = n. In practice, choosing a basis can be done in
the form P = S = X=F for some k > 0 (Hsu et al., 2012; Siddiqi et al., 2009). Another
approach is to choose a basis that contains the most frequent elements observed in the
sample, which can be either strings, prefixes, suffixes, or substrings (Balle et al., 2012).
We used the second approach in our method with substrings. Note that the basis vector
can be chosen from a subblock of the Hankel matrix where the rows and columns of the
Hankel matrix correspond to the substrings and the cells of the Hankel matrix contain the
frequencies of the corresponding substrings. In the algorithm, we also choose the length of
these substrings. Instead of using substrings, it is also possible to use the prefixes as a row
and suffixes as a column. In such a case, the cell of the Hankel matrix can be calculated
as the frequencies of the corresponding strings. If the data is informative enough and the
frequencies are high enough, the Hankel matrix gives a complete basis without the costly
need to look at all possible rows and columns.

3.3 Our Approach to Parameter Tuning

Having the code written by Denis et al. (2016), our main task was to tune the parameters
of the algorithm. Specifically, we had to select values for three parameters: the number of
states, n, the maximum length of the substring considered in the row of the Hankel matrix,
nR, and the maximum length of the substring considered in the column of the Hankel
matrix, nC. The objective was to maximise the score (N DCGS5) on the problems included
in the competition.

We did not apply any of the more sophisticated methods for hyperparameter tuning—
such as random search (Bergstra and Bengic, 2012), Bayesian optimisation (Bergstra et al.,
2011) or grid-based search (Larochelle et al., 2007)—because the method quickly becomes
infeasible when the rank, i.e., the number of states is too high, and we had to stop many
experiments manually. Similar to Larochelle et al. (2007), our method included a combi-
nation of multi-resolution search, coordinate ascent, and manual search, with a significant
utilisation of the last method.

On all problems, our method first initialises nR and nC to 4 and n to 5. Note that the
number of rows (columns) in the Hankel matrix is much larger than nR (nC). In the second
step, the algorithm starts the process of tuning the number of states n because this was
the most important parameter in our preliminary experiments. Random walk is used to
select new values of n with the step size being depended on the size of the domain, i.e., the
number of observations and the number of sequences. Thus, when nR and nC were kept
constant, the value of n was increased or decreased randomly based on the score (NDCG5),
i.e., a form of coordinate ascent was performed on n. After the highest score was achieved
by tuning n, n was frozen, and the algorithm used the same randomised procedure to tune
nR (see Figure 3). Finally, the same procedure was executed to tune the parameter nC
(see Figure 6). After tuning nR, and nC', we did not tune n again because, for a given n, a
very small improvement was usually observed after tuning nR and nC'. On some problems,
increasing the values of n, nR and nC to a large number was not possible as the algorithm
was becoming intractable.

4. An Alternative Approach: N-gram with Smoothing

We also used 3-gram with Kneser-Ney smoothing (Chen and Goodman, 1996) for the com-
petition datasets.

5. Experimental results

The spectral algorithm led to good scores on problems 1, 2, 3, 9, and 12 (see Figure 1). A
common characteristic of all these problems is that they have small numbers of hidden states
(low rank). The scores of the predictions made using spectral learning on problems 4, 5, 7,
8, 10, 11, and 13 were not improving with the change of the value of n (see Figure 2), and
increasing the size of the basis vector was making the algorithm intractable. On problems
5, 8, and 10, n-gram with smoothing gave slightly better results than the corresponding
best spectral solution (see Figure 5). On problem 6, increasing the rank improved the score
whereas for problem 11, increasing the rank made the algorithm intractable. On problem
14 and 15, higher rank did not work at all (see Figure 4). The final parameters for the
problems can be found in the accompanying website?.

6. Conclusion

The methods described in this paper placed us in the 4th position with score 9.4082437158
whereas the winning score was 10.4498481750.

2. https://www.cs.kent.ac.uk/people/staff/mg483/SPiCe2016/

https://www.cs.kent.ac.uk/people/staff/mg483/SPiCe2016/

Acknowledgments

We thank the organising committee for their effort to set up the competition. We also thank
Rémi Eyraud for answering our questions related to their software package.

References

Raphael Bailly. Quadratic weighted automata: Spectral algorithm and likelihood maxi-
mization. Journal of Machine Learning Research, 20:147-162, 2011.

Borja Balle, Ariadna Quattoni, and Xavier Carreras. Local loss optimization in operator
models: A new insight into spectral learning. In JCML. icml.cc / Omnipress, 2012. URL
http://dblp.uni-trier.de/db/conf/icml/icml12012.html#BalleQC12.

Borja Balle, Xavier Carreras, Franco M Luque, and Ariadna Quattoni. Spectral learning of
weighted automata. Machine Learning, 96(1-2):33-63, 2014.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13:281-305, February 2012. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2188385.2188395.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
2546-2554. Curran Associates, Inc., 2011.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’96, pages 310-318, Stroudsburg, PA, USA,
1996. Association for Computational Linguistics. doi: 10.3115/981863.981904. URL
http://dx.doi.org/10.3115/981863.981904.

Arrivault Denis, Benielli Dominique, Denis Fracois, and Eyraud Remi. Sp2learn: A toolbox
for the spectral learning of weighted automata. The 15th International Conference on
GI, 2016.

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden
markov models. Journal of Computer and System Sciences, 78(5):1460-1480, 2012.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio.
An empirical evaluation of deep architectures on problems with many factors of variation.
In Proc. of ICML, pages 473-480. ACM, 2007.

Sajid M. Siddiqi, Byron Boots, and Geoffrey J. Gordon. Reduced-rank hidden markov
models. CoRR, abs/0910.0902, 2009. URL http://arxiv.org/abs/0910.0902.

http://dblp.uni-trier.de/db/conf/icml/icml2012.html#BalleQC12
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dx.doi.org/10.3115/981863.981904
http://arxiv.org/abs/0910.0902

Appendix A

0.95 -

0.9

0.8

0.75

Score

0.7

0.65

0.6

No of states vs Score (Small number of states)

No of states vs Score
0.6

Dataset 1
Dataset 2
Dataset 9
——— Dataset 3
Dataset 12

Dataset 4
= Dataset 5
Dataset 7
Dataset 8

Dataset 10
Dataset 13

0.5

0.55
0

0.94

0.78

0.76

Figure 3: Impact of basis on score

Score

50 100 150
No of States

Figure 1: Good Score (SM)

Substring length vs Score

ataset 9 (Ranl
ataset 9 (Ranl
ataset 6 (Ran!

4 5 6 7 8

spectral vs n-gram

Spectral
-gram with KN smoothing

5 6 7 8 9
Problem no

Figure 5: SM vs n-gram

0.45
<
S
3
a
0.4
0.35
0.3
s 0251 n n n n
200 0 200 400 600 800 1000
No of States
Figure 2: Low Score (SM)
No of states vs Score
09
Dataset 6 (higher rank works)
Dataset 11(higher rank intractable)
08l Dataset 14 (higher rank does not work) |
. Dataset 15 (higher rank does not work)
0.7+
0.6
o
o
3
a
05
0.4
0.3
s 0.2 L L s s s
9 0 100 200 300 400 500
No of States
Figure 4: No of states vs Score
Constant nR and Variable nC vs Score
0.829 -
0.828
0.827
0.826
o
S 0825
]
0.824
0.823
0.822
—6— Dataset 3 (Rank=5, nR=nC)
—@— Dataset 3 (Rank=5,nR=10,nC=Variable)
s 0.821 n s L s s s s n
10 2 3 4 5 6 7 8 9 10

Figure 6: Same and different nR, nC

Appendix B

The code can be found here:
https://www.cs.kent.ac.uk/people/staff/mgd83/SPiCe2016/
https://sites.google.com/site/fflgradmission/spice2016

Spectral Method:

To install the python library:
pip install Sp2Learning

To execute the code run the following commands:

Usage:

python spectral_baseline.py train file prefixes file
output_file

Example:

python spectral_baseline.py ../train/0.spice.train
../prefixes/0.spice.prefix.public 0.spice.ranking

The parameter of the method can be changed in spectral_baseline.py code in
the following places:

#set parameter values
#Estimated rank of the Hankel matrix
rank = 4

#Allow only some of the possible rows and columns of the
matrix
partial = True

#Set max length of elements for rows and column
lrows = 4
lcolumns = 4

#Set which version of the matrix you want to work with
version = "factor" # "classic" , "prefix", "suffix" ,
"factor"

#Set whether you want to use the sparse or the classic version
of the matrix

sparse = True

To get the score run the following:

https://www.cs.kent.ac.uk/people/staff/mg483/SPiCe2016/
https://www.cs.kent.ac.uk/people/staff/mg483/SPiCe2016/

Usage:

python score computation.py rankings file targets_file
Example:

python score computation.py 0.spice.ranking
../targets/0.spice.target.public

Table: The final competition parameters and the corresponding competition score.
These parameters and scores placed us in the fourth position in the final ranking.

Problem Rank Irows lcolumns Score

No

1 4 5t 0.8789916635
2 6 5 5 0.8731489778
3 bt 10 3 0.8248148561
4 500 5 5 0.5272911191
5) 3-gram with Kneser-Ney smoothing 0.6142422557
6 300 6 7 0.8096061349
7 500 4 4 0.4474728703
8 3-gram with Kneser-Ney smoothing 0.6235375404
9 o7 8 7 0.9324635267
10 3-gram with Kneser-Ney smoothing 0.3965168893
11 100 bt 5t 0.4147772193
12 95 4 4 0.8113699555
13 500 5 5 0.4990697801
14 2 10 10 0.4649848044
15 3 6 6 0.2899561226

3__gram with Smoothing:

To run the smoothing code:

Usage:

python KN_3gram.py train file prefixes_file output_file
Example:

python KN_3gram.py ../train/0.spice.train
../prefixes/0.spice.prefix.public 0.spice.ranking

To get the score run the following:

Usage:

python score computation.py rankings_file targets_file
Example:

python score_computation.py 0.spice.ranking
../targets/0.spice.target.public

8 September 2016

Appendix C
A detailed description of our parameter tuning procedure.

Parameter_tuning (n,nC,nR)
{

// step 1

{

1. Initialize n=5 , nC=4 and nR=4

2. Score = blackboxSL(n,nC,nR)

a. If the computation time is too large (more than 5 hours),
then abort and go to step 1 and re-initialize n , nC and
nR with smaller values.

3. Check the score with the online ranking and compare with the
highest score to check how far the achieved score is from the
optimum score

4. Store the score for the next phase. Last_score = score

// step 2: Initialize n=n+inc , nC=4 and nR=4, here inc depends on
the training data size and the particular time step

dof{
1. Score = blackboxSL (n,nC,nR)

a. If the computation time is too large (more than 5 hours),
then abort and go to step 1 and re-initialize n , nC and
nR with smaller wvalues.

2. Check the score with the online ranking and compare with
last_score to check the direction of the optimum value search

3. If the score is smaller than the last_score, then set n = n -
inc.

4. If the score is larger than the last _score, then set n = n +
inc.

5. Store the score and parameter value for the best score.

}While(not_satisfied _with_ result)

// step 3: once best n is achieved then start tuning nC and nR,

dof{
1. First set nC= nC + incl, nR = nR + inc2, where incl, inc2 >=0
2. If the computation finish in reasonable time keep increasing
the value simultaneously or individually (keeping one constant
while changing other)
}while(not_satisfied _with result)

	Description of the SPiCe 2016 Competition
	Our Approach
	Details of the Spectral Method
	Description of the Algorithm
	Relevant Parameters
	Our Approach to Parameter Tuning

	An Alternative Approach: N-gram with Smoothing
	Experimental results
	Conclusion

