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Summary

Locatello et al. [3] observed a lower disentanglement in mean than
sampled representations of Variational Autoencoders (VAEs).
In this paper we:

• Analyse the problem through the lens of the polarised regime
• Show that the lower disentanglement of mean representations

is due to (uninformative) passive variables
• Provide some recommendation for using mean representations

on downstream tasks

What are Variational Autoencoders?
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trick

KL divergence computed
analytically

Reconstruction loss
estimated by sampling

L(θ,ϕ;x) = Eqϕ(z|x)
[
log pθ(x|z)

]︸ ︷︷ ︸
reconstruction term

−DKL

(
qϕ(z|x) ∥ pθ(z)

)︸ ︷︷ ︸
regularisation term

.

The samples from the learned latent representation are obtained
using the reparameterisation trick [2] such that z = µ + σ1/2ϵ where
ϵ ∼ N (0, I).

The polarised regime [1, 4]

• Passive variables
µi ≈ 0, σi ≈ 1, and
zi ∼ N (0, 1).

• Active variables
σi ≈ 0 and zi ≈ µi.

Sampled
representation

Mean
representation

Variance
representation

Truncation experiment

• Total correlation (TC) and averaged mutual information (MI) are
higher in µ than z [3].

• For active variables zi ≈ µi.
• Discrepancies between µ and z must come from passive

variables.
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(a) Full representation
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(b) Only active variables
Figure: TC of β-TC VAE on noisy dSprites

Passive variables correlation

• Passive variables are more
correlated in µ than z.

• They should be removed
before using µ on
downstream tasks.
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Where does this correlation come from?

• Are variables passive because they are correlated?
• Does the correlation occur because the variables are passive?
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Figure: The correlation scores of the active variable at index 2 of the mean
representation with all the other variables during the 300K training steps of a
β-VAE with β = 8 trained on dSprites. We can see an increased correlation with all
the passive variables (indexes 1, 4, and 6).

Conclusion

• Active variables are as disentangled in mean as in sampled
representations

• Passive variables are highly correlated with various active
variables

• An in-depth study of the learning dynamics of VAEs would be
needed to explain this phenomenon

• Passive variables should be removed from mean
representations before downstream tasks

More about the paper
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