
Proceedings of the Adaptive

and Learning Agents Workshop

at AAMAS 2010

May 10, 2010

Toronto, Canada

Editors
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Foreword

This year’s edition of the Adaptive and Learning Agents workshop is the third after
the ALAMAS and ALAg workshops merged. ALAMAS was an annual European
workshop on Adaptive and Learning Agents and Multi-Agent Systems, held eight
times. ALAg was the international workshop on Adaptive and Learning agents, typ-
ically held in conjunction with AAMAS. To increase the strength, visibility, and
quality of the workshops, ALAMAS and ALAg were merged into the ALA workshop,
and a steering committee was appointed to guide its development. We are very happy
to present you the proceedings of this special edition of the ALA workshop.

We thank all authors who responded to our call-for-papers. We expect that the
workshop will be both lively and informative, refining and producing future research
ideas. We are thankful to the members of the program committee for their high
quality reviews. We would like to thank all the members of the steering committee
for their guidance, and the AAMAS conference for providing an excellent venue for
our workshop.

Marek Grześ and Matthew E. Taylor
ALA 2010 Co-Chairs
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PaweÃl Wawrzyński, Warsaw University of Technology, Poland

iii



Steering Committee

Franziska Klügl
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ABSTRACT
This paper provides a novel approach to multi-agent coor-
dination in general-sum Markov games. Contrary to what
is common in multi-agent learning, our approach does not
focus on reaching a particular equilibrium between agent
policies. Instead, it learns a basis set of special joint agent
policies, over which it can randomize to build different solu-
tions.

The main idea is to tackle a Markov game by decomposing
it into a set of multi-agent common interest problems, also
called Multi-agent Markov Decision Processes (MMDPs).
Each MMDP reflects one agent’s preferences in the system.
With only a minimum of coordination, simple reinforcement
learning agents using Parameterised Learning Automata are
able to solve this set of common interest problems in parallel.

A third party then selects the MMDP to be played, with-
out a need for the agents to know which problem or reward
function they are confronted with. As a result, a team of
simple learning agents is able to switch play between desired
joint policies rather than mixing individual policies. One ap-
plication of this principle, which we consider in this paper, is
to let simple adaptive agents learn to take turns in general-
sum Markov Games in order to satisfy their individual ob-
jectives. We experimentally demonstrate this principle in a
grid-world setting.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Agent Cooperation, Multi-agent learning, Markov games,
reinforcement learning

1. INTRODUCTION
A large part of the multi-agent learning literature focuses

on finding a Nash equilibrium (NE) between agent policies
[8, 15]. However, while a Nash equilibrium represents a local
optimum, it does not necessarily represent a desirable solu-
tion for the problem at hand. This is clearly demonstrated

∗funded by a Ph.D grant of the Institute for the Promotion
of Innovation through Science and Technology in Flanders.

by the famous prisoner’s dilemma game, where the unique
Nash equilibrium does not represent a desirable outcome,
since both agents can simultaneously do better.

The motivation for this paper comes from the observa-
tion that the equilibrium concepts used in Multi-Agent Re-
inforcement Learning (MARL) algorithms are often chosen
for their analytical properties, rather than their correspon-
dence to a desired outcome of the learning process. Instead,
in our approach we are interested in agents learning real-
istic patterns of behavior. One such pattern, which occurs
naturally in human interactions is turn taking. When faced
with conflicting interests, humans can often compromise by
agreeing to take turns to select each participant’s desired re-
sult. This compromise frequently leads to outcomes that are
more desirable than those reached by a population of agents
selfishly optimizing their individual rewards. Therefore, the
goal of this paper is to show how simple reinforcement learn-
ing agents are able to learn interesting patterns of play, like
turn taking, in general-sum Markov Games.

In [12] the problem of learning to take turns is studied
in repeated games. The problem is illustrated using a com-
puter game and two children. The children need to fairly
take turns in playing this game to maximize their players’
satisfaction, since only one child can play the game at the
same time. When one child is playing the game, the other
one is supposed to watch the game. [12] showed that players
using Markov fictitious play, a simple extension of fictitious
play, can spontaneously learn to take turns quite often. Em-
pirical investigations were done on (mostly) symmetric 2 x
2 repeated games.

In [6] the authors propose to use the correlated equilibrium
(CE) notion [2]. In a correlated equilibrium, each player re-
alizes that the best he can do is to follow a private recom-
mendation, provided that all other players will do this too.
A correlated equilibrium is more general than a NE, since it
permits dependencies among the agents’ action probability
distributions, while maintaining the property that agents
are optimizing. These equilibria have the advantage that,
unlike Nash equilibria, they can be computed efficiently us-
ing linear programming. In [18], the authors show that the
method proposed in [6] can convergence to what they call
a cyclic equilibrium. Such an equilibrium represents a limit
cycle in which the agents cycle through a fixed sequence of
joint policies.

In this paper we present a new multi-agent coordination
approach for learning patterns of desirable joint agent poli-
cies. To do so, we depart from the idea of jointly learning
an equilibrium in the full Markov game. Instead, our main
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State 1 State 2

R
b1 b2

a1 0.2/0.1 0/0
a2 0/ 0 0.2/0.1

b1 b2
a1 1.0/0.5 0/0
a2 0/0 0.6/0.9

T

(a1,b1):(0.5,0.5)
(a1,b2):(0.5,0.5)
(a2,b1):(0.5,0.5)
(a2,b2):(0.5,0.5)

(a1,b1):(0.5,0.5)
(a1,b2):(0.5,0.5)
(a2,b1):(0.5,0.5)
(a2,b2):(0.5,0.5)

Table 1: Example Markov game with 2 states and
2 agents. Each agent has 2 actions in each state:
actions a1 and a2 for agent 1 and b1 and b2 for agent
2. Rewards for joint actions in each state are given
in the first row as matrix games. The second row
specifies the transition probabilities to both states
under each joint action.

idea is to tackle a Markov game by decomposing it into a
set of multi-agent common interest problems; each reflecting
one agent’s preferences in the system. Simple reinforcement
learning agents using Parameterised Learning Automata [11]
are able to solve this set of MMDPs in parallel. A third
trusted party is used to enforce each MMDP to be played
and solved equally well. There is no need for the agents in
the system to know which problem or reward function they
are confronted with. As a result, a team of simple learning
agents becomes able to switch play between desired joint
policies rather than mixing individual policies. The role of
the third party is minimal in the sense that only simple coor-
dination signals should be communicated. In case all agents
fully trust its opponent players to stick with the learning
mechanism proposed, the third party is even unnecessary.
We will show how this technique can lead to turn taking
behavior in 2 different Markov games.

This paper is organized as follows: in the next section we
introduce some background knowledge needed to develop
our algorithm. In Section 3 our approach for learning cor-
related policies in Markov Games is described. We explain
our decomposition method and how it can easily be used in
combination with a third party, comparable to the private
signal modelled in the CE concept. We demonstrate this
approach on a simple 2-state Markov game and a larger grid
world problem in section 4. We end with a discussion in
Section 5.

2. BACKGROUND
In this section we describe some basic formalisms and

background concepts used throughout the rest of this pa-
per.

2.1 Markov Games
In this paper we adopt the formal setting of Markov games

(also called stochastic games). Markov games are a straight-
forward extension of single agent Markov decision problems
(MDPs) to the multi-agent case. A Markov game consists
of a set of states S and a set of N agents. In each state si

Ai
k = {ai

k1, . . . , a
i
kir

} is the action set available for agent k,
with k : 1 . . . N . Actions in the game are the joint result
of multiple agents choosing an action independently. The
transition function T (si, a

i) and reward function Rk(si, a
i),

determine the probability of moving to another state and
the reward for each agent k, depending on the current state

si and the joint action in this state si, i.e. ai = (ai
1, . . . a

i
N )

with ai
k ∈ Ai

k. The reward function Rk(s, a) can be indi-
vidual to each agent k, meaning that different agents can
receive different rewards for the same state transition.

The goal of each individual agent in the game, is to find
a policy which maps each state to a strategy in order to
maximize its reward. In this paper we consider the limit
average reward, meaning that agents try to maximize their
average reward over time. For a joint policy α consisting
of a policy for each agent in the system, the limit average
reward to agent k is defined as:

Jk(α) ≡ liml→∞
1

l
E

"

l−1
X

t=0

Rk(s(t), a1(t), ..., aN (t))

#

(1)

In the remainder of this paper we will assume that the
Markov chain of system states under every joint policy is
ergodic. A Markov chain {xl}l≥0 is said to be ergodic when
the distribution of the chain converges to a limiting distri-
bution π(α) = (π1(α), . . . , π|S|(α)) with ∀i, πi(α) > 0 as
l → ∞.

Due to the individual reward functions of the agents, it is
in general impossible to find an optimal policy for all agents
simultaneously. Instead, most approaches seek equilibrium
points. In an equilibrium, no agent can improve its reward
by changing its policy if all other agents keep their pol-
icy fixed. In a special case of the general Markov game
framework, the so-called team games or multi-agent MDPs
(MMDPs) [3] optimal policies do exist. In this case, the
Markov game is purely cooperative and all agents share the
same reward function. This specialization allows us to define
the optimal policy as the joint agent policy, which maximizes
the payoff of all agents.

An example Markov game is given in Table 1. Each col-
umn in this table specifies one state of the problem. The first
row gives the immediate rewards agents receive for a joint
action, while the second row gives the transition probabili-
ties. In this case transition probabilities are independent of
the joint action chosen and the system moves to either state
with equal probability.

2.2 Parameterised Learning Automata
Learning Automata are simple reinforcement learners which

attempt to learn an optimal action, based on past actions
and environmental feedback. Formally, the automaton is
described by a tuple {A, β, p,U} where A = {a1, . . . , ar} is
the set of possible actions the automaton can perform, p is
the probability distribution over these actions, β is a ran-
dom variable between 0 and 1 representing the evironmental
response, and U is a learning scheme used to update p.

In this paper we will make use of the so called Paramete-
rized Learning Automata (PLA) [11]. Instead of modifying
probabilities directly, PLA use a parameter vector u(t) to-
gether with an exploration function g(u) and an update rule
based on the REINFORCE algorithm [17]:

ui(t + 1) = ui(t) + λβ(t) δ ln g

δ ui

(u(t), α(t))

+λh′(ui(t)) +
√

bsi(t)
(2)
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where h′(x) is the derivative of h(x):

h(x) =

8

<

:

−K(x − L)2n x ≥ L

0 |x| ≤ L

−K(x + L)2n x ≤ −L

(3)

{si(t) : k ≥ 0} is a set of i.i.d. variables with zero
mean and variance σ2, b is the learning parameter, σ and
K are positive constants and n is a positive integer. In this
update rule, the second term is a gradient following term,
the third term is used to keep the solutions bounded and
the final term is a random noise term. The gradient term
is part of the orginal REINFORCE algorithm and allows
agents to locally optimize their rewards. In [11] however, it
was shown that this original algorithm is only locally opti-
mal. Moreover, it was found that the algorithm could give
rise to unbounded behavior, causing the values in u to go to
infinity. To deal with these issues the authors in [11] added

the extensions above. The random noise term
√

bsi(t) is
based on the concepts used in simulated annealing. It adds
a random walk to the update that allows the algorithm to
escape local optima that are not globally optimal. Addition-
ally, the range for each value in the vector u is now limited
to the interval [−L, L]. The h′(ui(t)) term keeps each ui

bounded with |ui| ≤ L. This term is 0 when the parameter
ui being updated is within the desired interval, but becomes
either negative or positve when ui leaves this interval. Pro-
vided that L is taken sufficiently large, the resulting update
can still closely approximate the optimal solution, without
resulting in unbounded behavior.

Groups of learning automata can be interconnected by
using them as players in a repeated game. In such a game
multiple automata interact with the same environment. A
play a(t) = (a1(t) . . . an(t)) of n automata is a set of strate-
gies chosen by the automata at stage t. Correspondingly, the
response is now a vector β(t) = (β1(t) . . . βn(t)), specifying
a payoff for each automaton.

At every instance, all automata update their action prob-
abilities based on the responses of the environment. Each
automaton participating in the game operates without infor-
mation concerning the number of participants, their strate-
gies, their payoffs or actions.

In common interest games, where all agents receive the
same feedback and a clear optimal solution exists, PLA can
be used to assure that this global optimum is reached [11].

2.3 Automata Learning in Markov games
Besides the repeated games mentioned in the previous sec-

tion, LA can also be used in more complex, multi-state prob-
lems. We now explain an automata based algorithm, capable
of finding pure equilibria in general-sum Markov games [15,
13] and optimal policies in MMDPs [14]. In the next sec-
tion, this algorithm will serve as building block for our turn
taking approach. The algorithm is an extension of an LA
algorithm for solving MDPs, originally proposed by Wheeler
and Narendra [16].

The main idea behind the algorithm is that agent k asso-
ciates a different learning automaton LAi

k with each state
si. The agents then defer the actual action selection in each
state to the automaton they have associated with that state.
Each time step each agent k in the system activates LAi

k that
it associates with the current system state si. The joint ac-
tion ai consisting of the actions of all automata associated
with si, then triggers a transition to the next system state

sj and an individual reward Ri
k(si, a

i) for each agent. The
agents then repeat the process in state sj .

Automata in the system are not informed of the imme-
diate reward that their joint action triggers. Instead each
agent keeps track of the cumulative reward it has gathered
up to the current time step. When the system returns to a
state si, that was previously visited, each agent k computes
the time ∆ti that has passed since the last visit and the
the reward ∆ri

k that it has gathered since. Automaton LAi
k

then updates the action a it took last time using following
feedback:

β
i
k =

∆ri
k

∆ti
(4)

In [15] it is shown that the behavior of this algorithm can
be analyzed by examining an approximating limiting game.
This game approximates the full Markov game by a single re-
peated game. Since the limiting game is an automata game,
this limiting game view allows us to predict the behavior of
the algorithm based on the convergence properties of the up-
date rule used by the automata. When used with a common
LA update scheme called linear reward-inaction[10], the sys-
tem can be shown to converge towards pure Nash equilibria
[15]. In the special case of MMDPs, where all agents receive
the same reward and a globally optimal equilibrium still ex-
ists, the PLA introduced in the previous section can be used
to achieve convergence to this global optimum [14]. In this
paper we introduce another approach, in which the agents
alternate between different joint policies in a general sum
Markov game. In the next section we will show how this
can be implemented, using the automata algorithm above.

3. MARKOV GAME TURN TAKING ALGO-
RITHM

The main idea behind our algorithm is to split the Markov
game into a number of common interest problems, one for
each agent. These problems are then solved in parallel, al-
lowing agents to switch between different joint policies, in
order to satisfy different agents’ preferences. The agents
learn preferred outcome for each participant in the game.

3.1 Markov game Decomposition
We develop a system in which agents alternate between

optimising different agent goals in order to satisfy all agents
in the system. This implies that we let agents switch be-
tween playing different joint policies.

To allow agents to switch between objectives we use a sys-
tem based on Policy Time Sharing (PTS) approaches used
in constrained MDPs [1]. A related approach was also used
in a multi-objective reinforcement learning setting in [9]. In
these systems, a single controller (i.e agent) switches be-
tween alternate policies to keep a vector of payoffs in a tar-
get set. In this paper on the other hand, we will consider a
system composed of multiple independent controllers, each
with an individual scalar payoff.

In a policy time sharing system the game play is divided
into a series of periods. A single recurrent1 state in the
system is select as the switch state. Play is then divided in
episodes, with a single episode comprising the time-steps be-
tween 2 subsequent visits to the switch state. Each episode a
1A recurrent state is a non-transient state. In the ergodic
systems under study here all states are recurrent.
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n-player

Markov 

Game

MMDP 1 MMDP 2 MMDP n...

Figure 1: Markov game decomposition

different objective to be optimized can be selected, with the
different objectives here corresponding to the reward func-
tion of different agents.

This means that each episode the agents may use a dif-
ferent joint policy, in order to maximize a different reward
function. The agents do not only learn a policy to optimize
their own reward function, they also learn the preferences
of the other agents. To do this, agents associate multiple
LA with each state, one for each agent in the system. One
automaton is then used to learn their own policy, while the
others are used to learn the preferences of the other agents.
During a single episode the agents use in each state the au-
tomaton corresponding to the current reward function. At
the end of the episode all agents receive the rewards gathered
for this reward function during the episode.

Since the expected average reward under a given policy
in an ergodic Markov game is the same for all states, the
average rewards received after each episode contain sufficient
information for each agent to estimate the average payoff
received by the other agents during the last episode. This
information can then be used to update the automata in
visited states, in exactly the same manner as was described
in the algorithm of Section 2.3. Agents then coordinate to
select the reward function to use during the new episode.

This system effectively transforms the Markov game into a
set of MMDPs. The states and transitions of these MMDPs
are identical to the full Markov game, but the MMDP only
considers the reward function of a single agent. Each MMDP
represents the problem of finding the joint policy that maxi-
mizes the reward for a single agent in the system. By switch-
ing between different automata to learn different agents’
preferences, the agents are actually solving each of the MMDPs
in an interleaved manner, using the algorithm described in
Section 2.3.

Provided that all LA in the system use the PLA update,
the agents will find the optimal joint policy in each MMDP,
which corresponds to the joint policy maximizing the reward
for the corresponding agent. Thus when the automata have
converged, the agents continuously alternate between the
stationary joint policies that are optimal for the different
agents in the system. In the experiments section we will
demonstrate how this system can be naturally applied in an
example grid world setting.

By using a coordination mechanism, agents correlate their
policy choice. This means that agents are not limited to
the product distributions, given by each agent individually

start
period n

Dispatcher:
-worst agent = i
- send rewards 
Period n-1

Agents:
- update PLAs 
period n-1 

- Play using PLAs i

return to start 
state:

period n+1

...

...

Figure 2: Outline of the turn-taking algorithm.

B S
B 2,1 0,0
S 0,0 1,2

Table 2: The Battle of the Sexes game. A 2 player
2 action game, where each agent prefers a different
pure equilibrium.

mixing its policies. Instead, agents using this system to co-
ordinate their policy switches, can play only desired joint
policies, rather than the entire cross product of their indi-
vidual policy sets. This allows them to only reach desirable
outcomes of the game, in this case the joint policies that
maximize the reward for one of the participating agents.
Agents can then take turns to achieve this maximum payoff.
Each epsiode the system switches to a another joint policy,
which is optimal for another agent’s reward function.

To motivate this system, consider for example the Battle
of the Sexes repeated game in Table 2. In situations such as
these, pure equilibrium convergence can optimize the reward
of only a single agent, since a payoff discrepancy always ex-
ists. On the other hand, when agents play a mixed strategy
reward are lowered because sometimes agents will miscoor-
dinate and play one of the 0 reward joint actions. When
agents correlate their action choices, however, they can al-
ternate between the plays preferred by both agents, while
avoiding the 0 payoff.

It should be noted that in a joint action setting such as
[8, 6] where all rewards are visible, this system can still be
implemented without the need for communication or explicit
coordination between the agents, provided that all agents
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use a common predetermined system to select the reward
function to optimize during the next episode.

3.2 Combining Joint Policies
Using the switching mechanism described above we can

learn the joint policies that maximize each agent’s individual
payoff. One additional requirement to implement this sys-
tem is a mechanism to decide which MMDP will be played
next. This mechanism determines how the different joint
policies learnt in the set of MMDPs are combined into a sin-
gle solution and consequently how much each agent’s goal is
optimized.

Different methods could be use to implement the coordina-
tion mechanism. One possibility is to implement a communi-
cation protocol to let agents exchange rewards and negotiate
about the next agent to aid. Alternatively it can be imple-
mented using a centralized mechanism. In our setting we
implement this switching mechanism using a separate dis-
patcher agent. This agent is separate from the other agents
and does not participate in the actual learning problem. In-
stead this agent coordinates all other agents and determines
the reward to optimize next. In this way the actual learning
agents do not need information on the actions and rewards
of others or even the fact that other agents are present in the
system. Whenever the system reaches the switch state, the
current episode ends and the dispatcher becomes active. The
dispatcher then collects the total rewards up to the current
time step for each agent and sends each agent in the system
2 pieces of information: a feedback for the last episode and
the index for the next problem to be played. Figure 2 gives
an outline of the algorithm steps.

The feedback is used by the agents to update the automata
they used in the last episode. Since we assume the problem
is ergodic, a single scalar reward is sufficient to update all
automata in states visited during the last episode. The dis-
patcher can calculate this feedback by simply determining
the average reward the agent corresponding to last epsiode’s
goal gathered during the episode. The problem index sent
to the learning agents indicates the next reward to be maxi-
mized. The learning agents themselves do not need to know
whose reward they are optimizing, they can simply use the
index to select the corresponding automata during the next
episode.

The dispatcher can select from a wide variety of possi-
ble strategies to determine the next objective to optimize,
depending on the desired outcome of the system. One possi-
bility, for example, is to assign a fixed weight to each agent,
which is then used by the dispatcher to determine the proba-
bility of selecting each agent as the next objective. Alterna-
tively, the dispatcher could opt to maximize the maximum
over the players’ rewards and always select the agent having
the highest possible payoff (also called a republican selection
mechanism[6]). In [6] several possible mechanisms are dis-
cussed in the context of selecting a correlated equilibrium to
use in updating the value function.

In this paper we focus on an egalitarian selection mecha-
nism. This means we try to maximize the minimum of the
players’ rewards and the dispatcher will always choose to
optimize the payoff of the worst performing agent, i.e. the
agent with the lowest average reward over time for the entire
running time. In this way we can resolve dilemma’s result-
ing from agents having different preferences for the game
outcomes, by letting them take turns to play their optimum

Agent 2
(b1,b1) (b1,b2) (b2,b1) (b2,b2)

A
g
en

t
1 (a1,a1) 0.6/0.3 0.1/0.05 0.5/0.25 0/0

(a1,a2) 0.1/0.05 0.4/0.5 0/0 0.3/0.45
(a2,a1) 0.5/0.25 0/0 0.6/0.3 0.1/0.05
(a2,a2) 0/0 0.3/0.45 0.1/0.05 0.4/0.5

Table 3: Possible outcomes for for the Markov game
in Table 1. Nash equilibria are indicated in bold.

outcome. This allows each agent to achieve their desired
objective at least some of the time. In situations such as
the Battle of the Sexes game of Table 2, this assures that no
agent will always be stuck with the minimum payoff.

4. EXPERIMENTS
In this section we demonstrate the behavior of our ap-

proach on 2 Markov games and show that it does achieve a
fair payoff division between agents. As a first problem set-
ting we use that Markov game of Table 1. Table 3 lists the
possible combinations of deterministic policies for this game,
together with their expected average reward for each agent.
We observe that the Markov game has 4 pure equilibrium
points. All of these equilibria have asymmetric payoffs with
2 equilibria favoring agent 1 and giving payoffs (0.6, 0.3), and
the other equilibria favoring agent 2 with payoffs (0.4, 0.5).

Figure 3 gives a typical run of the algorithm, which shows
that agents equalize their average reward, while still obtain-
ing a payoff between both equilibrium payoffs. All PLA used
a Boltzmann exploration function and update parameters:
λ = 0.05, σ = 0.001, L = 3.0, K = n = 1.0. These pa-
rameter settings were determined empirically based on set-
tings reported in [11, 14] Over 20 runs of 100000 iterations
the agents achieved an average payoff 0.42891 (std. dev:
0.00199), with an average payoff difference at the finish of
0.00001.

In a second experiment we apply the algorithm to a some-
what larger Markov game given by the grid world shown in
Figure 4(a). This problem is based on the experiments de-
scribed in [6]. Two agents start from the lower corners from
the grid and try to reach the goal location (top row center).
When the agents try to enter the same non-goal location
they stay in their original place and receive a penalty −1.
The agents receive a reward when they both enter the goal
location. The reward they receive depends on how they en-
ter the goal location,however. If an agent enters from the
bottom he receives a reward of 100. If he enters from either
side he receives a reward of 75. A state in this problem is
given by the joint location of both agents, resulting in a to-
tal of 81 states for this 3× 3 grid. Agents have four actions
corresponding to moves in the 4 compass directions. Moves
in the grid are stochastic and have a chance of 0.01 of fail-
ing2. The game continues until both agents arrive in the
goal location together, then agents receive their reward and
are put back in their starting positions. As described in [6],
this problem has pure equilibria corresponding to the joint
policies where one agent prefers a path entering the goal
from the side and the other one enters from the bottom.
These equilibria are asymmetric and result in one agent al-

2when a move fails the agent either stays put or arrives in a
random neighboring location.
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ways receiving the maximum reward, while the other always
receives the lower reward.

In order to apply the LA algorithms all rewards described
above were scaled to lie in [0, 1]. The turn-taking Markov
game algorithm was applied as follows. Each agent assigns
2 PLA to every state. The starting state (both agents in
their starting position) is selected as the switch state. Each
time the agents enter this start state, they receive an index
i ∈ {1, 2} and a reward for the last start to goal epsiode.
Using this information the agents can then update the PLA
used in the last episode. During the next episode they play
using the PLA corresponding to the index i. When the PLA
have converged this system results in agents taking turns to
use the optimal route.

Results for a typical run are shown in Figure 4, with the
same parameter settings as are given above. From the figure
it is clear that agents equalize their reward, both receiving an
average reward that is between the average rewards for the
2 paths played in an equilibrium. For comparison purposes
we also show the rewards obtained by 2 agents converging
to one of the deterministic equilibria.

5. DISCUSSION AND FUTURE WORK
In this paper we introduced a multi-agent learning algo-

rithm which allows agents to switch between stationary poli-
cies in order to equalize the reward division among the agent
population. In the present system we rely on a dispatcher
agent to select the objective to play and the correlate agents’
policy switches. If we assume that all agents are coopera-
tive and willing to sacrifice some payoff in order to equalize
the rewards in the population3, this functionality could also
be embedded in the agents, either by letting agents com-
municate or allowing each agent to observe all rewards as
is done in e.g. [8, 6]. In systems where agents cannot be
trusted or are not willing to cooperate, methods from com-
putational mechanism design could be used to ensure that
agenst’ selfish interests are aligned with the global system
utility. Another possible approach is considered in [4], where
the other agents can choose to punish uncooperative agents,
leading to lower rewards for those agents.

Note also that in the system presented here agents learn
to correlate on the joint actions they play. In [6] an approach
was presented to learn correlated equilibria. A deeper study
on the relation between our turn-taking policies and corre-
lated equilibrium still needs to be done. The main differ-
ence we put forward here is that a turn-taking policy was
proposed as a vehicle to reach fair reward divisions among
the agents. Furthermore, the system in [6] requires agents
to learn in the joint action space and relies on centralized
computation of correlated equilibria. In our system agents
only learn probabilities for their individual action sets and
coordination only takes place in the switch state, rather than
at every state.

In [18] the concept of cyclic equilibria in Markov Games
was proposed as an alternative to Nash equilibrium. These
cyclic equilibria refer to a sequence of policies that reach a
limit cycle in the game. However again, no link was made
with individual agent preferences and how they compare to
each other.

3Systems satisfying this assumption are referred to as homo
egualis systems [5]
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Figure 3: Typical run of the turn-taking algorithm on the Markov game in Table 1.(a) Average reward over
time agent 1. (b)Average reward over time agent 2.
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Figure 4: (a) Deterministic equilibrium solution for the grid world problem. (b) Average reward over time
for 2 agents converging to equilibrium.
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ABSTRACT
This paper introduces a new multi-agent learning algorithm
for stochastic games based on replicator dynamics from evo-
lutionary game theory. We identify and transfer desired
convergence behavior of these dynamical systems by lever-
aging the link between evolutionary game theory and multi-
agent reinforcement learning. More precisely, the algorithm
(RESQ-learning) presented here is the result of Reverse En-
gineering State-coupled replicator dynamics injected with
the Q-learning Boltzmann mutation scheme. The contribu-
tions of this paper are twofold. One, we demonstrate the
importance of a mathematical multi-agent learning frame-
work by transferring insights from evolutionary game the-
ory to reinforcement learning. Two, the resulting learn-
ing algorithm successfully inherits the convergence behavior
of the reverse engineered dynamical system. Results show
that RESQ-learning provides convergence to pure as well as
mixed Nash equilibria in a selection of stateless and stochas-
tic multi-agent games.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

Keywords
Reinforcement learning, Multi-agent learning, Evolutionary
game theory, Replicator dynamics, Stochastic games

1. INTRODUCTION
Modern society is characterized by a high level of inter-

connectedness, with the internet and mobile phone networks
being the most prominent example media. As a result, most
situations yield more than one actor, and should naturally
be modeled as multi-agent systems to account for their in-
herent structure and complexity. Example applications for
which significant progress has been facilitated using multi-
agent learning range from auctions and swarm robotics to
predicting political decisions [2, 7, 11, 13].

The learning performance of contemporary reinforcement
learning techniques has been studied in great depth exper-
imentally as well as formally for a diversity of single agent
control tasks [15]. Markov decision processes provide a math-
ematical framework to study single agent learning. However,
in general they are not applicable to multi-agent learning.
Once multiple adaptive agents simultaneously interact with
each other and the environment, the process becomes highly

dynamic and non-deterministic, thus violating the Markov
property. Evidently, there is a strong need for an adequate
theoretical framework modeling multi-agent learning. Re-
cently, a link between the learning dynamics of reinforce-
ment learning algorithms and evolutionary game theory has
been established, providing useful insights into the learning
dynamics [1, 3, 17, 18]. In particular, in [1] the authors have
derived a formal relation between multi-agent reinforcement
learning and the replicator dynamics. This relation between
replicators and reinforcement learning has been extended
to different algorithms such as learning automata and Q-
learning in [9, 18].

Exploiting the link between reinforcement learning and
evolutionary game theory is beneficial for a number of rea-
sons. The majority of state of the art reinforcement learning
algorithms are blackbox models. This makes it difficult to
gain detailed insight into the learning process and parameter
tuning becomes a cumbersome task. Analyzing the learning
dynamics helps to determine parameter configurations prior
to actual employment in the task domain. Furthermore, the
possibility to formally analyze multi-agent learning helps to
derive and compare new algorithms, which has been success-
fully demonstrated for lenient Q-learning in [12].

However, the evolutionary game theoretic framework has
been limited to either non-explorative learning in multi-
ple states [6], or explorative single-state learning [17, 18].
The investigation of single-state learning in the latter source
has shown, that exploration facilitates convergence to mixed
equilibria and allows to overcome local optima, while non-
explorative learning may end up in limit cycles. Therefore,
this article designs a state-coupled system with the desired
convergence behavior, using insights about Q-learning with
Boltzmann exploration. Subsequently, this system will be
reverse engineered, resulting in the derivation of Reverse
Engineered State-coupled Q-exploration (RESQ) learning, a
new multi-agent learning algorithm for stochastic games.
RESQ learning is based on model-free learners with a min-
imum of required information (current state and reward
feedback); agents maintain a policy only over their own ac-
tion space. Thereby it constitutes a substantial advantage
over joint-action learning approaches, such as Nash-Q [8] or
Friend-or-foe (FFQ) [10]. Experiments confirm the match
of the introduced algorithm with its evolutionary dynami-
cal system. Furthermore, convergence to stable points in a
selection of two-state matrix games is shown.

This paper is divided into two main parts: the forward
and the reverse approach. First, Section 2 presents the for-
ward approach, modeling multi-agent reinforcement learning
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within an evolutionary game theoretic framework. Second,
the inverse approach, reverse engineering the RESQ-learning
algorithm is demonstrated in Section 3. Section 4 delivers
a comparative study of the newly devised algorithm and its
dynamics. Section 5 concludes this article.

2. FORWARD APPROACH
An adequate theoretical framework modeling multi-agent

learning dynamics has long been lacking [14, 16]. Recently,
an evolutionary game theoretic approach using replicator
dynamics is employed to fill this gap. Replicator dynamics
are a methodology of evolutionary game theory to model the
dynamical evolution of strategies. Exploiting the link be-
tween reinforcement learning and evolutionary game theory
is beneficial for a variety of reasons. Analyzing the learn-
ing dynamics helps to gain further insight into the learning
dynamics and to determine parameter configurations before
learners are actually employed in the task domain. We call
this the forward approach.

2.1 Stateless learning dynamics
First, we focus on model free, stateless and independent

learners. This means interacting agents do not model each
other; they only act upon the experience collected by exper-
imenting with the environment. Furthermore, no environ-
mental state is considered which means that the perception
of the environment is limited to the reinforcement signal.
While these restrictions are not negligible they allow for sim-
ple algorithms that can be treated analytically.

2.1.1 Learning automata
A learning automaton (LA) uses the basic policy iteration

reinforcement learning scheme. An initial random policy is
used to explore the environment; by monitoring the rein-
forcement signal, the policy is updated in order to learn the
optimal policy and maximize the expected reward.

The class of finite action-set learning automata consid-
ers only automata that optimize their policies over a finite
action-set A = {1, . . . , k} with k some finite integer. One
optimization step, called epoch, is divided into two parts:
action selection and policy update. At the beginning of an
epoch t, the automaton draws a random action a(t) accord-
ing to the probability vector π(t), called policy. Based on the
action a(t), the environment responds with a reinforcement
signal r(t), called reward. Hereafter, the automaton uses
the reward r(t) to update π(t) to the new policy π(t + 1).
The learning automaton update rule using the linear reward-
inaction scheme is given below.

πi(t+ 1)← πi(t) +

(
αr (t) (1− πi(t)) if a (t) = i
−αr (t)πi(t) otherwise

(1)

where r(t) ∈ [0, 1]. The reward parameter α ∈ [0, 1] deter-
mines the learning rate of the automaton.

2.1.2 Q-learning with Boltzmann exploration
In contrast to learning automata, Q-learners maintain a

value estimation Qi(t) of the expected (discounted) reward
for each action and are hence known as value iterators. We
use Frequency Adjusted Q-learning (FAQ), a slight varia-
tion of the original Q-learning update rule [9]. The FAQ
update rule with learning rate α and discount factor γ is

given below.

Qi(t+ 1)←Qi(t) + min

„
β

xi
, 1

«
· α
„
ri(t) + γ argmax

j
Qj(t)−Qi(t)

«
Again πi denotes the probability of selecting action i. This
policy is generated using a function π(Q) = (π1, . . . , πk).
The most prominent examples of such policy generators are
ε-greedy and Boltzmann exploration schemes [15]. For the
dynamics of ε-greedy Q-learning we refer to [4]. This arti-
cle exclusively discusses Q-learning with Boltzmann explo-
ration. It is defined by the following function, mapping Q-
values to policies, while balancing exploration and exploita-
tion using a temperature parameter τ :

πi(Q, τ) =
eτ
−1QiP

j e
τ−1Qj

The parameter τ lends its interpretation as temperature
from the domain of physics. High temperatures lead to
stochasticity and random exploration, selecting all actions
almost equally likely regardless of their Q-values. In con-
trast, low temperatures lead to high exploitation of the Q-
values, selecting the action with the highest Q-value with
probability close to one. Intermediate values prefer actions
proportionally to their relative competitiveness. In many
applications, the temperature parameter is decreased over
time, allowing initially high exploration and eventual ex-
ploitation of the knowledge encoded in the Q-values. Within
the scope of this article, the temperature is kept constant
for analytical simplicity and coherence with the derivations
in [17, 18].

2.1.3 Replicator dynamics of learning automata
Using the example of learning automata, this section demon-

strates the forward approach to modeling multi-agent re-
inforcement learning within a evolutionary game theoretic
framework. In particular, we indicate the mathematical re-
lation between learning automata and the multi-population
replicator dynamics. For the full prove we refer to Börgers
et al. [1].

The continuous time two-population replicator dynamics
are defined by the following system of differential equations:

dπi
dt

= πi
h
(Aσ)i − π

′Aσ
i

dσj
dt

= σj
h
(Bπ)j − σ

′Bπ
i (2)

where A and B are the normal form game payoff matrices
for player 1 and 2 respectively. The probability vector π
describes the frequency of all pure strategies (replicators)
for player 1. Success of a replicator i is measured by the
difference between its current payoff (Aσ)i and the average
payoff π′Aσ of the entire population π against the strategy
of player 2.

The policy change in (1) depends on action a (t) selected
at time t. We now assume that an agent receives an imme-
diate reward for each possible action rather than just the
feedback for this specific action a(t). Furthermore, let the
reward r̄i for action i be the average reward that action i
yields given that all other agents play according to their cur-
rent policies. Finally, the action probability change in (1)
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Figure 1: Overview of trajectory plots for stateless games: Prisoners’ Dilemma (top row) and Matching
Pennies game (bottom row).

is proportional to πi since πi determines the frequency of
action i. Consequently, (3) describes the expected average
policy change at time t.

E (∆πi (t)) = πi

24αr̄i (t) (1− πi (t)) +
X
j 6=i

(−αrj (t)πj (t))

35
= πiα

24r̄i (t)− r̄i (t)πi (t)−
X
j 6=i

(rj (t)πj (t))

35
= πiα

"
r̄i (t)−

X
j

(rj (t)πj (t))

#
(3)

If we apply (3) to a 2-player normal form game the con-
nection between automata games and replicator dynamics
becomes apparent. We consider a matrix game where A is
the payoff for agent 1 and B the payoff for agent 2; π and
σ are the two action probability distributions respectively.
Agent 1 receives an average payoff of r̄i = (Aσ)i for action
i against agent 2’s strategy σ. Hence, (3) can be rewritten
as:

E (∆πi (t)) = πiα

"
r̄i (t)−

X
j

(rj (t)πj (t))

#

= πiα

"
(Aσ)i −

X
j

“
(Aσ)j πj

”#

= πiα
h

(Aσ)i − π
′Aσ

i
(4)

Similarly, we can derive

E (∆σj (t)) = σjα
h

(Bπ)j − σ
′Bπ

i
(5)

for agent 2. Note that (4) and (5) correspond to the multi-
population replicator equations given in (2) scaled by the
learning rate α.

2.1.4 Dynamics of Q-learning
In [18] the authors extended the work of Borgers et al. [1]

to Q-learning. More precisely, they derived the dynamics of
the Q-learning process, which yields the following system of
differential equations, describing the learning dynamics for
a two-player stateless game:

dπi
dt

= πiα

 
τ−1

h
(Aσ)i − π

′Aσ
i
− log πi +

X
k

πk log πk

!
dσj
dt

= σjα

 
τ−1

h
(Bπ)j − σ

′Bπ
i
− log σj +

X
l

σl log σl

!
(6)

The equations contain a selection part, equal to the multi-
population replicator dynamics, and a mutation part, origi-
nating from the Bolzmann exploration scheme of FAQ. For
an elaborate discussion in terms of selection and mutation
operators we refer to [17, 18].

2.1.5 Example single-state game analysis
We now examine the learning dynamics for a selection of

2 x 2 matrix games, in particular we consider the Prisoners’
Dilemma and the Matching Pennies game. Reward matri-
ces for Prisoners’ Dilemma (left, Defect or Cooperate) and
Matching Pennies (right, Head or Tail) are given below:

D C
D 3, 3 0, 5
C 5, 0 1, 1

H T
H 1,−1 −1, 1
T −1, 1 1,−1

In all automata games the linear reward-inaction scheme
with a reward parameter α = 0.005 is used. Q-learners use
a learning rate of α = 0.005, discount factor γ = 0 and a
constant temperature τ = 0.02. Initial policies for learner
and replicator trajectory plots are generated randomly.

Page 10 of 99



Figure 1 (top row) shows the dynamics in the single state
Prisoners’ Dilemma. The automata game as well as the cor-
responding replicator dynamics show similar evolution to-
ward the equilibrium strategy of mutual defection. Action
probabilities are plotted for action 1 (in this case cooperate);
x- and y-axis correspond to the action of player 1 and 2 re-
spectively. Hence, the Nash equilibrium point is located at
the origin (0, 0). FAQ-learners evolve to a joint policy close
to Nash. Constant temperature prohibits full convergence.

Learning in the Matching Pennies game, Figure 1 (bottom
row), shows cyclic behavior for automata games and its repli-
cator dynamics alike. FAQ-learning successfully converges
to the mixed equilibrium due to its exploration scheme.

2.2 Multi-state learning dynamics
The main limitation of the evolutionary game theoretic

approach to multi-agent learning has been its restriction to
stateless repeated games. Even though real-life tasks might
be modeled statelessly, the majority of such problems nat-
urally relates to multi-state situations. Vrancx et al. [20]
have made the first attempt to extend replicator dynamics
to multi-state games. More precisely, the authors have com-
bined replicator dynamics and piecewise dynamics, called
piecewise replicator dynamics, to model the learning behav-
ior of agents in stochastic games. Recently, this promising
proof of concept has been formally studied in [5] and ex-
tended to state-coupled replicator dynamics [6] which form
the foundation for the later described inverse approach.

2.2.1 Stochastic games
Stochastic games extend the concept of Markov decision

processes to multiple agents, and allow to model multi-state
games in an abstract manner. The concept of repeated
games is generalized by introducing probabilistic switching
between multiple states. At any time t, the game is in a
specific state featuring a particular payoff function and an
admissible action set for each player. Players take actions si-
multaneously and hereafter receive an immediate payoff de-
pending on their joint action. A transition function maps the
joint action space to a probability distribution over all states
which in turn determines the probabilistic state change. Thus,
similar to a Markov decision process, actions influence the
state transitions. A formal definition of stochastic games
(also called Markov games) is given below.

Definition 1. The game G =
˙
n, S,A, q, r, π1 . . . πn

¸
is

a stochastic game with n players and k states. At each stage
t, the game is in a state s ∈ S =

`
s1,. . .,sk

´
and each player

i chooses an action ai from its admissible action set Ai (s)
according to its strategy πi (s).

The payoff function r (s, a) :
Qn
i=1A

i (s) 7→ <n maps the
joint action a =

`
a1,. . .,an

´
to an immediate payoff value for

each player.
The transition function q(s, a) :

Qn
i=1A

i (s) 7→ ∆k−1 de-

termines the probabilistic state change, where ∆k−1 is the
(k − 1)-simplex and qs′ (s, a) is the transition probability from
state s to s′ under joint action a.

In this work we restrict our consideration to the set of
games where all states s ∈ S are in the same ergodic set.
The motivation for this restriction is two-folded. In the
presence of more than one ergodic set one could analyze
the corresponding sub-games separately. Furthermore, the
restriction ensures that the game has no absorbing states.

Games with absorbing states are of no particular interest in
respect to evolution or learning since any type of exploration
will eventually lead to absorption. The formal definition of
an ergodic set in stochastic games is given below.

Definition 2. In the context of a stochastic game G,
E ⊆ S is an ergodic set if and only if the following con-
ditions hold:
(a) For all s ∈ E, if G is in state s at stage t, then at t+ 1:

Pr (G in some state s′ ∈ E) = 1, and
(b) for all proper subsets E′ ⊂ E, (a) does not hold.

Note that in repeated games, player i either tries to maxi-
mize the limit of the average of stage rewards (e.g., Learning
Automata)

max
πi

lim inf
T→∞

1

T

TX
t=1

ri (t) (7)

or the discounted sum of stage rewards
PT
t=1 r

i (t) δt−1 with

0 < δ < 1 (e.g., Q-learning), where ri (t) is the immediate
stage reward for player i at time step t.

2.2.2 2-State Prisoners’ Dilemma
The 2-State Prisoners’ Dilemma is a stochastic game for

two players. The payoff matrices are given by`
A1, B1´=

„
3, 3 0, 10

10, 0 2, 2

«
,
`
A2, B2´=

„
4, 4 0, 10

10, 0 1, 1

«
.

Where As determines the payoff for player 1 and Bs for
player 2 in state s. The first action of each player is cooperate
and the second is defect. Player 1 receives r1 (s, a) = Asa1,a2
while player 2 gets r2 (s, a) = Bsa1,a2 for a given joint ac-
tion a = (a1, a2). Similarly, the transition probabilities are

given by the matrices Qs→s
′

where qs′ (s, a) = Qs→s
′

a1,a2 is the
probability for a transition from state s to state s′.

Qs
1→s2 =

„
0.1 0.9
0.9 0.1

«
, Qs

2→s1 =

„
0.1 0.9
0.9 0.1

«
The probabilities to continue in the same state after the

transition are qs1
`
s1, a

´
= Qs

1→s1
a1,a2 = 1−Qs

1→s2
a1,a2 and

qs2
`
s2, a

´
= Qs

2→s2
a1,a2 = 1−Qs

2→s1
a1,a2 .

Essentially a Prisoners’ Dilemma is played in both states,
and if regarded separately, defect is still a dominating strat-
egy. One might assume that the Nash equilibrium strat-
egy in this game is to defect at every stage. However, the
only pure stationary equilibria in this game reflect strategies
where one of the players defects in one state while cooper-
ating in the other and the second player does exactly the
opposite. Hence, a player betrays his opponent in one state
while being exploited himself in the other state.

2.2.3 2-State Matching Pennies game
Another 2-player, 2-actions and 2-state game is the 2-

State Matching Pennies game. This game has a mixed Nash
equilibrium with joint-strategies π1 = (.75, .25), π2 = (.5, .5)
in state 1 and π1 = (.25, .75), π2 = (.5, .5) in state 2. Payoff
and transition matrices are given below.`

A1, B1´=

„
1, 0 0, 1
0, 1 1, 0

«
,
`
A2, B2´=

„
0, 1 1, 0
1, 0 0, 1

«

Qs
1→s2 =

„
1 1
0 0

«
, Qs

2→s1 =

„
0 0
1 1

«
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2.2.4 Networks of learning automata
To cope with stochastic games, the learning algorithms

in Section 2.1 need to be adopted to account for multiple
states. To this end, we use a network of automata for each
agent [19]. An agent associates a dedicated learning automa-
ton (LA) to each state of the game and control is passed on
from one automaton to another. Each LA tries to optimize
the policy in its state using the standard update rule given
in (1). Only a single LA is active and selects an action at
each stage of the game. However, the immediate reward
from the environment is not directly fed back to this LA.
Instead, when the LA becomes active again, i.e., next time
the same state is played, it is informed about the cumulative
reward gathered since the last activation and the time that
has passed by.

The reward feedback τ i for agent i’s automaton LAi(s)
associated with state s is defined as

τ i (t) =
∆ri

∆t
=

Pt−1
l=t0(s) r

i (l)

t− t0(s)
, (8)

where ri (t) is the immediate reward for agent i in epoch
t and t0(s) is the last occurrence function and determines
when states s was visited last. The reward feedback in
epoch t equals the cumulative reward ∆ri divided by time-
frame ∆t. The cumulative reward ∆ri is the sum over all im-
mediate rewards gathered in all states beginning with epoch
t0(s) and including the last epoch t− 1. The time-frame ∆t
measures the number of epochs that have passed since au-
tomaton LAi(s) has been active last. This means the state
policy is updated using the average stage reward over the
interim immediate rewards.

2.2.5 Average reward game
For a repeated automata game, let the objective of player

i at stage t0 be to maximize the limit average reward r̄i =
lim infT→∞

1
T

PT
t=t0

ri (t) as defined in (7). The scope of
this paper is restricted to stochastic games where the se-
quence of game states X (t) is ergodic. Hence, there exists
a stationary distribution x over all states, where fraction xs
determines the frequency of state s in X. Therefore, we
can rewrite r̄i as r̄i =

P
s∈S xsP

i (s), where P i (s) is the
expected payoff of player i in state s.

Now, let us assume the game is in state s at stage t0 and
players play a given joint action a in s and fixed strategies
π (s′) in all states but s. Then the limit average payoff
becomes

r̄ (s, a) = xsr (s, a) +
X

s′∈S−{s}

xs′P
i `s′´ , (9)

where

P i
`
s′
´

=
X

a′∈
Qn

i=1 A
i(s′)

 
r
`
s′, a′

´ nY
i=1

πia′i

`
s′
´!

.

An intuitive explanation of (9) goes as follows. At each
stage, players consider the infinite horizon of payoffs under
current strategies. We untangle the current state s from all
other states s′ 6= s and the limit average payoff r̄ becomes
the sum of the immediate payoff for joint action a in state
s and the expected payoffs in all other states. Payoffs are
weighted by the frequency xs of corresponding state occur-
rences. Thus, if players invariably play joint action a every
time the game is in state s and their fixed strategies π (s′)
for all other states, the limit average reward for T → ∞ is
expressed by (9).

Since a specific joint action a is played in state s, the
stationary distribution x depends on s and a as well. A
formal definition is given below.

Definition 3. For G =
˙
n, S,A, q, r, π1 . . . πn

¸
where S

itself is the only ergodic set in S =
`
s1 . . . sk

´
, we say x (s, a)

is a stationary distribution of the stochastic game G if and
only if

P
z∈S xz (s, a) = 1 and

xz (s, a) = xs (s, a) qz (s, a) +
X

s′∈S−{s}

xs′ (s, a)Qi
`
s′
´
,

where

Qi
`
s′
´

=
X

a′∈
Qn

i=1 A
i(s′)

 
qz
`
s′, a′

´ nY
i=1

πia′i

`
s′
´!

.

Based on this notion of stationary distribution and (9) we
can define the average reward game as follows.

Definition 4. For a stochastic game G where S itself is
the only ergodic set in S =

`
s1 . . . sk

´
, we define the average

reward game for some state s ∈ S as the normal-form game

Ḡ
`
s, π1 . . . πn

´
=
˙
n,A1 (s) . . . An (s) , r̄, π1 (s) . . . πn (s)

¸
,

where each player i plays a fixed strategy πi (s′) in all states
s′ 6= s. The payoff function r̄ is given by

r̄ (s, a) = xs (s, a) r (s, a) +
X

s′∈S−{s}

xs′ (s, a)P i
`
s′
´
.

2.2.6 State-coupled replicator dynamics
We reconsider the replicator equations for population π

as given in (2):

dπi
dt

= πi
h
(Aσ)i − π

′Aσ
i

Essentially, the payoff of an individual in population π, play-
ing pure strategy i against population σ, is compared to the
average payoff of population π. In the context of an average
reward game Ḡ with payoff function r̄ the expected payoff
for player i and pure action j is given by

P ij (s) =
X

a∈
Q

l 6=i A
l(s)

0@r̄i (a∗)
Y
l 6=i

πla∗
l

(s)

1A ,

where a∗ =
`
a1 . . . ai−1, j, ai . . . an

´
. This means that we

enumerate all possible joint actions a with fixed action j
for agent i. In general, for some mixed strategy ω, agent i
receives an expected payoff of

P i (s, ω) =
X

j∈Ai(s)

24ωj X
a∈

Q
l 6=i A

l(s)

0@r̄i (s, a∗)
Y
l 6=i

πla∗
l

(s)

1A35 .
If each player i is represented by a population πi, we can
set up a system of differential equations, each similar to
(2), where the payoff matrix A is substituted by the average
reward game payoff r̄. Furthermore, σ now represents all
remaining populations πl where l 6= i.

Definition 5. The multi-population state-coupled repli-
cator dynamics are defined by the following system of differ-
ential equations:

dπij (s)

dt
= πij xs (π)

h
P i (s, ej)− P i

“
s, πi (s)

”i
, (10)
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where ej is the jth-unit vector. P i (s, ω) is the expected pay-
off for an individual of population i playing some strategy ω
in state s. P i is defined as

P i (s, ω) =
X

j∈Ai(s)

24ωj X
a∈

Q
l6=i A

l(s)

0@r̄i (s, a∗)
Y
l 6=i

πla∗
l

(s)

1A35 ,
where r̄ is the payoff function of Ḡ

`
s, π1 . . . πn

´
and

a∗ =
“
a1 . . . ai−1, j, ai . . . an

”
.

Furthermore, x is the stationary distribution over all states
S under π, with X

s∈S

xs (π) = 1 and

xs (π) =
X
z∈S

24xz (π)
X

a∈
Qn

i=1 A
i(s)

 
qs (z, a)

nY
i=1

πiai
(s)

!35 .
In total this system has N =

P
s∈S

Pn
i=1 |A

i (s) | replicator
equations.

In essence, state-coupled replicator dynamics use direct
state-coupling by incorporating the expected payoff in all
states under current strategies, weighted by the frequency
of state occurrences.

Previous work has shown that state-coupled replicator
dynamics converge to pure Nash equilibria in general-sum
stochastic games such as the 2-State Prisoners’ Dilemma [6].
However, state-coupled replicator dynamics fail to converge
to mixed equilibria. We observe cycling behavior, similar to
the stateless situation of Matching Pennies (see Figure 2).

3. INVERSE APPROACH
The forward approach has focused on deriving predictive

models for the learning dynamics of existing multi-agent re-
inforcement learners. These models help to gain deeper in-
sight and allow to tune parameter settings. In this section
we demonstrate the inverse approach, designing a dynamical
system that does indeed converge to pure and mixed Nash
equilibria and reverse re-engineering that system, resulting
in a new multi-agent reinforcement learning algorithm, i.e.
RESQ-learning.

Results for stateless games provide evidence that explo-
ration is the key to prevent cycling around attractors. Hence,
we aim to combine the exploration-mutation term of FAQ-
learning dynamics with state-coupled replicator dynamics.

3.1 Linking LA and Q-learning dynamics
First, we link the dynamics of learning automata and Q-

learning for the stateless case. We recall from Section 2.1.3
that the learning dynamics of LA correspond to the standard
multi-population replicators scaled by the learning rate α:

dπi
dt

= πiα
h
(Aσ)i − π

′Aσ
i

The FAQ replicator dynamics (see Section 2.1.4) contain a
selection part equivalent to the multi-population replicator
dynamics, and an additional mutation part originating from
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Figure 2: Comparison between SC-RD dynamics,
RESQ dynamics and RESQ-learning (α = 0.004,
τ = 0.04) in the 2-State Matching Pennies game.

the Bolzmann exploration scheme:

dπi
dt

= πiβ

 
τ−1

h
(Aσ)i − π

′Aσ
i
− log πi +

X
k

πk log πk

!

= πiβτ
−1
h
(Aσ)i − π

′Aσ
i
− πiβ

 
log πi +

X
k

πk log πk

!
The learning rate of FAQ is now denoted by β. Let us as-
sume α = βτ−1 ⇒ β = ατ . Note that from β ∈ [0, 1] follows

0 ≤ ατ−1 ≤ 1.

Then we can rewrite the FAQ replicator equation as follows:

dπi
dt

= πiα
h
(Aσ)i − π

′Aσ
i
− πiατ

 
log πi +

X
k

πk log πk

!
In the limit limτ→0 the mutation term collapses and the
dynamics of learning automata become:

dπi
dt

= πiα
h
(Aσ)i − π

′Aσ
i

3.2 State-coupled RD with mutation
After we have established the connection between the learn-

ing dynamics of FAQ-learning and learning automata, ex-
tending this link to multi-state games is straightforward.
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The mutation term

−τ
„

log πi +
X
k

πk log πk

«
(11)

is solely dependent on the agent’s policy π and thus inde-
pendent of any payoff computation. Therefore, the average
reward game remains the sound measure for the limit of
the average of stage rewards under the assumptions made
in Section 2.2.5. The equations of the dynamical system
in (2.2.5) are complemented with the mutation term (11),
resulting in the following state-coupled replicator equations
with mutation:

dπij (s)

dt
= πij xs (π)

" h
P i (s, ej)− P i

“
s, πi (s)

”i
−τ
„

log πij +
X
k

πik log πik

«# (12)

In the next section we introduces the corresponding RESQ-
learning algorithm.

3.3 RESQ-learning
In [6] the authors have shown that maximizing the ex-

pected average stage reward over interim immediate rewards
relates to the average reward game played in state-coupled
replicator dynamics. We reverse this result to obtain a
learner equivalent to state-coupled replicator dynamics with
mutation.

Analog to the description in Section 2.2.4 a network of
learners is used for each agent i. The reward feedback signal
is equal to (8) while the update rule now incorporates the
same exploration term as in (12). If a (t) = i :

πi(t+1)← πi(t)+α

"
r (t) (1−πi(t))−τ

 
log πij +

X
k

πik log πik

!#
otherwise:

πi(t+1)← πi(t)+α

"
−r (t)πi(t)−τ

 
log πij +

X
k

πik log πik

!#
Hence, RESQ-learning is essentially a multi-state policy it-
erator using exploration equivalent to the Boltzmann policy
generation scheme.

4. RESULTS AND DISCUSSION
This section sets the newly proposed RESQ-learning al-

gorithm in perspective by examining the underlying dynam-
ics of state-coupled replicator dynamics with mutation and
traces of the resulting learning algorithm.

First, we explore the behavior of the dynamical system,
as derived in Section 3.2, and verify the desired convergence
behavior, i.e., convergence to pure and mixed Nash equilib-
ria. Figure 3 shows multiple trajectory traces in the 2-State
Prisoners’ Dilemma, originating from random strategy pro-
files in both states. Analysis reveals that all trajectories
converge close to either one of the two pure Nash equilib-
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Figure 3: RESQ-learning dynamics (α = 0.004, τ = 0.02) in the 2-State Prisoners’ Dilemma.
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Figure 4: RESQ-learning (α = 0.004, τ = 0.04) in the 2-State Matching Pennies game.
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rium points described in Section 2.2.2. As mentioned be-
fore for the stateless case, constant temperature prohibits
full convergence. Figure 4 shows trajectory traces in the
2-State Matching Pennies game. Again, all traces converge
close to Nash, thus affirming the statement that exploration-
mutation is crucial to prevent cycling and to converge in
games with mixed optimal strategies.

Figure 2 shows a comparison between state-coupled repli-
cator dynamics (SC-RD), the RESQ-dynamics as in (12),
and an empirical learning trace of RESQ-learners. As above-
mentioned, ”pure” state-coupled replicator dynamics with-
out the exploration-mutation term fail to converge. The tra-
jectory of the state space of this dynamical system exhibits
cycling behavior around the mixed Naish equilibrium (see
Section 2.2.3). RESQ-dynamics successfully converge ε-near
to the Nash-optimal joint policy. Furthermore, we present
the learning trace of two RESQ-learners in order to judge
the predictive quality of the coresponding state-coupled dy-
namics with mutation. Due to the stochasticity involved in
the action selection process, the learning trace is more noisy.
However, we clearly observe that RESQ-learning indeed suc-
cessfully inherits the convergence behavior of state-coupled
replicator dynamics with mutation.

Further experiments are required to verify the performance
of RESQ-learning in real applications and to gain insight
into how it competes with multi-state Q-learning and the
SARSA algorithm [15]. In particular, the speed and qual-
ity of convergence need to be considered. Therefore, the
theoretical framework needs to be extended to account for
decreasing temperature to balance exploration and exploita-
tion over time.

5. CONCLUSIONS
The contributions of this article can be summarized as

follows. First, we have demonstrated the forward approach
to modeling multi-agent reinforcement learning within an
evolutionary game theoretic framework. In particular, the
stateless learning dynamics of learning automata and FAQ-
learning as well as state-coupled replicator dynamics for
stochastic games have been discussed. Based on the in-
sights that were gained from the forward approach, RESQ-
learning has been introduced by reverse engineering state-
coupled replicator dynamics injected with the Q-learning
Boltzmann mutation scheme. We have provided empirical
confirmation that RESQ-learning successfully inherits the
convergence behavior of its evolutionary counter part. Re-
sults have shown that RESQ-learning provides convergence
to pure as well as mixed Nash equilibria in a selection of
stateless and stochastic multi-agent games.
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ABSTRACT
A method to adjust a stepsize parameter in exponential mov-
ing average (EMA) based on Newton’s method to minimize
square errors is proposed. The stepsize parameter used in re-
inforcement learnings is generally decreased to zero, because
we generally suppose that target values of the learning are
stable. However, such an assumption is violated under un-
stable environment, where the target values like expected
rewards may change over time. In order to adapt step-
size parameters, we have proposed a framework to acquire
higher-order derivatives of learning values by the stepsize
parameter. Based on this framework, we extend a method
to determine the best stepsize using Newton’s method to
minimize EMA of square error of learning. The method is
confirmed by mathematical theories and by results of exper-
iments.

Categories and Subject Descriptors
I2.6 [Learning]: Parameter learning

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Stepsize Parameter, Non-stationary
Environment

1. INTRODUCTION
In the several methods of reinforcement learning, we use

the following exponential moving average (EMA) to estimate
values or utilities of actions and states from examples and
experiences:

x̃t+1 = x̃t + α(xt − x̃t)

= (1 − α)x̃t + αxt, (1)

where xt is observed or given value at time t, and x̃t is the
estimated value. α is a learning parameter called stepsize.
For example, Q-learning [9] generally uses the following up-
date schema of state-action values:

Qt+1(st, at) = (1 − α)Qt(st, at)

+α(rt + γ max
a′

Qt(st+1, a
′)), (2)

where Qt(st, at) is an expected utility of state action at at
st, and rt is a given reward from the environment at time
t. γ is a discount parameter. In this schema, Qt(st, at)

corresponds to the estimated value x̃t in Eq. (1), and rt +
γ maxa′ Qt(st+1, a

′) corresponds to the given value xt.
In the most cases of these schema, the stepsize parameter

α is set to be a small positive number in (0, 1) and decreased
to be zero through learning time t according to equation
α(t) = 1

(t+1)ω for ω ∈ ( 1

2
, 1] [3]. This is because EMA with a

smaller stepsize becomes long-term moving average that can
reduct noisy factors included in given values xt. This is a
reasonable setup for stationary environments in which target
values or utilities of the estimation by Eq. (1) is fixed over
time. On the other hand, in many applications of reinforce-
ment learning, environments are non-stationary so that the
target values may change over time. For example, in a re-
source sharing problem with multiple resources and multiple
agents, an expected utility of a certain resource may change
by total allocation of resources, the number of agents, and
the choice policies of other agents. In such cases, we can
not simply decrease the stepsize parameter to be zero, but
should adjust it to be a suitable value according to environ-
ments.

Several works have tried to modify and adjust the stepsize
parameter to be suitable for a given environment. George
and Powell[4] proposed a method, called optimal stepsize
algorithm (OSA), to control stepsize parameters in order
to minimize noise factors on the basis of the relationships
among the stepsize parameter, noise variance, and changes
in learning values. Sato and et. al.[8] also proposed a frame-
work to accumulate error variance to find out the suitable
learning parameters. Bonarini et. al.[1] proposed a method
to switch two stepsize parameters according to the process
of learning based on the similar concept of WoLF (Win or
Learn First) proposed by Bowling and Veloso [2].

In order to find the suitable stepsize parameter, I also
have proposed a method called Gradient Descent Adapta-
tion of Stepsize by Recurrent Exponential Moving Average
(GDASS-REMA), in which square of difference between an
estimated and given values, (x̃t − xt)

2, is minimized in each
time-step by a gradient descent manner using derivatives
∂kx̃t

∂αk that is calculated by recursive exponential moving av-
erage (REMA) [5, 6] . Because this method uses the gradient
descent procedure, it may take a long time to converge and
follow to changes of the ideal stepsize value when the envi-
ronment changes drastically. In this article, we revise the
method using Newton’s method to find the suitable stepsize
value quickly with the higher order derivatives acquired by
REMA.
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2. RECURSIVE EXPONENTIAL MOVING
AVERAGE

The Recursive Exponential Moving Average (REMA) ξ
〈k〉
t

is defined as follows:

ξ
〈0〉
t = xt

ξ
〈1〉
t+1

= x̃t+1 = (1 − α)x̃t + αxt

ξ
〈k〉
t+1

= ξ
〈k〉
t + α(ξ

〈k−1〉
t − ξ

〈k〉
t )

= (1 − α)ξ
〈k〉
t + αξ

〈k−1〉
t

= α

∞
X

τ=0

(1 − α)τξ
〈k−1〉
t−τ . (3)

Using the REMA, we can derive the following lemma and
theorem about partial differentials of estimated values x̃t by
the stepsize parameter α [5, 6] .

Lemma 1.
The first partial derivative of REMA ξ

〈k〉
t by α is given by

the following equation:

∂ξ
〈k〉
t

∂α
=

k

α
(ξ

〈k〉
t − ξ

〈k+1〉
t ) (4)

Theorem 1.
The k-th partial derivative of EMA x̃t (= ξ

〈1〉
t ) is given by

the following equation:

∂kx̃t

∂αk
= (−α)−kk!(ξ

〈k+1〉
t − ξ

〈k〉
t ) (5)

In the previous work, GDASS-REMA updates the stepsize
α to the direction to decrease the following squared error of
the estimation in each time t gradually [5, 6] :

Et = (1/2)(x̃t − xt)
2. (6)

Therefore, the actual update schema in GDASS is:

α ← α − η · sign(
∂Et

∂α
)

= α − η · sign((x̃t − xt) ·
∂x̃t

∂α
).

3. EXPONENTIAL MOVING AVERAGE OF
SQUARED ERROR

Because Theorem 1 provides a way to calculate higher
order derivatives of x̃t by α, we can get higher order Taylor
expansion of Et by α as follows:

Et(∆α) = Et(0) +
∂Et

∂α
∆α +

1

2

∂2Et

∂α2
∆α2 +

1

6

∂3Et

∂α3
∆α3 + · · · .

Therefore, if we focus on the expansion of the first and sec-
ond order terms, we will determine the optimum change of
the stepsize, ∆α∗〈t〉, which minimize the error at time t,
using the Newton’s method as follow:

∆α∗〈t〉 =

“

∂Et

∂α

”

“

∂2Et
∂α2

” . (7)

However, updating α using the above equation directly
does not work well, because the given value xt includes noise

that should be eliminated in calculation of x̃t, so that α
tends to be adjusted to estimate the noise factor instead of
the true value of xt.

So, in the following sections, we focus on EMA of squared
error and construct a method to minimize the averaged error
by the Newton’s method.

3.1 Squared Error and Derivatives
Here, we re-define the squared error shown in Eq. (6) using

an error δt of given and estimated values, xt and x̃t, as
follows:

δt = x̃t − xt

Et = (1/2)δ2

t .

Then, we have the following theorem.

Theorem 2.
The k-th partial derivative of the squared error Et by α is

calculated by the following equations:

∂kEt

∂αk
=

k−1
X

i=0

(k − 1)!

(k − 1 − i)!i!

∂iδt

∂αi

∂k−iδt

∂αk−i
, (8)

where,

∂0δt

∂α0
= δt

∂kδt

∂αk
=

∂kx̃t

∂αk
(k > 0). (9)

(See Appendix for the proof.)

3.2 EMA of Squared Error and Partial Deriva-
tives

As discussed above, our target is a method to determine
the stepsize parameter α that minimizes the EMA of the
squared error Et. Here, we define the EMA Ẽt as follows:

Ẽt+1 = (1 − β)Ẽt + βEt, (10)

where β is another stepsize parameter for EMA of the squared
error. This Ẽt is equal to the estimated variance of the ex-
pected reward value introduced in [8].

As same as the case of the squared error Et shown in
Eq. (7), we can estimate the optimal stepsize value α∗to

minimize Ẽt using the Newton’s method and Taylor expan-
sion as follows:

∆α∗ =

“

∂ Ẽt

∂α

”

“

∂2Ẽt
∂α2

” (11)

α∗ = α − ∆α∗ (12)

On the other hand, we can accumulate higher order par-
tial derivatives of Ẽt by α from Eq. (10) by the following
equations:

∂Ẽt+1

∂α
= (1 − β)

∂Ẽt

∂α
+ β

∂Et

∂α
(13)

∂2Ẽt+1

∂α2
= (1 − β)

∂2Ẽt

∂α2
+ β

∂2Et

∂α2
(14)

∂kẼt+1

∂αk
= (1 − β)

∂kẼt

∂αk
+ β

∂kEt

∂αk
(15)
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This means that these partial derivatives can be calculated
by the same manner of EMA using the derivatives of the

squared error, ∂kEt

∂αk . As shown in Eq. (8) and Eq. (9), these

values can be determined systematically using REMA ξ
〈K〉
t .

Finally, we get the following procedure to obtain the opti-
mal stepsize α∗ to minimize EMA of the squared error. We
call it as Rapid Recursive Adaption of Stepsize Parameter
by Newton’s method (RRASP-N).

Initialize: ∀k ∈ {0 . . . kmax − 1} : ξ〈k〉 ← x0

∀k ∈ {0 . . . kmax − 2} : ∂kẼ
∂αk ← 0

while forever do
Let x be an observation.
for k = kmax − 1 to 1 do

ξ〈k〉 ← (1 − α)ξ〈k〉 + αξ〈k−1〉

end for
ξ〈0〉 ← x
δ ← ξ〈1〉 − x
for k = 1 to kmax − 2 do

Calculate ∂kE
∂αk by Eq. (8), Eq. (9) and Eq. (5).

Update ∂kẼ
∂αk by Eq. (13)∼ Eq. (15).

end for
if ∂2Ẽ

∂α2 > 0 then
Calculate ∆α∗ by Eq. (11).
if |∆α∗| > α then

∆α∗ ← sign(∆α∗)α
end if
α ← α + ∆α∗

2
.

if α is not in [αmin, αmax] then
let α be αmin or αmax.

end if
for k = 1 to kmax − 1 do

Update ξ〈k〉 according to changes of α using ∂ξ〈k〉

∂α
determined by Eq. (4).

end for
end if

end while

In this procedure, α is updated only when ∂2Ẽ
∂α2 is positive,

because the changes of Ẽ by α is concave down in the case of
∂2Ẽ
∂α2 < 0. We also cut-off ∆α∗ because of the following rea-

son: The Taylor expansion of ξ〈k〉 using Eq. (5) includes the
term

`

∆α
α

´n
, which becomes huge when α is small. There-

fore, truncation errors of the Taylor expansion may be large
and affects other calculations in the procedure. In order to
avoid such effects, we limit the absolute value of ∆α∗ within
the value of α.

4. EXPERIMENTS
In order to show the performance of RRASP-N, we carried

out several experiments.

4.1 Exp.1: Finding Optimal Stepsize
In order to show that RRASP-N can determine the op-

timal stepsize α∗, we conducted an experiment using the
following noisy random-walk as a given value xt:

xt = vt + εt, (16)

where εt is a random noise whose average and standard de-
viation are 0 and σε, respectively. The true value vt is a
random walk defined by the following equations:

vt+1 = vt + ∆vt,

-10
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-2

 0

 2

 4

 6

 8

 0  200  400  600  800  1000

x

Cycle

x values [gamma=0.050000, best alpha = 0.048766]

current
agent

real

Figure 1: Exp.1: Changes of Learned Expected
Value x̃t using Acquired Stepsize α by RRASP-N

where ∆vt is a random noise whose average and standard
deviation are 0 and σv, respectively. Figure 1 shows an
example of the noisy random-walk. In this graph, band-like
spikes are the given sequence xt, and curves at the center of
the band are true value vt and its learning result x̃t.

For such noisy random walks, we can calculate the optimal
stepsize by the following equation:

α∗ =
−γ2 +

p

γ4 + 4γ2

2
, (17)

where, γ = σv
σε

. Of course, the standard deviations are
not given for learning agents, so that, they must acquire
it through learning like RRASP-N.

Figure 2 shows results of adaptation of α by RRASP-N
for the given values xt. Each graph of this figure indicates
changes of α through learning with the optimal value of α,
which indicated by a horizontal line, for different setting of
the noisy random-walk. As shown in these graphs, acquired
α quickly converges to the optimal value of α.

Moreover, the speed of convergence is drastically improved
compared with GDASS proposed in the previous work. Fig-
ure 3 shows results of adaptation by GDASS for the same
settings of figure 2. While adaptation of GDASS converge
to the optimal stepsize gradually as a nature of gradient de-
cent methods, RRASP-N can adapt it to the optimal one
so quickly by jumping stepsize to the optimal directly using
Newton’s method.

4.2 Exp.2: Adaptation for Squared-waved True
Value

In the second experiment, given values are squared-waved
true value with large noise as shown on the right of figure 4.
Actual value of xt is generated by the following equations:

xt = vt + εt

vt =



10 ; 2000n < t < 2000n + 1000; n = 0, 1, 2, · · ·
5 ; otherwise

,

where where εt is a random noise whose average and stan-
dard deviation are 0 and σε, respectively. For such given val-
ues, the stepsize should become large right after the changes
of the true value (t = 1000, 2000, 3000, · · · ) to catch-up the
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Figure 2: Exp.1-a: Adjustment of Stepsize Parameter
by RRASP-N for Various Ratio of Standard Devia-
tions of Random Walk and Noise.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

Al
ph

a

Cycle

changes of alpha [gamma=3.333333, best alpha = 0.923280]

alpha
best_alpha

(a) γ = 3.333, α∗ = 0.923

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

Al
ph

a

Cycle

changes of alpha [gamma=2.000000, best alpha = 0.828427]

alpha
best_alpha

(b) γ = 2.00, α∗ = 0.828

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

Al
ph

a

Cycle

changes of alpha [gamma=1.250000, best alpha = 0.692810]

alpha
best_alpha

(c) γ = 1.25, α∗ = 0.693

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

Al
ph

a

Cycle

changes of alpha [gamma=1.000000, best alpha = 0.618034]

alpha
best_alpha

(d) γ = 1.00, α∗ = 0.618

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

Al
ph

a

Cycle

changes of alpha [gamma=0.333333, best alpha = 0.282376]

alpha
best_alpha

(e) γ = 0.33, α∗ = 0.282

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

Al
ph

a

Cycle

changes of alpha [gamma=0.050000, best alpha = 0.048766]

alpha
best_alpha

(f) γ = 0.05, α∗ = 0.049

Figure 3: Exp.1-b: Adjustment of Stepsize Parameter
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of Random Walk and Noise.
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Figure 4: Exp.2: Changes of Stepsize Parameters and Learned Estimated Values by RRASP-N, GDASS, and
OSA Methods. (In the case of squared-waved value)
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change, and should decrease immediately to zero to reduce
the noise factor.

Figure 4 shows results of adaptation by (a) RRASP-N,
(b) GDASS, and (c) OSA (Optimal Stepsize Algorithm) [4].
In the figure, the left three graphs indicate changes of α by
adaptation with each method, and the right ones indicate
changes of given values xt, true values vt, and learned es-
timated values x̃t by Eq. (1). These graphs shows features
of three methods: Because OSA shown in (c) use statistical
information of given and learned values, changes of the step-
size is stable but tends to be delayed from the changes of the
true value. GDASS shown in (b) can response to the changes
of the true value quickly, but the stepsize tends to be un-
stable by effects of noise factors included in the given value,
because GDASS focuses only differences between given and
estimated values at each time t. Therefore, it is hard to de-
tect the environmental change from the changes of α clearly.
Compared with these methods, RRASP-N can catch the
changes of the true value quickly (α goes up right after ev-
ery cycle changes of the true value), and also show robust
and stable changes of the stepsize because it uses EMA of
squared errors to reduce effects of noise.

4.3 Exp.3: Repeated Multi-agent Resource Shar-
ing

Finally, I conducted a learning experiment using repeated
multi-agent resource sharing. In the experiment, we sup-
pose that multiple agents share four resources (resource-0 . . .
resource-3). The agents are grouped into three types, fixed
users who never change their choice from a certain resource,
random hoppers who choose one of resources randomly ev-
ery cycle, big players who usually stay on a certain resource
but sometime change their choice, and a learning agent who
try to estimate the average of utility for each resource. The
population and weight of each group is as follows:

type population weight
fixed users 1 7
random hoppers 17 1
big players 2 10
learning agent 1 1

,

where the weight of an agent means a degree of consuming
resources compared with a random hopper. Therefore, a re-
source that is used by big players, who has a big weight, will
have a poor utility. Each resource also has its own capacity,
which indicates the size of resource. In this experiment, the
actual utility of a resource k at time t is calculated by the
following equation:

utilityk(t) =
1

1 + totalWeightk(t)/capacityk

,

where, totalWeightk(t) is the summation of weights of agents
who choose the resource k at time t.

The purpose of the learning agent is to acquire estima-
tion of an utility of each resource by reducing noisy factor
caused by the random hoppers. In the same time, the learn-
ing agent must adapt drastic changes brought by big play-
ers’ change of choice. Therefore, the agent must adapt its
stepsize parameter according to changes of the environment.
Figure 5 shows the result of the learning. In each graph in
the right of this figure indicates given and expected utilities
for each time step, while graphs in the left shows changes

of stepsize parameters for each resource. Note that an in-
dependent stepsize parameter is assigned for each resource.
Therefore, the parameters changes independently with each
other. From these graphs, we can find that the agent can
estimate suitable expected utilities by reducing noisy fac-
tors of the random hoppers. Also, they can adapt drastic
changes by big players. Changes of the stepsize parameters
in figure 5 shows how the agent adapts to the changes of the
environment.

5. CONCLUDING REMARK
In this article, I proposed a method to adapt stepsize pa-

rameter, called rapid recursive adaptation of stepsize pa-
rameter by Newton’s method (RRASP-N), in which EMA of
the squared error of estimated value is minimized by chang-
ing the stepsize parameter. RRASP-N utilizes higher order
partial derivatives of the estimated value and EMA of the
squared error by the stepsize parameter, which can be cal-
culated from recursive exponential moving average system-
atically.

Experimental results shows that RRASP-N responds changes
of environments so quickly that it adapts the stepsize param-
eter to be suitable. In the same time, RRASP-N’ behavior
is stable because it use statistical value, EMA of the squared
error. We also can apply RRASP-N to various noise model.
While we use only Gaussian noise for input values, the for-
malization only suppose to minimize squared error between
expected and given values. Actually, situation used in Exp.3
is a non-Gaussian noise case. In this experiment, random
hoppers provides noisy effects to the environment. As shown
in the results of experiments, RRASP-N perform reasonably
to such an environment.

Although experimental setups shown in this article are
simple to demonstrate features of the proposed method, gen-
eralities of RRASP-N is supported by theorems so that it
can be applied generally to reinforcement learning that use
EMA formula. For example, it is easy to apply Q-learning
of multiple states and actions. Of course, the situation of
acquiring the best stepsize for a Q-learning is not so simple,
because learning speed of a Q-value affects a backup value
of Q-value for another state-action pairs. We have been in-
vestigating such cases, and found that there can exist local
minimums for the stepsize in a certain condition [7]. The
condition and its effects are still under investigation.

There still several open issues that include:

• effects of different stepsize parameters for states and
actions in Q-learning.

• utilization of more higher order derivatives (k > 2) to

analyze structures of errors function (Ẽt) with respect
to α.

• tuning of β, another stepsize parameter for the EMA
of the squared error.

acknowledgment
This work was supported by JSPS KAKENHI 21500153.

6. REFERENCES
[1] A. Bonarini, A. Lazaric, E. Munoz de Cote, and

M. Restelli. Improving cooperation among
self-interested reinforcement learning agents. In Proc. of

Page 21 of 99



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Ste
psi

ze

Learning Cycle

Changes of Stepsize Parameter for Resource0

alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Uti
lity

Learning Cycle

Given and Estimated Utility for Resource 0

resource
learn

(a) Resource 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Ste
psi

ze

Learning Cycle

Changes of Stepsize Parameter for Resource1

alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Uti
lity

Learning Cycle

Given and Estimated Utility for Resource 1

resource
learn

(b) Resource 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Ste
psi

ze

Learning Cycle

Changes of Stepsize Parameter for Resource2

alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Uti
lity

Learning Cycle

Given and Estimated Utility for Resource 2

resource
learn

(c) Resource 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Ste
psi

ze

Learning Cycle

Changes of Stepsize Parameter for Resource3

alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Uti
lity

Learning Cycle

Given and Estimated Utility for Resource 3

resource
learn

(d) Resource 3

Figure 5: Exp.3: Learning of Expected Utility of Each Resources.

Page 22 of 99



Workshop on Reinforcement Learning in
Non-Stationary Environments. ECML-PKDD 2005,
Oct. 2005.

[2] Michael Bowling and Manuela Veloso. Multiagent
learning using a variable learning rate. Artificial
Intelligence, 136:215–250, 2002.

[3] Eyal Even-dar and Yishay Mansour. Learning rates for
q-learning. Journal of Machine Learning Research,
5:2003, Dec. 2003.

[4] Abraham P. George and Warren B. Powell. Adaptive
stepsizes for recursive estimation with applications in
approximate dynamic programming. Machine learning,
65(1):167–198, 2006.

[5] Itsuki Noda. Adaptation of stepsize parameter for
non-stationary environments by recursive exponential
moving average. In Prof. of ECML 2009 LNIID
Workshop, pages 24–31. ECML, Sep. 2009.

[6] Itsuki Noda. Recursive adaptation of stepsize
parameter for non-stationary environments. In
Matthew E. Taylor and Karl Tuyls, editors, Adaptive
Learning Agents: Second Workshop, ALA 2009, page
(to appear). Springer, May 2009.

[7] Itsuki Noda. Relation between stepsize parameter and
stochastic reward on reinforcement learning. In Proc. of
JSAI 2009, pages 1D2–OS6–13. JSAI, JSAI, Jun. 2009.
(in Japanese).

[8] Makoto Sato, Hajime Kimura, and Shigenobu
Kobayashi. TD algorithm for the variance of return and
mean-variance reinforcement learning (in japanese).
Transactions of the Japanese Society for Artificial
Intelligence, Vol. 16(No. 3F):353–362, 2001.

[9] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

APPENDIX
A. PROOF OF Theorem 2

First of all, I show the following lemma:

Lemma 2.
The partial derivative of δt by α is equal to the derivatives

of x̃t by α:

∂δt

∂α
=

∂x̃t

∂α
(18)

In addition, generally, we can get the following equations for
the k-th partial derivatives:

∂kδt

∂αk
=

∂kx̃t

∂αk
(19)

On the other hand, we can calculate ∂kx̃t

∂αk from REMA

ξ
〈k〉
t using Theorem 1.

Therefore, we can calculate ∂kδt

∂αk by REMA.
Here, let’s focus on the partial derivative of Et.
Suppose that the i-th partial derivative of Et by α satisfies

Eq. (8) for all j ≤ k as follow:

∂jEt

∂αj
=

j−1
X

i=0

(j − 1)!

(j − 1 − i)!i!

∂iδ

∂αi

∂j−iδ

∂αj−i
.

In this case, we have the k+1-th partial derivative as follows:

∂k+1Et

∂αk+1
=

k−1
X

i=0

(k − 1)!

(k − 1 − i)!i!

·
»

∂iδ

∂αi

∂j−i+1δ

∂αj−i+1
+

∂i+1δ

∂αi+1

∂j−iδ

∂αj−i

–

.

Here, we reform the equation by terms ∂iδ
∂αi

∂k−i+1δ
∂αk−i+1 . Then

its factor ai can be calcuated as follows: In the case of i = 0
or i = k,

ai = 1 =
((k + 1) − 1)!

((k + 1) − 1 − i)!i!
.

In the case of 0 < i < k,

ai =
(k − 1)!

(k − 1 − (i − 1))!(i − 1)!
+

(k − 1)!

(k − 1 − i))!i!

= (k − 1)!

»

1

(k − i)!(i − 1)!
+

1

(k − 1 − i)!i!

–

=
(k − 1)!(k − i + i)

(k − i)!i!

=
k!

(k − i)!i!

=
((k + 1) − 1)!

((k + 1) − 1 − i)!i!
.

Therefore, Eq. (8) is satisfied in the case of the k + 1-th
partial derivative.

As the result, Eq. (8) is satisfied for all k > 0.
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ABSTRACT

As robots become more widely available, many capabilities that
were once only practical to develop and test in simulation are be-
coming feasible on real, physically grounded, robots. This new-
found feasibility is important because simulators rarely represent
the world with sufficient fidelity that developed behaviors will work
as desired in the real world. However, development and testing on
robots remains difficult and time consuming, so it is desirable to
minimize the number of trials needed when developing robot be-
haviors.

This paper focuses on reinforcement learning (RL) on physically
grounded robots. A few noteworthy exceptions notwithstanding,
RL has typically been done purely in simulation, or, at best, ini-
tially in simulation with the eventual learned behaviors run on a
real robot. However, some recent RL methods exhibit sufficiently
low sample complexity to enable learning entirely on robots. One
such method is transfer learning for RL. The main contribution of
this paper is the first empirical demonstration that transfer learn-
ing can significantly speed up and even improve asymptotic per-
formance of RL done entirely on a physical robot. In addition, we
show that transferring information learned in simulation can bolster
additional learning on the robot.

1. INTRODUCTION
Physically grounded robots need to be able to learn from their

experience, both in order to deal with changing environments and
to adapt to new problems. For the purpose of online learning of se-
quential decision making tasks with limited feedback, value-function-
based reinforcement learning (RL) [15] is an appealing paradigm,
because of the well-defined semantics of the value function and its
elegant theoretical properties. However, a few notable successes
notwithstanding (e.g., flying RC helicopters [3, 9] and quadruped
walking [8]), RL algorithms have typically been applied only in
simulation, or at best trained in simulation with the eventual learned
behaviors run on a real robot (e.g., [6], [10], and [5]).

Learning on physically grounded robots is difficult for several
reasons, including environmental and sensor noise, high costs of
failure (such as a crashed helicopter), the large amount of time it
takes to perform tasks, and the fact the robots’ dynamics are often
not constant due to wear and tear on their motors. Thus, to the ex-
tent possible, it is desirable to train robots in a controlled environ-
ment before sending them out into the world. Doing so can reduce
damage to the robots and prepare them to deal with expected sit-
uations. However, when encountering unexpected situations after
“deployment” in the real world, the robot will have to continue to
adapt. Such unexpected situations can even arise from the dynam-
ics of the robot itself changing as its joints break, or as repairs are
made. It is conceivable to relearn tasks from scratch each time a
change happens, but due to the time and cost of learning, it is not
practical. Instead, it is desirable for the robot to reuse prior infor-
mation in order to learn faster. The concept of reusing information
from past learning is the idea behind transfer learning.

Transfer learning for RL tasks has been shown to be effective in
simulation [18], but no prior work has been done on transfer learn-
ing on physically grounded robots. The main contribution of this
paper is the first empirical demonstration that transfer learning for
RL can significantly speed up and even improve asymptotic per-
formance of RL with learning done entirely on a physical robot,
specifically using Q-value reuse for the Sarsa(λ) algorithm [19]. In
addition, we show that transferring information from learning in
simulation can improve subsequent learning learning on the robot.

To this end, we introduce a novel reinforcement learning task
for humanoid robots and demonstrate that transfer learning can be
effective for this task. The results additionally represent one of the
first successful applications of reinforcement learning on the Nao
humanoid platform developed by Aldebaran1. A limited amount of
previous work has been done using the Nao, but this work focused
on simulation work, with only a single run on a physical robot [7].

The remainder of the paper is organized as follows. Section
2 presents the main algorithms used in our experiments, namely
Sarsa(λ) and Q-value reuse. Section 3 introduces our experimental
testbed and fully specifies the task to be learned. Sections 4 and
5 present the results of our experiments. Section 6 further situates
the results in the literature, and Section 7 concludes.

2. BACKGROUND
Reinforcement learning (RL) is a framework for learning se-

quential decisions with delayed rewards [15]. RL is promising for
robotics because it handles online learning with limited feedback
where actions taken affect the environment. RL has been exten-
sively studied in many domains, with positive results. However,
1http://www.aldebaran-robotics.com/eng
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RL techniques can require long training times. Therefore, espe-
cially on robots, it can be useful to reuse knowledge learned from
similar problems to speed up training times via transfer learning.

Value-function-based RL algorithms assume that the task to be
learned can be modeled as a Markov Decision Process (MDP). An
MDP is a four-tuple of (S, A, T, R) where S is a state space, A

is an action space, T is a transition function specifying the effects
of actions, and R is an immediate reward function specifying the
value of state transitions. The complete formulation is given by
T (s, a) = s′ with s, s′ ∈ S and a ∈ A and R(s, s′) = r where r ∈
R. However, the agent typically does not start with any knowledge
about T or R, so it must learn what actions should be taken in the
states it encounters. One way of doing so is via an intermediate
data structure called a state-action value function (Q) that stores
the expected long-term reward of executing action a from state s.

Taylor et al. [19] recently demonstrated that state-action values
from one RL problem can be effectively reused in a related, but dif-
ferent sequential decision making problem. This result is surprising
because the state-action values are intuitively the most problem-
specific data structure of an RL algorithm: they represent the ex-
pected long-term reward from a given state-action pair in a single,
specific problem. However, it turns out that there are useful pat-
terns encoded in the state-action value function that can speed up
and even improve asymptotic learning on related tasks. Their algo-
rithm of Q-value reuse, which we adopt in this paper, is based on
the standard RL framework.

2.1 Sarsa(λ)
This research uses the Sarsa(λ) learning algorithm as the base

RL algorithm. We choose to use Sarsa because it is compatible
with Q-value reuse, and because it is among the simplest of RL
algorithms: our focus is on speed-up due to transfer rather than on
the learning algorithm itself.

Sarsa is an on-policy temporal difference learning algorithm first
proposed by Rummery and Niranjan [11] and later augmented by
Sutton [14]. Specifically, Sutton’s work describes using cerebellar
model arithmetic computers (CMACs) [2] as a function approxi-
mator for generalizing learning, allowing the agent to generalize
across similar states and handle larger (or infinite) state spaces.
This approach has been shown to be successful in a number of do-
mains.

The Sarsa(λ) algorithm is a well-known approach to solving an
MDP. It learns a value function over state-action pairs, Q(s, a) =
r, and actions are chosen ǫ-greedily with respect to Q. The value
function is changed via a Bellman (TD) update:

Q(s, a) = (1 − α)Q(s, a) + α[R(s, s′) + γe(s, a)Q(s′, a′)]

given the state s, action a, reward r, next state s′, next action a′,
the discount factor γ, the eligibility trace e(s, a) (representing how
recently the state-action pair was visited), and the decay parameter
λ.

We use CMACs for their discretization and generalization abili-
ties, deriving from their infinite, axis-parallel tilings over a contin-
uous state space. These tiles are discrete features, and there are a
constant number active for each point in the space. Several tilings
are used and each is offset from the others (by a random amount in
our implementation). The value function is generalized over each
tile, but the overlapping tiles allow for better resolution. A CMAC’s
value for each action is computed by summing the weights from
each activated tile:

f(x) =
X

i

wifi(x)
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Figure 1: Q-Value Reuse

where

fi(x) =



1 if tile i is activated
0 otherwise

For any state, the result is a vector of values with length equal to
the number of actions, and the lengths may not be the same for
different tasks.

2.2 Q-value Reuse
Transfer learning involves reusing knowledge learned from ear-

lier tasks to learn new problems more effectively. The task learned
previously is called the source task and the new task is called the
target task. We use Q-value reuse for the transfer, where the value
function, Qsource, learned from an earlier task is used as a start-
ing point for the new problem, and a new value function, Qtarget,
is learned to correct errors in the source value function. However,
the source state and action spaces may not coincide with the tar-
get state and action spaces. Therefore, the agent must be given a
mapping between the source and target tasks: χX(starget) = ssource
and χA(atarget) = asource. In this work, this mapping is provided
to the agent rather than learned. Therefore, the agent’s new value
function is given by

Q(s, a) = Qsource(χX(s), χA(a)) + Qtarget(s, a)

Figure 1 shows how Q-value reuse works, reusing the source task’s
state-action value function approximator in the target.

Sarsa updates are calculated the same way as previously, but
only the target’s function approximator weights (Qtarget(s,a)) are
updated. In some cases, there may be no corresponding action in
the source task so a default value is given to these actions. In this
paper, we initialize these actions to the average action values across
all possible states in the source domain [19]. We also tried initializ-
ing new actions to an intermediate value picked by hand (0) and to
the average action value for the current state, but the average action
values of all states performed better in initial experiments.

3. EXPERIMENTAL SETUP
For all experiments in this paper, we use a novel task on the Nao

humanoid platform developed by Aldebaran. We chose a task with
the robot seated to reduce the possibility of damaging the robot and
for easier control of the robot’s start state. We emphasize the phys-
ical groundedness of our experiments by requiring that the robot
calculate its own reward signal from observations, accepting any
resulting inaccuracies.
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Figure 2: Estimates of episode rewards

Specifically, the robot’s task was to hit an orange ball as far as
possible at a 45◦ angle with its right hand. It used its onboard
camera to observe the result of each trial and calculate the reward
signal. The robot is seated with the ball 80 mm in front of the
center of the robot and 170 mm to its right. Note that the robot is
not given ball’s location except for the information in the reward
signal. Every 75 ms, the robot is given the current positions of the
joints and their velocities as observations.

The reward signal is given by r = d ∗ cos(θ), where d is the
distance that the ball moved, and θ is the angle between the ball’s
trajectory and the 45◦ target angle. If the ball was not seen for
sufficiently long, it was assumed to have been hit backwards, and
the action was assigned reward −100. All other steps were given a
reward of -1 to encourage the agent to find a fast action sequence
to hit the ball.

The reward from vision can be inaccurate, due to the ball mov-
ing outside the sight range of the robot, the arm obscuring the sight
of the ball, and noisy distance estimates of the ball. However, we
measured these effects, and found that they were not very signifi-
cant. Figure 2 compares the robot’s estimate of the reward with the
measurements taken by hand using a tape measure and a protrac-
tor. Out of 50 episodes, only two successful hits were not seen by
the robot and incorrectly assumed to be backward hits with reward
−100. The R-squared value of the robot’s estimations was 0.86.

As shown in Figure 3 (supplied by Aldebaran1), the robot can
use four joints to help it hit the ball: shoulder pitch, shoulder roll,
elbow pitch, and elbow yaw. For each episode, these joints start
at a fixed position with no initial velocity; these values are given
in Table 1 and depicted in the left-most frames of Figure 4. Also,
the ball starts in the same position for every episode, as shown in
Figure 4. At each time step, the robot can accelerate one joint in ei-
ther direction or leave all the joints alone. Therefore, the robot has
nine actions: {no change, accelerate the shoulder pitch upwards,
accelerate the shoulder pitch downwards, accelerate the shoulder
roll clockwise, or accelerate the shoulder roll counter-clockwise,
etc.}. Furthermore, it has eight observations: the position and ve-
locity for each joint. The velocities are kept in the range [−100◦/s,
+100◦/s] and the actions are taken every 75ms (more than 13
times per second) to change the velocity by 50◦/s.

It is possible to learn this task without any prior information,
but the process can be slow and the robot converges to a mediocre
policy. Our work focuses on improving this learning, specifically
by using a related source task as prior information. For this simpler
task, the robot only has control of the two shoulder joints, with the
elbow roll and yaw fixed at 0◦ and 0◦. Therefore, the robot will
only have five actions and four observations. We will refer to this
simpler task as the source task and the original task as the target
task. The keyframes of the robot performing the two tasks can be

Figure 3: Joint movements possible for the task

(a) Source task

(b) Target task

Figure 4: Keyframes of robot tasks

seen in Figure 4. The robot has less control in this source task,
and therefore cannot hit the ball as far as in the target task, but it
can learn faster as the problem is simpler. Our central hypothesis
is that using Q-value reuse to transfer information from this source
task will enable the robot to learn faster on the target task.

As this work focuses on transfer learning on robots, so the main
task considered was transferring from the source task to the target
task on the robot, compared to learning the target task with no prior
information. We also replicated both tasks in the Webots simulator2

to test our algorithm in a different, though similar environment (as
the dynamics of the simulator do not entirely match the physical
robot). We do not assume that a useful simulator will be available
in all cases, which is why we focus on transfer on the robot itself.
In this case, the simulator allows us to better evaluate the effective-
ness and robustness of the algorithm and to run many more experi-
ments than physical robots allow. However, we emphasize that for
the main result of the paper, both the source and target tasks were
learned on the physical robot.

We refer to the source task on the robot as SOURCEROB, the
target task on the robot as TARGETROB, the source task in the
simulator as SOURCESIM, and the target task in the simulator as
TARGETSIM. The main test of our algorithm is in how the trans-

2Cyberbotics Ltd. http://www.cyberbotics.com

Joint Min Max Start
Shoulder pitch 0◦ 115◦ 115◦

Shoulder roll −90◦ 5◦ −75◦

Elbow roll 0◦ 120◦ 45◦

Elbow yaw −90◦ 90◦ −45◦

Table 1: Joint angle ranges and starting positions
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fer from SOURCEROB to TARGETROB and from SOURCESIM to
TARGETSIM performs. However, the use of the simulator allows
for several other paths for transfer information, and we discuss this
idea further in Section 5

A significant part of the work was done using the Webots simulator2,
and this work relies heavily on the code developed by the UT Austin
Villa robot soccer team3. This code base provides the interface be-
tween the learning agent and the robot’s actions, as well as provid-
ing visual detection of the ball.

4. RESULTS
Transfer learning can be evaluated in many different ways [18].

In this paper, our main focus is on “weak” transfer, meaning that
we assume that the time spent in the source task does not count
against the learner in the target. This is the case when the robot
has already learned the source task, so this training time is not a
new cost. For example, if a robot was trained in a lab before being
sent out, we might be interested in the time it would take the robot
to learn a new task, and less interested in how long the robot was
trained in the lab. We also show one “strong” transfer result, where
time spent in the source does count.

For all experiments, we plot the running average reward for each
approach, taken with a 25 episode moving window for the robot
tests and a 50 episode window for the simulation tests. Each test
on the robot represents five runs, each lasting 50 episodes. In the
simulator, each test averages 50 runs, each lasting 1,000 episodes.
These 50 episodes on a robot takes approximately 30 minutes, and
1,000 episodes in simulation takes approximately three hours. This
data allows us to draw conclusions with statistical significance and
reason about the convergence of each approach.

The baseline that we use is learning TARGETROB with no prior
information. Figure 5a shows that transfer from SOURCEROB to
TARGETROB is helpful, improving the reward throughout the en-
tire test. The initial few episodes of each algorithm are very noisy,
so the initial positive performance of TARGETROB is not signifi-
cant, just the effect of a few outliers. This graph is an evaluation of
weak transfer: we do not depict training time in the source task.

Figure 5b shifts the transfer plot 50 episodes to the right to rep-
resent the strong transfer scenario. Though not as dramatic, the
result is still positive, thus demonstrating that it can be useful to
break a robot task into robot subtasks, and then transfer from the
subtasks to the target task. In this test, the robot performs about as
well in the source task as in the target task, because it does not have
enough trials to completely explore the target task and find a good
behavior.

Unfortunately, the small number of tests on the robots means that
we cannot draw statistical conclusions about the performance of the
methods. However, the tests were also replicated in simulation with
good results. Figure 6a shows that the transfer from SOURCESIM
to TARGETSIM is helpful, even after a large number of episodes.
The differences between the final rewards of each method are sta-
tistically significant with a confidence of 99%, and the error bars
in the diagram show the standard deviation of the average rewards.
Figure 6b shows that our results for strong transfer hold in simu-
lation. Overall, Figures 5–6 suggest that transfer learning works
on robots, and can greatly speed up learning and reach better end
behaviors.

5. ADDITIONAL EXPERIMENTS
In addition to providing statistically significant results, the use of

the simulator opens several other paths for transferring knowledge
3http://www.cs.utexas.edu/users/austinvilla

(a) Weak Transfer (b) Strong Transfer

Figure 5: Transfer on the robot to the target task

(a) Weak Transfer (b) Strong Transfer

Figure 6: Transfer in the simulator
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Figure 7: Paths for transferring experience

Figure 8: One-step transfer to the robot target task

between tasks, including two-step transfer, where we learn sequen-
tially from multiple source tasks. Two-step transfer is performed as
described in Section 2, with the value function:

Q(s, a) = Q1(χX1(s), χA1(a))

+Q2(χX2(s), χA2(a)) + Q3(s, a)

We consider TARGETROB to be the target for all of the tests, and
we continue using 1,000 episodes in simulation and 50 on the phys-
ical robot. Figure 7 shows all the ways to transfer information to
TARGETROB, with numbers corresponding to the following tests:

1. SOURCEROB → TARGETROB

2. SOURCESIM → TARGETROB

3. TARGETSIM → TARGETROB

4. SOURCESIM → SOURCEROB → TARGETROB

5. SOURCESIM → TARGETSIM → TARGETROB

Test 1 is further investigated in Section 4, and the results of the
three one-step transfer tests (tests 1, 2, and 3) are displayed in Fig-
ure 8. Transferring from TARGETSIM produces the biggest im-
provement in the early episodes due to it having already learned
about the entire state-action space. However, the agent does have to
learn about the differences between the simulated and real robots.
Also, transferring from SOURCESIM performs better than trans-
ferring from SOURCEROB, probably due to the higher number of
runs in SOURCESIM, which allow the agent to explore the state-
action space more completely. In the end, all of the transfer meth-
ods end up with similar performance, and all perform much better
than starting with no prior information.

The two types of two-step transfer were also tested (tests 4 and
5), and the results are shown in Figure 9. Both methods show a sub-
stantial boost to early episodes but later plateau, achieving similar
results to the other transfer methods. The results of the two-step
transfer are not better than some of the one-step transfers, but Fig-
ure 10 shows that multi-step transfer can be beneficial, giving a
large early boost.

Figure 9: Two-step transfer to the robot target task

Figure 10: Comparison of one and two-step transfer.

Though all of these results are for weak transfer, we speculate
that these trends will hold for strong transfer (as they did in both
one-step transfer cases). Furthermore, transferring from simulation
to a physical robot raises the possibility of having different costs
for training spent in the simulator than on the robot. For example,
if we consider simulation time to be insignificant, then tests 2, 3,
and 5 are all evidence of strong transfer.

6. RELATED WORK
One of the earliest uses of transfer learning for reinforcement

learning was done by Selfridge et al. [12] in the familiar cart-pole
domain. In this work, the function approximator was reused for
poles of different sizes and weights, with good effect.

Taylor and Stone [18] recently surveyed the use of transfer learn-
ing in reinforcement learning. Significant prior work in this area
has been performed, with good results. However, little work has
been done in applying transfer learning to the area of robotics. Tay-
lor and Stone discuss several approaches to transfer learning, and
point out several ways to evaluate the effects of the transfer. Our
research focuses on Q-value reuse with supervised task transfer.

Taylor et al. [19] explored Q-value reuse in temporal difference
learning with good results. They specifically evaluate a Sarsa agent
using CMAC for function approximation. However, this work fo-
cuses on the simulated domain of keepaway for soccer. Our work
applies this research to a physical robot, and has a greater differ-
ence between the source and target tasks.

One interesting approach to transfer learning is to extract higher
level strategies from the policy learned by the agent. Torrey et
al. [20] explored this idea using relational macros to represent the
strategies learned by induction logic programming (ILP) in the RoboCup
breakaway domain, but this requires the domain to be translated
into first-order logic. It is also possible to break a single problem
into a series of smaller tasks. Then, the agent learns each of these
sub-tasks and combines the learned knowledge for the full task.
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In the target task, the state space, actions, and transition function
are the same as the sub-tasks, and the information is transferred
via Q-value transfer. Singh [13] also explored this area, naming it
“compositional learning.”

It is possible to learn a mapping between source and target tasks
autonomously (e.g., when a human is unable or unwilling to pro-
vide such a mapping). Talvitie and Singh [16] developed an algo-
rithm to generate possible state variable mappings and learn which
mapping is best as an n-armed bandit problem. Further work has
been done by Taylor et al. [17] using a model-based approach to
reduce the samples needed, and they transfer observed (s, a, r, s′)
instances, which allows the source and target agents to have differ-
ent representations for the task. However, these methods are not
as reliable as hand-mapping and can be unnecessary for smaller
domains.

Unfortunately, tests on robots can be slow, and most learning al-
gorithms require a large amount of training data to perform well.
Therefore, it can be useful to train an agent in simulation and trans-
fer these behaviors to a robot [6, 10, 5]. However, we cannot as-
sume that a simulator will accurately model complex perception or
manipulation tasks, so it is often useful to tune the behavior from
the simulator by running more tests on a robot. This requires com-
bining information about a source simulation task and a target robot
task, but no work we know of treats this as a transfer learning prob-
lem.

Another way to speed up learning is to use prior demonstrations.
Researchers have shown that sub-optimal demonstrations can be
sufficient to teach an agent to control an autonomous helicopter [1,
4]. Unfortunately, this requires on an expert in the domain to per-
form the demonstrations, which is not always possible.

7. CONCLUSIONS AND FUTURE WORK
This paper empirically tests transfer learning for RL on physical

robots. The results show that model-free RL can be effective on a
robot, and that transfer learning can speed up learning on physical
robots.

Furthermore, this prior information can be learned in simulation,
even if the simulator does not completely capture the dynamics of
the robot. For example, the simulator does not model collisions
between the robot’s different parts, so dynamics of the arm hitting
the body are never learned in the simulator. However, the behaviors
learned in the simulator serve as good starting points for learning
on the robot. This result is useful when a simulator is available,
since simulator tests are significantly easier to run than robot tests:
it suggests that only a relatively small amount of tuning is necessary
to adapt behaviors learned in the simulator to the real robot. The
main motivation for this work is that in some situations learning
must be performed entirely on a physical platform, and the positive
results in that setting are the main contribution of this paper.

This work opens up several interesting directions for future work.
For example, it is worth investigating if other learning algorithms
can learn this task faster than Sarsa, and if so, whether Q-value
reuse (if applicable) can show similar benefits with these other al-
gorithms. It would also be interesting to see how different methods
for transfer learning perform on this task. In the long run, we view
the research reported in this paper as just the first of many possible
applications of transfer learning for RL to physical robots.
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ABSTRACT
The design of reinforcement learning solutions to many problems
artificially constrain the action set available to an agent,in order
to limit the exploration/sample complexity. While exploring, if
an agent can discover new actions that can break through the con-
straints of its basic/atomic action set, then the quality ofthe learned
decision policy could improve. On the flipside, consideringall pos-
sible non-atomic actions might explode the exploration complex-
ity. We present a potential based solution to this dilemma, and
empirically evaluate it in grid navigation tasks. In particular, we
show that both the solution quality and the sample complexity im-
prove significantly when basic reinforcement learning is coupled
with action discovery. Our approach relies on reducing the num-
ber of decisions points, which is particularly suited for multiagent
coordination learning, since agents tend to learn more easily with
fewer coordination problems (CPs). To demonstrate this we extend
action discovery to multi-agent reinforcement learning. We show
that Joint Action Learners (JALs) indeed learn coordination poli-
cies of higher quality with lower sample complexity when coupled
with action discovery, in a multi-agent box-pushing task.

1. INTRODUCTION
Reinforcement learning is a popular framework for agent-based

solutions to many problems, primarily because of the simplicity of
design and the strong convergence guarantees in the face of uncer-
tainty and limited feedback. In typical on-line reinforcement learn-
ing problems, an agent interacts with an unknown environment by
executing actions and learns to optimize long-term payoffs(or feed-
backs from the environment) consequent to selecting actions from
a given set, A, in every state. In most cases, care is taken to ensure
that the set of actions is not too large, usually by discretizing con-
tinuous action spaces (see [7] for an exception). This is because a
large action set can slow down exploratory learning by creating too
many alternate trajectories through the state space to be explored.
However, in order to curtail this exploration space, oftentimes, ac-

tion sets are artificially limited (in addition to physical limitations
of an agent) leading to constraints in the learned behaviorsas well.

Consider a simple example of this limitation: assume that the
robotic arm in Figure 1(a) is physically limited to rotatingby no
less than2◦ at a time. The goal is to get it to rotate by13◦. In-
stead of allowing it to explore every possible action (2◦ – 359◦),
the designer might prefer to allow only 4 actions, viz.,2◦ clock-
wise and anti-clockwise, and5◦ clockwise and anti-clockwise. Al-
though this would enable the robot to learn an action policy for any
integer goal angle, many of those policies would have constraints
that are imposed by the design choice, not by the robot’s physical
limitation, e.g., it would have to execute three5◦ actions followed
by a2◦ action in the reverse direction. However, the robot could
have learned to simply turn by13◦ in one smooth motion,had the
learning problem not been artificially constrained. On the other
hand, allowing a full blown action set might slow down learning to
such an extent that no performance improvement (over a random
policy baseline) may be observed in any reasonable time-frame.
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Figure 1: Motivating examples

Consider a second example, a grid-world navigation task, asshown
in Figure 1(b). In such worlds, the action set is usually assumed to
contain the 8 atomic actions that an agent can take to move from
one state (tile corner) to a (8-connected) neighboring state. How-
ever, the optimal policies generated by such an action set can make
for unnatural navigation paths, such as the path from state Ato the
bottleneck B in solid arrows, in Figure 1(b). The most natural path
from A to B would be the dotted arrow in Figure 1(b), but accomo-
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dating such actions might make the action set of the agent toolarge.
This example also highlights the difference between our work and
the theory ofoptions[13]. An option in this example might allow
an agent to move to the doorway (B) with a temporally extended
action sub-planthat consists of the same atomic actions(i.e., the
chain of solid arrows). In contrast, our method adopts afundamen-
tally new action(the dotted arrow), whereby, and agent can move in
a straight line to B, instead of being constrained by the set of atomic
actions. However, as mentioned before, it is not immediately clear
if such additional actions must come at the cost of reduced learning
rate.

In this paper, we propose a method to address the tradeoff be-
tween discovering new actions and keeping the learning ratehigh.
We allow a reinforcement learning agent to start exploring its en-
vironment with the same (limited) basic/atomic action set,but en-
able it to discover new actions on-line that are expected to lead
to its goal faster. As the agent augments its action set with these
newly discovered promising actions, its learning rate might be ex-
pected to fall. However, if only the most promising actions are
added, then they may actually decrease the time to reach the goal,
thereby accelerating the learning. We experimentally study the rel-
ative effects of these two factors in the grid-world navigation do-
main with single agents. We show that action discovery can indeed
improve the solution qualitywhile significantly reducing the ex-
ploration/sample complexity. Furthermore, the reason behind the
success of action discovery, viz., improvement in the connectivity
of the state-graph, indicates an added benefit to multi-agent coor-
dination learning. Coordination Problems (CPs) [3] are points in
multi-agent sequential decision problems where agents must coor-
dinate their actions in order to optimize future global returns. With
fewer CPs, the learning problem is simplified, leading to faster
learning. Since action discovery can reduce the number of points
where agents would need to coordinate (i.e., reduce CPs), action
discovery can greatly enhance the learning rates in multi-agent co-
ordination learning tasks. In order to verify this intuition we adapt
the Joint Action Learning (JAL) algorithm [4] with action discov-
ery in a multi-agent box pushing task, and show that the beneficial
impact of action discovery does indeed apply.

2. REINFORCEMENT LEARNING
Reinforcement learning (RL) problems are modeled asMarkov

Decision Processesor MDPs [12]. An MDP is given by the tu-
ple {S, A,R, T}, whereS is the set of environmental states that
an agent can be in at any given time,A is the set of actions it can
choose from at any state,R : S × A 7→ ℜ is the reward func-
tion, i.e.,R(s, a) specifies the reward from the environment that
the agent gets for executing actiona ∈ A in states ∈ S; T :
S×A×S 7→ [0, 1] is the state transition probability function spec-
ifying the probability of the next state in the Markov chain conse-
quential to the agent’s selection of an action in a state. Theagent’s
goal is to learn a policy (action decision function)π : S 7→ A that
maximizes the sum of discounted future rewards from any state s,
given by,

V
π(s) = ET [R(s, π(s))+γR(s′, π(s′))+γ

2
R(s′′, π(s′′))+. . .]

wheres, s′, s′′, . . . are samplings from the distributionT following
the Markov chain with policyπ, andγ ∈ (0, 1) is the discount
factor.

A common method for learning the value-function,V as defined
above, through online interactions with the environment, is to learn

an action-quality functionQ given by

Q(s, a) = R(s, a) + max
π

γ
X

s′

T (s, a, s
′)V π(s′) (1)

This quality value stands for the discounted sum of rewards ob-
tained when the agent starts from states, executes actiona, and
follows the optimal policy thereafter. Action quality functions are
preferred over value functions, since the optimal policy can be cal-
culated more easily from the former. TheQ function can be learned
by online dynamic programming using various update rules, such
as temporal difference (TD) methods [12]. In this paper, we use the
on-policy Sarsa rule given by

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

whereα ∈ (0, 1] is the learning rate,rt+1 is the actual environmen-
tal reward andst+1 ∼ T (st, at, .) is the actual next state resulting
from the agent’s choice of actionat in statest. We assume that the
agent usesǫ-greedy strategy for action selection: it selects action
at = arg maxb Q(st, b) in statest with probability (1 − ǫ), but
with probabilityǫ it selects a random action.

Sarsa is named after the acronym of its steps: state, action,re-
ward, state, action. From statest, the agent picks actionat, re-
ceives a rewardrt+1, transitions to statest+1, and then selects ac-
tion at+1 in that state. It is only at this point that it can update
Q(st, at), using the above TD rule.

In reinforcement learning, it is traditional to define a simple set
of actionsA that an agent can select fromat any state, since many
actions are applicable to several states. However, for the purpose
of this paper we will separate the action setson a per state basis.
That is, we will assume that in a states, an agent can select from
the setA(s) of actions. This is just for the purpose of presenta-
tion, and there is really no fundamental difference betweenthe two
conventions. We assume that the agent is initially given thesame
action set as basic RL, represented asA0(s) over statess. If the
agent discovers a new action in episodet that can be executed from
states on its exploration trajectory, it grows the action set for that
state,At(s).

Since we are no longer constrained to a basic/atomic action set,
we must accomodate different execution times (or costs) of actions,
similar to options. The framework ofSemi-Markov Decision Pro-
cesses (or SMDPs) is the appropriate relaxation for this purpose,
and the only difference it entails in terms of the learning algorithm,
is that the execution time,t(a) of an actiona, must be used to ex-
ponentiate the discount factor, i.e.,γt(a) in place ofγ.

3. RELATED WORK
While reinforcement learning has seen successes in many no-

table applications [14, 5, 1], experience/sample complexity has tra-
ditionally been an issue of concern. More recently, severaltech-
niques have been proposed to reduce sample complexity. These
approaches include the theory of options and temporal abstrac-
tion [13], reward shaping [9], Lyapunov-constrained action sets [10],
and knowledge transfer [11], among others. In particular, Lyapunov-
constrained action sets [10] seeks to limit the action set ofan agent
during exploration by constructing appropriate Lyapunov functions
to guide exploration, while action transfer [11] seeks to bias action
selection in new tasks by exploiting successful actions from pre-
vious tasks. Given the significant prior effort in reducing sample
complexity, some by eliminating or reducing the weight of avail-
able actions, it may sound counterproductive to seek to expand an
agent’s available action set. Our insight is that with the discovery
of new actions that circumvent policy constraints, more efficient
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policies can be learned and exploited to ultimately learn toachieve
the goal faster. As a bonus, the quality of the learned solution is
also expected to improve.

The basic insight that learning temporally extended abstractions
of ground behavior can increase the learning rate by reusingab-
stractions, has been verified before in the context of options [13].
However, there is a fundamental difference between our workand
the theory of options. While options can be loosely thought of
as labels for a series of atomic actions that are useful to execute
in the same sequence in many different states, and are gearedto-
ward reusable knowledge, our work considersactually new actions.
When options are considered as additional actions that an agent can
select in place of an atomic action, they have been shown to expe-
dite learning. However, discovering options is not a simpletask. In
contrast, it may be simple to discover new ground actions outside
an agent’s set of atomic actions, as we demonstrate in grid naviga-
tion tasks. Rather than bank on their reusability as with options, we
rely on the ability of these new actions to improve the policyqual-
ity by connecting topologically distant states in the stategraph. It
is not immediately clear if such qualitative enhancement will also
reduce sample complexity. But our experiments in simple grid nav-
igation tasks show that this is indeed possible.

Reinforcement learning in multi-agent sequential decision tasks
has been an active area of research [3, 6, 8, 2]. In multi-agent
systems the decision complexity (typically the size of the Q-table)
usually depends exponentially on the number of agents, and so it is
even less intuitive whether worsening the decision complexity by
accommodating new actions can help the learning rate at all.We
answer this question affirmatively, by showing that Joint Action
Learners (JAL) [4] with action discovery do learn better policies
with lower sample complexity in a multi-agent box pushing task
than regular JALs.

4. ACTION DISCOVERY
In reinforcement learning problems, the atomic action set,A0,

is usually fixed. Even if new options are discovered, these options
are described in terms of the atomic actions fromA0. However,
in many cases new actions that are neither included inA0, nor
precluded by the agent’s capabilities, may be able to improve the
agent’s performance by

• reducing the number of steps to the goal, or the total solution
cost

• reducing the cost of exploration by connecting topologically
distant states with new actions

• making the goal-directed behavior more natural, i.e., less
constrained from a design perspective

We renounce the innate meaning of an action, and assume it to
simply stand for a vehicle of state transition. As such, we repre-
sent an action byass′ to mean that theintendedpurpose of this
action is to transition from states to states′. To accomodate non-
determinism in the effect of an action, we can now redefine the
transition functionT asT (s, ass′ , s

′′) to stand for the probabil-
ity that if the agent acts with the intention of transitioning from s

to s′, then it ends up in states′′. Therefore,T (s, ass′ , s
′) is the

probability of success of this action. The fixed point of Q-learning,
replacing equation 1, is now,

Q(s, ass′) = R(s, ass′) + max
π

γ
X

s′′

T (s, ass′ , s
′′)V π(s′′)

In this paper, however, we focus on the deterministic cases,i.e.,
whereT (s, ass′ , s

′) is either 1, or the actionass′ is infeasible due

to physical limitations of the agent or the environment, forall s, s′.
It is useful to deal with both possibilities uniformly, witha cost
function.

We assume that for a given domain, a cost functionc : S ×
S 7→ ℜ, is always available, such thatc(s, s′) gives the cost of
executing an action that would take an agent from states to state
s′, i.e.,ass′ . If c(s, s′) <∞, this simply means that there is some
action (whether atomic or newly discovered) that takes the agent
from states directly to states′. However, ifc(s, s′) =∞, then no
such action exists.c is virtually an oracle that can be enquired by
the agent for pairs of states that it has seen in the past. Our setting
is different from regular RL settings in that the agent does not know
the state space a priori, but has access to a transition function oracle
(c), whereas in regular RL settings the state space is known butthe
transition function is unknown.

The cost function also serves as the measure of action complex-
ity, and can be used to exponentiateγ for SMDPs. For actions
outside the atomic action set (A0), and having a finite cost, we do
not assume that a reward sample for such an action is available un-
less this action is actually executed. Hence the first time that such
an action is discovered (line 16, Algorithm 1), the reward isesti-
mated(r̂ in line 18, Algorithm 1) on the basis of the actual rewards
r1, r2.

Clearly, accepting every newly discovered action into the set of
actions will be expensive for learning. For instance, in a grid of
sizen × n, there may beO(n2) such new actions, per state, i.e.,
potentiallyO(n4) actions to contend with. Accomodating such a
large number of actions will impact the exploration and reduce the
learning rate. Fortunately, many of these actions may be needless
to explore, e.g., if they lead away from the goal. It is possible to
estimate thevalue potentialof a state,Φ, precisely for this pur-
pose. Potential functions,Φ(s), have been used before, to shape
rewards and reduce the sample complexity of reinforcement learn-
ing [9]. Such functions can be set by the agent designers or domain
designers. In this paper, we use such functions to informatively
select among newly discovered actions. To illustrate our heuristic

γ 1     3cost(s  , s  )

S2Φ(      )

S3Φ(     )

S

S

S

1

2

3

cost(s  , s  )1     2γ

Figure 2: Illustration of the selection procedure for a newly
discovered action.

selection procedure for newly discovered actions, consider an agent
that has transitioned through successive statess1, s2, ands3, dur-
ing some episode,t (Figure 2). The actions that it has executed to
make these transitions may be atomic actions, or previouslydiscov-
ered new actions, in the setAt(.). At states3, the agent determines
if there exists an action that could have transitioned it directly from
s1 to s3, i.e., whetherc(s1, s3) <∞. If this is true and this action
did not exist inAt(s1) (line 16, Algorithm 1), then a new action has
been discovered based on two older actions (either basic, orthem-
selves discovered). The question is whether this new action, as1s3 ,
is worth exploring in the future from states1, compared to the ac-
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tion (atomic or otherwise) that had transitioned the agent from s1

to s2. This question may be heuristically answered by comparing
the potential backup values from boths2 ands3 to s1. These po-
tential backup values can be estimated asγc(s1,s2)Φ(s2) from s2,
andγc(s1,s3)Φ(s3) from s3. Consequently, we use the following
criterion for accepting a newly discovered action,as1s3 ,

γ
c(s1,s3)Φ(s3) > (1 + δ)γc(s1,s2)Φ(s2)

whereδ is a slack variable guiding the degree of conservatism in
accepting new actions. This step is shown in line 16 in Algorithm 1.
Furthermore, new actions merely facilitate reaching the goal, but
they are not necessary for the agent to reach the goal. The agent
should be able to find a baseline policy to the goal using just the
atomic actions, in the worst case. Hence, we use the above test
rather conservatively (δ > 0) to select or reject a newly discovered
action.

Algorithm 1 Sarsa-AD (Sarsa with Action Discovery)

1: Initialize ǫ, δ, α, γ

2: InitializeΣ← ∅, the set of states seen so far
3: for episodet = 0, 1, 2, 3, . . . do
4: s1 is the start state. If seen for the first time, add it toΣ and

setAt(s1)← A0(s1)
5: Choosea1 ∈ At(s1), with ǫ-greedy
6: Executea1 and get next-states2 and rewardr1 (unlesss1 is

terminal). Ifs2 is seen for the first time, add it toΣ and set
At(s2)← A0(s2)

7: Choosea2 ∈ At(s2), with ǫ-greedy
8: Q(s1, a1) ← Q(s1, a1) + α[r1 + γc(s1,s2)Q(s2, a2) −

Q(s1, a1)]
9: Executea2 and get next-states3 and rewardr2 (unlesss2 is

terminal). Ifs3 is seen for the first time, add it toΣ and set
At(s3)← A0(s3)

10: Choosea3 ∈ At(s3), with ǫ-greedy
11: Q(s2, a2) ← Q(s2, a2) + α[r2 + γc(s2,s3)Q(s3, a3) −

Q(s2, a2)]
12: repeat
13: Executea3 and get next-states4 and rewardr3 (unlesss3

is terminal). Ifs4 is seen for the first time, add it toΣ and
setAt(s4)← A0(s4)

14: Choosea4 ∈ At(s4), with ǫ-greedy
15: Q(s3, a3) ← Q(s3, a3) + α[r3 + γc(s3,s4)Q(s4, a4) −

Q(s3, a3)]
16: if (c(s1, s3) < ∞) ∧ (as1s3 /∈ At(s1)) ∧

(γc(s1,s3)Φ(s3) > (1 + δ)γc(s1,s2)Φ(s2)) then
17: At(s1)← At(s1) ∪ {as1s3}
18: Q(s1, as1s3)← r̂(r1, r2) + γc(s1,s3)Q(s3, a3)
19: end if
20: s1 ← s2, s2 ← s3, s3 ← s4, r1 ← r2, r2 ← r3,

a3 ← a4

21: until s3 is terminal
22: At+1(s)← At(s),∀s ∈ Σ
23: end for

4.1 Experiments with a single agent
We have used two grid navigation maps,G1 andG2, as shown in

Figure 3. Since the potential functions are based on the estimated
proximity of a state to the goal, we have consideredG2 as a test
case to verify the performance of action discovery when the agent
may need to head away from the goal first, before it can approach
the goal.
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Figure 3: The two navigation maps (G1,G2) used in the exper-
iments, and the paths found by Sarsa (solid red line, given by
atomic actions only), and action discovery (δ = 0; dotted blue
line, in terms of discovered actions.

For each map, we performed 20 runs of each of the following
versions: basic Sarsa (i.e., no action discovery), Sarsa-AD with no
potential test (i.e., only the first two tests in line 16, Algorithm 1
are performed) which we call “All actions”, and two versionsof
Sarsa-AD with potential tests, forδ = 0, 1. For each of the above
versions, we study three figures of merit: solution quality,sample
complexity, and the growth rate of|At−A0| over all visited states,
as detailed next. All plots show95% confidence intervals over 20
runs (assuming normal distributions) for each figure of merit, and
for each version, over the three maps. Also, the first (leftmost) plot
point in each case is an average over the first 900 episodes, and
the subsequent points are averages over a moving window of 900
episodes. Hence the learning performances are not coincident at
the beginning, although all algorithms are essentially identical at
the start.

The specific parametric choices made in the runs were:

• A0 consists of 8 actions for each state,

• c(s, s′) = distance(s, s′) with simple line-tests detecting
blocked paths (i.e.,c(s, s′) =∞),

• rewards are 1 for any action reaching the goal, but 0 other-
wise,

• φ(s) = 1

distance(s,goal)
,

• r̂ = r1 + r2,

• δ = 0, 1, α = 0.125, γ = 0.9, andǫ = 0.15.

• All learning algorithms (inclusing basic Sarsa) use theΦ
function for state-action value initialization (which is equiv-
alent to online reward shaping [15]).
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Figures 4 and 7 show the learned solution qualities on the 2 maps
in Figure 3, respectively, as total path lengths. As one might expect,
the quality of the solution that Sarsa-AD learns is significantly bet-
ter than basic Sarsa. For the mapG2 in Figure 3, there is no signif-
icant difference between the solution qualities ofδ = 0 andδ = 1,
whereas for mapG1, δ = 0 is significantly better. This might indi-
cate that obstacles favor lowδ, unless they defeat discovery in the
first place, as in mapG2 in Figure 3, where discovery comes into
play only in obstacle free areas.

Usually sample/experience complexity in RL is measured by the
number of decisions that the agent has to make in each episode.
The problem with this measure in the context of our work is that
it is not only affected by learning, but also by action discovery.
Clearly, Sarsa-AD will learn to make fewer decisions than Sarsa,
by virtue of action discovery, and so this measure will favorSarsa-
AD unduly over Sarsa. However, Sarsa-AD makes fewer decisions
at the expense of increasing the number of choices (i.e., available
actions) at each decision point. Therefore, a more refined measure
of sample complexity for Sarsa-AD would be the sum of the num-
ber of choices available across all decision points in each episode.
Strictly speaking, this measure is a combination of decision com-
plexity (i.e., number of actions available to choose from, which is
fixed in regular RL but increases in Sarsa-AD) and sample com-
plexity (i.e., number of decision points), but here we simply refer
to it as sample complexity. We use this measure to compare the
sample complexities of the different methods in Figures 5 and 8.

In Figure 5 we see a statistically significant advantage of Sarsa-
AD over Sarsa as well as “All actions”. Notice that “All actions”
is not the version thatknowsall possible actions (atomic or oth-
erwise) in all states. Such a variant of Sarsa would have a worse
sample complexity than even baseline Sarsa, and is not studied in
our experiments. Rather, “All actions”discoversactions along the
state trajectories, much like other versions of Sarsa-AD; it only
does so most liberally without the potential test. In Figure8, the
two versions of Sarsa-AD (δ = 0, 1) have significantly lower sam-
ple complexity than basic Sarsa and “All actions”. This suggests
that even if the potential function is partially uninformative (map
G2 in Figure 3), Sarsa-AD is still preferable to basic Sarsa.

Another interesting observation about our measure of sample
complexity (especially in Figure 5) is that the sample complexity
of “All actions” becomes anincreasing function. This is to be ex-
pected because these versions of Sarsa-AD expand the actionsets
rather liberally, and could get bogged down with exploring poor
discovered actions. Also notice that the basic Sarsa converges to
optimal (near optimal in mapG2) paths in terms of basic actions,
with little learning because of the informed initialization with the
potential function. Such initialization, however, still leaves the dif-
ferent versions of Sarsa-AD with the task of learning the values of
new actions. Hence their convergence is not as fast.

Finally, Figures 6, and 9 show the growth rates of the sizes of
the action sets with newly discovered actions. Although therelative
patterns are not unexpected, what is inspiring is that the growth rate
of Sarsa-AD even forδ = 0 is quite low compared to the potential
action space size (O(n4)). This is due to the focussed exploration
of a few trajectories compared to the total number of possible tra-
jectories. Furthermore, there is a statistically significant advantage
of both δ = 0, 1 over “All actions”, indicating that the potential
test is indeed beneficial to action discovery. The overall conclusion
from these results can be that action discovery with the potential
test and with a (preferably) lowδ can significantly improve both
the solution quality and the sample complexity, in reinforcement
learning. In the future we would like to analyze non-navigational
tasks for the scope of action discovery. Conceivably, in anyRL
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Figure 4: Plot of solution quality against episodes for taskG1.
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Figure 5: Plot of sample complexity against episodes for task
G1.

problem where state transition constraints are well-defined, it sould
be possible to discover new actions by constraint programming.

4.2 Multi-agent Learning with Action Discov-
ery

Our results so far indicate a beneficial impact of action discovery
on exploration complexity even though it comes at a cost to deci-
sion complexity, so much so that the overall sample complexity is
significantly lower than in regular reinforcement learning. How-
ever, a sterner test for this hypothesis is in a multi-agent system
where the decision complexity grows exponentially with thenum-
ber of agents, creating the possibility that any augmentation of the
action set (by discovery) may dominate the sample complexity.

In order to test the hypothesis that action discovery is beneficial
to both solution quality and sample complexity (combined over all
agents) in a multi-agent learning (MAL) task, we adopt the Joint
Action Learning algorithm [4]. For JALs, the decision complex-
ity is clearly exponential in the number of agents,n, since each
agent maintains aQ-value for each joint-states and the entire joint-
action vector〈a1, a2, . . . , an〉. Since we intend to test the impact
of action discovery on what Boutilier calls coordination problems
(CPs) [3], in particular whether the number of coordinationprob-
lems are reduced or increased, we cleanly separate the atomic ac-
tion sets of agents, so that every decision point is a coordination
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states, against episodes for taskG1.

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 0  1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Le
ar

ne
d 

pa
th

 le
ng

th
 to

 g
oa

l (
m

et
er

s)

Number of Episodes

All actions
δ=0
δ=1

Basic SARSA

Figure 7: Plot of solution quality against episodes for taskG2.

problem. In our experiments we consider two agents pushing abox
on a plane, so we allow one agent to exert a force along thex-axis
only (we call it thex-agent), and the other along they-axis only
(the y-agent. By removing overlap in the directionalities of the
forces, we ensure that the agents do not trivially coordinate at some
decision points. This serves the purpose of isolating the impact of
action discovery on CPs, with the impact on accidental coordina-
tion being removed. Note however, that this is only meant forour
experimental set-up, and it is not necesasry to preclude overlaps in
the agents’ atomic action sets. Also, agents can achieve such clean
separation of their action sets by prior agreement in cooperative do-
mains. It is worth noting that in this setting, the multi-agent block
pushing task it very closely related to the single agent navigation
task studied earlier.

We allow each agent to test for feasibility of a new action using
the same method as in algorithm 1. If a new action passes the test,
then all agents discover that action and append their actionsets
in that joint-state, by the appropriatecomponentof the discovered
action. Therefore, if an action(x′, y′) is discovered, thex-agent
appendsx′ as a new action in its own list of actions in that state, and
also includesy′ as a new action of the other agent in that state. The
y-agent performs the corresponding actions as well. This means
that with each discovery, the size of the joint action table grows at
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Figure 8: Plot of sample complexity against episodes for task
G2.
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the rate ofO(|At|n−1) whereAt is the largest of the current action
sets overn agents. Given such a phenomenal growth in decision
complexity, it is unclear if action discovery will benefit multi-agent
learning.

4.3 Experiments in the Box-pushing Task
We use a9×9 grid for the discrete box-pushing task, as shown in

Figure 10. Each JAL uses action discovery as shown in Algorithm 1
with similar parameters as in the single-agent experiments(with
some differences):

• A0 consists of 3 actions for each state, for each agent:±1 or
0 in its chosen direction,

• c(s, s′) = distance(s, s′) with simple line-tests detecting
blocked paths (i.e.,c(s, s′) =∞),

• rewards are 1 for any action reaching the goal, -1 for hitting
any obstable including the boundary, but 0 otherwise,

• φ(s) = 1

distance(s,goal)
,

• r̂ = r1 + r2,

• δ = 0.1, α = 0.25, γ = 0.9, andǫ = 0.01.

Page 35 of 99



• All learning algorithms (including basic Sarsa JAL) use the
Φ function for state-action value initialization.

Figures 11 and 12 show the solution quality (i.e., the lengthof the
path along which the agents learn to push the box) and the sam-
ple complexity (sum of the sample complexities as defined in sec-
tion 4.1, over the two agents) respectively, of JAL Sarsa learning
with and without action discovery. These plots again show the95%
confidence intervals over20 runs. Expectedly, action discovery al-
lows the learners to learn a fundamentally shorter path, butsurpris-
ingly it also improves the sample complexity. This clearly demon-
strates that the impact of action discovery on the number of CPs
(which is reduced) outweighs the impact on decision complexity
(which is worsened), such that the net sample complexity is signif-
icantly lower with action discovery. The result reaffirms our find-
ing that action discovery is indeed a potent tool for reinforcement
learner(s) to improve both solution quality and sample complexity
of learning, through the counter-intuitive process of worsening the
decision complexity.

Figure 10: The multi-agent box-pushing task.
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5. CONCLUSION
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multi-agent box-pushing task.

We have observed that action sets of agents are often constrained
in reinforcement learning design, thereby constraining the learned
policies. We have argued in favor of a stragey – calledAction Dis-
covery– that incrementally augments the action set with newly dis-
covered actions that arepotentially beneficialto explore in the fu-
ture. We have shown simple experiments in grid navigation tasks
for individual agents, as well as a box-pushing task for Joint Ac-
tion Learners (JALs), that suggest that action discovery improves
both the solution quality and sample complexity of reinforcement
learning. In particular, our result that a reduction in the number of
coordination problems (CPs) by virtue of action discovery enables
multiple agents to learn a fundamentally better coordination policy
with a lower sample complexity than in a regular JAL framework,
is a fundamental contribution to multi-agent learning research.

6. PLAN FOR EXTENSION
Our plan to extend this work is entirely in the domain of multi-

agent coordination learning. A comparison of the single-agent and
multi-agent plots of sample complexity indicates two things: (1)
that the convergence rate is much slower in the two-agent case than
in the one-agent case, and (2) that the advantage of action discovery
in terms of sample complexity seems to be pronounced in the two-
agent case. While (1) is to be expected, (2) is not quite intuitive and
needs further investigation. Increasing the number of agents in the
box-pushing task will necessitate overlap in the action spaces of the
agents. We will allow all agents to act in bothx andy directions,
but at any given time, an agent must pick an action in one of thetwo
directions. This means an agent can choose the magnitude of the
force exerted on the box, and the orientation must be either in the
x-direction ory. This restriction would ensure that agents do not
discover actions in arbitrary orientations since that would reduce
the need to coordinate with other agents. A technical difficulty
arising from not imposing this restriction is that the outcome of a
joint action (where each action can be in an arbitrary orientation)
may not fall on a grid point in discrete maps.

We also plan to investigate the impact of increasing the number
of agents on the benefit accrued from action discovery incontinu-
ousmaps, where an action would be composed of two choices: the
magnitude of the force and the orientation. However, since such
domains require some kind of function approximation for learning
the action values, it is not immediately clear how a newly discov-
ered action could be reconciled with a function approximator that
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usually works with a fixed set of discrete actions. There is very
little work that consider both continuous action space and continu-
ous state spaces, and it would be non-trivial to adapt any of these
techniques to accommodate new actions.
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ABSTRACT
This paper introduces a novel multiagent learning algorithm
which achieves convergence, targeted optimality against mem-
ory bounded adversaries, and safety, in arbitrary repeated
games. Called CMLeS, its most novel aspect is the manner
in which it guarantees (in a PAC sense) targeted optimal-
ity against memory-bounded adversaries, via efficient explo-
ration and exploitation. CMLeS is fully implemented and
we present empirical results demonstrating its effectiveness.

Categories and Subject Descriptors
I.2 [Computing Methods]: Artificial Intelligence

General Terms
Algorithms, Performance

Keywords
opponent modeling

1. INTRODUCTION
In recent years, great strides have been made towards

creating autonomous agents that can learn via interaction
with their environment. When considering just an individ-
ual agent, it is often appropriate to model the world as be-
ing stationary, meaning that the same action from the same
state will always yield the same (possibly stochastic) effects.
However in the presence of other independent agents, the en-
vironment is not stationary: an action’s effects may depend
on the actions of the other agents. This non-stationarity
poses the primary challenge of multiagent learning (MAL)
and comprises the main reason that it is best considered
distinctly from single agent learning.

While functioning in a hostile world, it is desirable for a
MAL algorithm to come with assurances of the quality of
solution it provides against various types of agents (oppo-
nents). The simplest, and most often studied, MAL scenario
is the stateless scenario in which agents repeatedly interact
in the stylized setting of a matrix game (a.k.a. normal form
game). In the multiagent literature, various criteria have
been proposed to evaluate MAL algorithms, emphasizing
what behavior they will converge to against various types of
opponents,1 in such settings. The contribution of this paper
is that it proposes a novel MAL algorithm, CMLeS, that

1Although we refer to other agents as opponents, we mean
any agent (cooperative, adversarial, or neither)

for a multi-player multi-action (arbitrary) repeated game,
achieves the following three goals:

1. Convergence : converges to playing a Nash equilib-
rium in self-play (other agents are also CMLeS);

2. Targeted Optimality : for any arbitrary ǫ > 0 and
δ > 0, with probability at least 1-δ, achieves at least within
ǫ + L(δ) of the expected value of the best response against
any memory-bounded, or adaptive,2 opponent of memory
size K, in time polynomial in 1

ǫ
, ln( 1

δ
) and λ−Size(K+1).

L(δ) ∈ [0, 1], is a decreasing function w.r.t. 1-δ and assumes
a very small value for small values of δ. λ is the minimum
non-zero probability that the opponent assigns to an action,
in any history and Size(K + 1) denotes number of feasible
joint histories of size K+1. The same guarantee also holds
for opponents which eventually become memory-bounded,
with the time complexity claim now holding from the point
that the opponent becomes memory-bounded. The main ad-
vance of MLeS lies in reducing the exponential dependence
on Size(Kmax) in time complexity, that is achieved by the
current state of the art algorithm, to an exponential depen-
dence on Size(K + 1), where Kmax is an upper bound on
the opponent’s memory size, K.

3. Safety : converges to playing the maximin strategy
against any other opponent which cannot be approximated
as a Kmax memory-bounded opponent.

1.1 Related work
Bowling et al. [2] were the first to put forth a set of

criterion for evaluating multiagent learning algorithms. In
games with two players and two actions per player, their
algorithm WoLF-IGA converges to playing best response
against stationary, or memoryless, opponents (rationality),
and converges to playing the Nash equilibrium in self-play
(convergence). Subsequent approaches extended the ratio-
nality and convergence criteria to arbitrary (multi-player,
multi-action) repeated games [1, 5]. Amongst them, Awe-
some [5] achieves convergence and rationality in arbitrary
repeated games without requiring agents to observe each
others’ mixed strategies. However, none of the above al-
gorithms have any guarantee about the payoffs achieved
when they face arbitrary non-stationary opponents. More
recently, Powers et al. proposed a newer set of evaluation
criteria that emphasizes compatibility, targeted optimality
and safety [7]. Compatibility is a stricter criterion than con-
vergence as it requires the learner to converge within ǫ of the
payoff achieved by a Pareto optimal Nash equilibrium. Their

2Consistent with the literature (Powers et al., 2005), we call
memory-bounded opponents as adaptive opponents.
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proposed algorithm, PCM(A) [8] is, to the best of our knowl-
edge, the only known MAL algorithm to date that achieves
compatibility, safety and targeted optimality against adap-
tive opponents in arbitrary repeated games.

1.2 Contributions
CMLeS improves on Awesome by guaranteeing both safety

and targeted optimality against adaptive opponents. It im-
proves upon PCM(A) in five ways.

1. The only guarantees of optimality against adaptive
opponents that PCM(A) provides are against the ones that
are drawn from an initially chosen target set. In contrast,
CMLeS can model every adaptive opponent whose memory
is bounded by Kmax. Thus it does not require a target
set as input: its only input is Kmax, an upper bound on
the memory size of adaptive opponents that it is willing to
model and exploit.

2. PCM(A) achieves targeted optimality against adap-
tive opponents by requiring all feasible joint histories of size
Kmax to be visited a sufficient number of times. Kmax for
PCM(A) is the maximum memory size of any opponent from
its target set. CMLeS significantly improves this by requir-
ing a sufficient number of visits to all feasible joint histories
only of size K+1. Thus CMLeS promises targeted optimal-
ity in number of steps polynomial in λ−Size(K+1) in com-
parison to PCM(A) which provides similar guarantees, but

in steps polynomial in λ−Size(Kmax). The above sample ef-
ficiency property makes CMLeS a good candidate for online
learning.

3. Unlike PCM(A), CMLeS promises targeted optimal-
ity against opponents which eventually become memory-
bounded with K ≤ Kmax.

4. PCM(A) can only guarantee convergence to a pay-
off within ǫ of the desired Nash equilibrium payoff with a
probability δ. In contrast, CMLeS guarantees convergence
in self-play with probability 1.

5. CMLeS is relatively simple in its design. It tackles
the entire problem of targeted optimality and safety by run-
ning an algorithm that implicitly achieves either of the two,
without having to reason separately about adaptive and ar-
bitrary opponents.

The remainder of the paper is organized as follows. Sec-
tion 2 presents background and definitions, Section 3 and 4
presents our algorithm, Section 5 presents empirical results
and Section 6 concludes.

2. BACKGROUND AND CONCEPTS
This section reviews the definitions and concepts neces-

sary for fully specifying CMLeS.
A matrix game is defined as an interaction between n

agents. Without loss of generality, we assume that the set
of actions available to all the agents are same, i.e., A1 =
. . . = An = A. The payoff received by agent i during each
step of interaction is determined by a utility function over
the agents’ joint action, ui : An 7→ ℜ. Without loss of gen-
erality, we assume that the payoffs are bounded in the range
[0,1]. A repeated game is a setting in which the agents play
the same matrix game repeatedly and infinitely often.

A single stage Nash equilibrium is a stationary strategy
profile {π∗

i , . . . , π∗
n} such that for every agent i and for ev-

ery other possible stationary strategy πi, the following in-
equality holds: E(π∗

1 ,...,π∗

i
,...,π∗

n
)ui(·) ≥ E(π∗

1 ,...,πi,...,π∗

n
)ui(·).

It is a strategy profile in which no agent has an incentive

to unilaterally deviate from its own share of the strategy. A
maximin strategy for an agent is a strategy which maximizes
its own minimum payoff. It is often called the safety strat-
egy, because resorting to it guarantees the agent a minimum
payoff.

An adaptive opponent strategy looks back at the most re-
cent K joint actions played in the current history of play to
determine its next stochastic action profile. K is referred to
as the memory size of the opponent.3 The strategy of such
an opponent is then a mapping, π : AnK 7→ ∆A. If we con-
sider opponents whose future behavior depends on the en-
tire history, we lose the ability to (provably) learn anything
about them in a single repeated game, since we see a given
history only once. The concept of memory-boundedness lim-
its the opponent’s ability to condition on history, thereby
giving us a chance to learning its policy.

We now specify what we mean by playing optimally against
adaptive opponents. For notational clarity, we denote the
other agents as a single agent o. It has been shown pre-
viously [4] that the dynamics of playing against such an
o can be modeled as a Markov Decision Process (MDP)
whose transition probability function and reward function
are determined by the opponents’ (joint) strategy π. As the
MDP is induced by an adversary, this setting is called an
Adversary Induced MDP, or AIM in short.

An AIM is characterized by the K of the opponent which
induces it: the AIM’s state space is the set of all feasible joint
action sequences of length K. By way of example, consider
the game of Roshambo or rock-paper-scissors (Figure 1) and
assume that o is a single agent and has K = 1, meaning that
it acts entirely based on the immediately previous joint ac-
tion. Let the current state be (R, P ), meaning that on the
previous action, i selected R, and o selected P . Assume that
from that state, o plays actions R, P and S with probabil-
ity 0.25, 0.25, and 0.5 respectively. When i chooses to take
action S in state (R, P ), the probabilities of transitioning
to states (S, R), (S, P ) and (S, S) are then 0.25, 0.25 and 0.5
respectively. Transitions to states that have a different ac-
tion for i, such as (R, R), have probability 0. The reward
obtained by i when it transitions to state (S, R) is -1 and so
on.

The optimal policy of the MDP associated with the AIM
is the optimal policy for playing against o. A policy that
achieves an expected return within ǫ of the expected return
achieved by the optimal policy is called an ǫ-optimal policy
(the corresponding return is called ǫ-optimal return). If π is
known, then we can have computed the optimal policy (and
hence ǫ-optimal policy) by doing dynamic programming [9].
However, we do not assume that π or even K are known
in advance: they need to be learned in online play. We
use the discounted payoff criterion in our computation of an
ǫ-optimal policy, with γ denoting the discount factor.

Finally, it is important to note that there exist opponents
in the literature which do not allow convergence to the opti-
mal policy once a certain set of moves have been played. For
example, the grim-trigger opponent in the well-known Pris-
oner’s Dilemma (PD) game, an opponent with memory size
1, plays cooperate at first, but then plays defect forever once
the other agent has played defect once. Thus, there is no
way of detecting its strategy without defecting, after which
it is impossible to recover to the optimal strategy of mutual

3K is the minimum memory size that fully characterizes the
opponent strategy.
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Figure 1: Example of AIM

cooperation. In our analysis, we constrain the class of adap-
tive opponents to include only those which do not negate
the possibility of convergence to optimal exploitation, given
any arbitrary initial sequence of exploratory moves [7].

Equipped with the required concepts, we are now ready
to specify our algorithms. First, in Section 3, we present
an algorithm that only guarantees safety and targeted opti-
mality against adaptive opponents. Then, in Section 4, we
introduce the full-blown CMLeS algorithm that incorporates
convergence additionally.

3. MODEL LEARNING WITH SAFETY
In this section, we introduce a novel algorithm, Model

Learning with Safety (MLeS), that ensures safety and tar-
geted optimality against adaptive opponents.

3.1 Overview
MLeS begins with the hypothesis that the opponent is an

adaptive opponent (denoted as o) with an unknown mem-
ory size, K, that is bounded above by a known value, Kmax.
MLeS maintains a model for each possible value of o’s mem-
ory size, from k = 0 to Kmax, plus one additional model
for memory size Kmax+1. Each model π̂k is a mapping
Ank 7→ ∆A representing a possible o strategy. π̂k is the
maximum likelihood distribution based on the observed ac-
tions played by o for each joint history of size k encountered.
Henceforth we will refer to a joint history of size k as sk and
the empirical distribution captured by π̂k for sk as π̂k(sk).
π̂k(sk, ao) will denote the probability assigned to action ao,
by π̂k(sk). When a particular sk is encountered and the
respective o’s action in the next step is observed, the em-
pirical distribution π̂k(sk) is updated. Such updates happen
for every π̂k, on every step. For every sk, MLeS maintains a
count value v(sk), which is the number of times sk has been
encountered. We call an opponent model an ǫ approxima-
tion of π, when for any history of size K, it predicts the true
opponent action distribution with error at most ǫ.

On each step, MLeS selects π̂best (and correspondingly
kbest) as the one from among the Kmax+1 (from 0 to Kmax)
models that currently appears to best describe o’s behavior.
The mechanism for selecting π̂best ensures that, with high
probability, it is either π̂K (the most compact representation
of π) or a model with a smaller k which is a good approx-
imation of π. Once such a π̂best is picked, MLeS takes a
step towards learning an ǫ-optimal policy for the underlying
AIM induced by kbest. If it cannot determine such a π̂best,
it defaults to playing the maximin strategy for safety.

Thus, the operations performed by MLeS on each step can
be summarized as follows:

1. Update all models based on the past step.
2. Determine π̂best (and hence kbest). If a π̂best cannot be

determined, then return null.
3. If π̂best 6= null, take a step towards solving the rein-

forcement learning (RL) problem for the AIM induced by
kbest. Otherwise, play the maximin strategy.

Of these three steps, step 2 is by far the most complex.
We present how MLeS addresses it next.

3.2 Model selection
The objective of MLeS is to find a kbest which is either K

(the true memory size) or a suboptimal k s.t. π̂k is a good
approximation of π (o’s true policy). It does so by compar-
ing models of increasing size to determine at which point the
larger models cease to become more predictive of o’s behav-
ior. We start by proposing a metric called ∆k, which is an
estimate of how much models π̂k and π̂k+1 differ from each
other. But, first, we introduce two notations that will be in-
strumental in explaining the metric. We denote (ai, ao)·sk to
be a joint history of size k+1, that has sk as its last k joint ac-
tions and (ai, ao) as the last k+1’th joint action. For any sk,
we define a set Aug(sk) = ∪∀ai,ao∈A2((ai, ao) · sk|v((ai, ao) ·
sk) > 0). In other words Aug(sk) contains all joint histo-
ries of size k+1 which have sk as their last k joint actions
and have been visited at least once. ∆k is then defined
as maxsk,sk+1∈Aug(sk),ao∈A|π̂k(sk, ao)− π̂k+1(sk+1, ao)|. We
say that π̂k and π̂k+1 are ∆k distant from one another.

Based, on the concept of ∆k, we make two observations
that will come in handy for our theoretical claims made later
in this subsection.

Observation 1. For all, k ∈ [K, Kmax]|k ∈ N, and for
any k sized joint history sk and any sk+1 ∈ Aug(sk), E(π̂k(sk))
= E(π̂k+1(sk+1)). Hence E(∆k) = 0.

Let, sK be the last K joint actions in sk and sk+1. π̂k(sk)
and π̂k+1(sk+1) represent draws from the same fixed distri-
bution π(sK). So, their expectations will always be equal
to π(sK). This is because o just looks at the most recent K

joint actions in its history, to decide on its next step action.

Observation 2. For k < K|k ∈ N, ∆k is a random vari-
able with 0 ≤ E(∆k) ≤ 1.

In this case, in the computation of π̂k(sk), the draws can
come from different distributions. This is because, k < K

and there is no guarantee of stationarity of π̂k(sk). Thus,
∆k can be any arbitrary random variable with an expected
value within 0 and 1.

High-level idea: Alg. 1 presents how MLeS selects kbest.
We denote the current values of π̂k and ∆k at time t, as π̂t

k

and ∆t
k respectively.

Definition 1. {σt
k}t∈1,2,... is a sequence of real numbers,

unique to each k, s.t. it satisfies the following:
1. it is a positive decreasing sequence, tending to 0 as t →
∞;
2. for a fixed high probability ρ > 0 and for k ∈ [K, Kmax],
Pr(∆t

k < σt
k) > ρ;

The reason for choosing such a {σt
k}t∈1,2,... sequence for

each k will be clear from the next two paragraphs. Later,
we will show, how we compute the σt

k’s. MLeS iterates over
values of k starting from 0 to Kmax and picks the minimum
k s.t for all k ≤ k′ ≤ Kmax, the condition ∆t

k′ < σt
k′ is

satisfied (steps 3-11).
For k < K, there is no guarantee that ∆k will tend to 0,

as t → ∞ (Observation 2). More often than not, ∆k will

Page 40 of 99



Algorithm 1: Find-Model

output : kbest, π̂best,
kbest ← −1, π̂best ← null1

for all 0 ≤ k ≤ Kmax, compute ∆t
k

and σt
k2

for 0 ≤ k ≤ Kmax do3

flag ← true4

for k ≤ k′ ≤ Kmax do5

if ∆t
k′ ≥ σt

k′ then6

flag ← false7

break8

if flag then9

kbest ← k; π̂best ← π̂t
k10

break11

return kbest and π̂best12

tend to a positive value quickly. On the other hand, σt
k → 0

as t → ∞ (condition 1 of Definition 1). This leads to one of
the following two cases:
1) σt

k becomes ≤ ∆t
k and step 6 of Alg. 1 holds, thus rejecting

k as a possible candidate for selection.
2) k gets selected. However, then we are sure that π̂t

k is no
more than

P

k≤k′<K σt
k′ distant from π̂t

K (the best model of

π we have at present). With increasingly many time steps,
π̂t

k needs to be an increasingly better approximation of πt
K ,

to keep getting selected.
For k ≥ K, all ∆t

k’s → 0, as t → ∞ (Observation 1). Since
for all k ≥ K : Pr(∆t

k < σt
k) > ρ (condition 2 of Defini-

tion 1), K gets selected with a high probability ρKmax−K+1.
A model with memory size more than K is selected with
probability at most (1−ρKmax−K+1), which is a small value.

We now address the final part of Alg. 1 that we have yet
to specify: setting the σt

k’s (step 2).
Choosing σt

k: In the computation of ∆t
k, MLeS chooses a

specific st
k from the set of all possible joint histories of size

k, a specific st
k+1 from Aug(st

k) and an action at
o, for which

the models π̂t
k and π̂t

k+1 differ maximally on that particular
time step. So,

∆t
k < σ

t
k ≡ |π̂t

k(st
k, a

t
o) − π̂

t
k+1(s

t
k+1, a

t
o)| < σ

t
k (1)

The goal will be to select a value for σt
k s.t. condition 2 of

Definition 1 is always satisfied. Condition 1 will implicitly
follow from the above. For k ∈ [K, Kmax], we can rewrite
Inequality 1 as,

≡ |(|π̂t
k(st

k, a
t
o) − E(π̂t

k(st
k, a

t
o)|) − (|π̂t

k+1(s
t
k+1, a

t
o)

−E(π̂t
k+1(s

t
k+1, a

t
o)|)| < σ

t
k (2)

The above step follows from using E(π̂t
k(st

k, at
o)) =

E(π̂t
k+1(s

t
k+1, a

t
o)) ≥ 0 (Observation 1). One way to satisfy

Inequality 2 is to have both |π̂t
k(st

k, at
o)−E(π̂t

k(st
k, at

o))| and
|π̂t

k+1(s
t
k+1, a

t
o) − E(π̂t

k+1(s
t
k+1, a

t
o))| be < σt

k. Thus, to en-
sure [k ∈ [K, Kmax] : Pr(∆t

k < σt
k) > ρ], we need a lower

bound of
√

ρ, on the probabilities of the above 2 inequalities.
Also, we observe that the following holds :

Pr(|π̂t
k+1(s

t
k+1, a

t
o) − E(π̂t

k+1(s
t
k+1, a

t
o))| < σ

t
k) >

√
ρ (3)

=⇒ Pr(|π̂t
k(st

k, a
t
o) − E(π̂t

k(st
k, a

t
o))| < σ

t
k) >

√
ρ (4)

This can be derived by applying Hoeffding’s inequality [6]
and using v(st

k) ≥ v(st
k+1). v(st

k) ≥ v(st
k+1) because the

number of visits to a joint history sk must be at least the

number of visits to any member from Aug(sk). So,

Pr(|π̂t
k+1(s

t
k+1, a

t
o) − E(π̂t

k+1(s
t
k+1, a

t
o))| < σ

t
k) >

√
ρ (5)

=⇒ Pr(∆t
k < σ

t
k) > ρ

The problem now boils down to selecting a suitable σt
k s.t.

Inequality 5 is satisfied. Hoeffding’s inequality gives us an
upper bound for σt

k in Inequality 5. Using that upper bound

and solving for σt
k, we get, σt

k =
q

( 1

2v(st

k+1)
ln( 2

1−
√

ρ
)). So

in general, for each k ∈ [0, Kmax], the σt
k value is set as

above. Note that, v(st
k+1) is the number of visits to the spe-

cific st
k+1 chosen for the computation of ∆t

k. Setting σt
k as

above satisfies both the conditions specified in Definition 1.
Condition 1 follows implicitly since in infinite play, the ac-
tion selection mechanism ensures infinite visits to all joint
histories of a finite length.

Theoretical underpinnings: Now, we state our main
theoretical result regarding model selection.

Lemma 3.1. After all feasible joint histories of size K+1

have been visited (K+1)
2

2ǫ2
ln( 2

1−
√

ρ
) times, then with probabil-

ity at least ρKmax+2, the π̂best returned by Alg. 1 is an ǫ ap-
proximation of π. ρ is the fixed high probability value from
Condition 2 of Definition 1.

Proof. When all k < K have been rejected, Alg. 1 se-
lects K with probability at least ρKmax−K+1. If p is the
probability of selecting any k < K as kbest, the proba-
bility of selecting any k ≤ K as kbest, is then at least
p+(1− p)ρKmax−K+1 > ρKmax−K+1 > ρKmax+1. If kbest =
K, then we know that ∆t

K < σt
K . So from Inequality 4,

Pr(|π̂t
K(st

K , a
t
o) − π(st

K , a
t
o))| < σ

t
K) >

√
ρ

=⇒ Pr(|π̂t
K(st

K , a
t
o) − π(st

K , a
t
o)| < σ

t
K) > ρ

st
K and at

o are the respective joint history of size K and ac-
tion, for which models π̂t

K and π̂t
K+1 maximally differ at t.

So in this case, with probability ρ, π̂best is a σt
K approx-

imation of π. In similar fashion it can be shown that if
kbest < K, then with probability ρ, π̂best is a

P

k≤k′≤K σt
k′

approximation of π.
If an ǫ approximation of π is desired, a sufficient condition

is to ensure that for all 0 ≤ k ≤ K, σt
k gets assigned a

value ≤ ǫ
K+1

. If all feasible joint histories of size K+1 are

visited (K+1)
2

2ǫ2
ln( 2

1−
√

ρ
) times, then σt

K must be less than
ǫ

K+1
(from Inequality 5 and Hoeffding’s inequality). Also

every feasible history of smaller sizes, must also have been

visited at least (K+1)
2

2ǫ2
ln( 2

1−
√

ρ
) times. Hence σt

k for all k <

K also must have values less than ǫ
K+1

.

For Alg. 1 to return an ǫ approximation of π, MLeS does
not need to know the number of visits (Lemma 3.1) required
beforehand; it just needs to ensure that every feasible K +1
history gets visited so many times. Finally, what remains
to be addressed is the action-selection mechanism (step 3,
main algorithm).

3.3 Action selection
On each time step, the action selection mechanism decides

on what action to take for the ensuing time step. If the π̂best

returned is null, it plays the maximin strategy. If π̂best 6=
null, the action selection strategy picks the AIM associated
with opponent memory kbest and takes the next step in the
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reinforcement learning problem of computing a near-optimal
policy for that AIM. In order to solve this RL problem,
MLeS uses the variant of the R-Max algorithm that does
not assume that the mixing time of the underlying MDP
is known [3]. R-Max is a model based RL algorithm that
converges to playing an ǫ-optimal policy for an MDP with
probability 1-δ, in time complexity polynomial in 1

ǫ
, ln( 1

δ
),

and the state space size of the MDP. A separate instantia-
tion of the R-Max algorithm is maintained for each of the
possible Kmax+1 AIMs pertaining to the possible memory
sizes of o, i.e, M0,M1, . . . ,MKmax

. On each step, based on
the kbest returned, the R-Max instance for the AIM Mkbest

is selected to take an action.
The steps that ensure targeted optimality against adap-

tive opponents are then as follows:
1. First, ensure that Alg. 1 keeps returning a kbest ≤ K with

a high probability
√

1 − δ s.t. π̂best is an ǫ(1−γ)

2Size(K)
approxi-

mation of π. The conditions for that to happen are given by
Lemma 3.1. Playing optimally against such an approxima-
tion of π, guarantees an ǫ

2
-optimal payoff against o (Lemma

4 of [3]). Thus an ǫ
2

optimal policy for such a model will
guarantee an ǫ-optimal payoff against o.
2. Once such a kbest ≤ K is selected by Alg. 1 with a high
probability

√
1 − δ on every step, then with a probability√

1 − δ, converge to playing an ǫ
2

optimal policy for Mkbest
.

In order to achieve that, the R-Max instantiation for Mkbest

will require a certain fixed number of visits to every joint his-
tory of size kbest. Since the kbest selected by Alg. 1 is at most
K with a high probability , a sufficient number of visits to
every joint history of size K will suffice convergence to an ǫ

2

optimal policy.
It can be shown that our R-Max-based action selection

strategy implicitly achieves both of above steps in number
of time steps polynomial in 1

ǫ
, ln( 1

δ
) and λ−Size(K+1). Note,

we do not have the ability to take samples at will from dif-
ferent histories, but may need to follow a chain of different
histories to get a sample pertaining to one history. In the
worst case, the chain can be the full set of all histories,
with each transition occurring with λ. Hence the unavoid-
able dependence on λ−Size(K+1), in time complexity. The
bounds we provide are extremely pessimistic and likely to
be tractable against most opponents. For example against
opponents which only condition on MLeS’s recent history of
actions, λ−Size(K+1) dependency gets replaced by a depen-
dency over just |A|K+1.

So far what we have shown is that MLeS, with a high prob-
ability 1-δ on each step, converges to playing an ǫ-optimal
policy. It is important to note that, acting in this fash-
ion does not guarantee it a return that is 1-δ times the ǫ-
optimal return. However, we can compute an upper bound
on the loss and show that the loss is extremely small for
small values of δ. Let rt be the random variable that de-
notes the reward obtained on time step t by following the
ǫ-optimal policy. The maximum loss incurred is : |(1 −
δ)

P∞
t=0

γtE(rt)−
P∞

t=0
γt(1− δ)tE(rt)| < |P∞

t=0
γtE(rt)−

P∞
t=0

γt(1 − δ)tE(rt)| ≤ |P∞
t=0

γt − P∞
t=0

γt(1 − δ)t| ≤
γδ

(1−γ)(1−γ(1−δ))
. In the above computation, we assume that

whenever MLeS does not play the ǫ-optimal policy, it gets
the minimum reward of 0. We denote this loss as L(δ), since
it is a function of δ (γ being fixed). Note that L(δ) can be
made extremely small by selecting a very small δ.

This brings us to our main theorem regarding MLeS.

Theorem 3.2. For any arbitrary ǫ > 0 and δ > 0, MLeS
with probability at least 1-δ, achieves at least within ǫ+L(δ)
of the expected value of the best response against any adap-
tive opponent, in number of time steps polynomial in 1

ǫ
,

ln( 1

δ
) and λ−Size(K+1).

Against an arbitrary o, our claims rely on o not behaving as
a Kmax adaptive opponent in the limit. This means ∆Kmax

tends to a positive value, as t → ∞. Alg. 1 returns π̂best

as null in the limit, with probability 1. MLeS will then
subsequently converge to playing the maximin strategy, thus
ensuring safety.

4. CONVERGENCE AND MODEL LEARN-
ING WITH SAFETY

In this section we build on MLeS to introduce a novel MAL
algorithm for an arbitrary repeated game which achieves
safety, targeted optimality, and convergence, as defined in
Section 1. We call our algorithm, Convergence with Model
Learning and Safety: (CMLeS). CMLeS begins by testing
the opponents to see if they are also running CMLeS (self-
play); when not, it uses MLeS as a subroutine.

4.1 Overview
CMLeS (Alg. 2) can be tuned to converge to any Nash

equilibrium of the repeated game in self-play. Here, for the
sake of clarity, we present a variant which converges to the
single stage Nash equilibrium. This equilibrium also has
the advantage of being the easiest of all Nash equilibria to
compute and hence has historically been the preferred solu-
tion concept in multiagent learning [2, 5]. The extension of
CMLeS to allow for convergence to other Nash equilibria is
straightforward, only requiring keeping track of the proba-
bility distribution for every conditional strategy present in
the specification of the equilibrium.

Steps 1 - 2: Like Awesome, we assume that all agents
have access to a Nash equilibrium solver and they compute
the same Nash equilibrium profile. If there are finitely many
equilibria, then this assumption can be lifted with each agent
choosing randomly an equilibrium profile, so that there is a
non-zero probability that the computed equilibrium coin-
cides.
Steps 3 - 4: The algorithm maintains a null hypothesis
that all agents are playing equilibrium (AAPE). The hy-
pothesis is not rejected unless the algorithm is certain with
probability 1 that the other agents are not playing CMLeS.
τ keeps count of the number of times the algorithm reaches
step 4.
Steps 5 - 8 (Same as Awesome): Whenever the algo-
rithm reaches step 5, it plays the equilibrium strategy for
a fixed number of episodes, Nτ . It keeps a running esti-
mate of the empirical distribution of actions played by all
agents, including itself, during this run. At step 8, if for
any agent j, the empirical distribution φτ

j differs from π∗
j

by at least ǫτ
e , AAPE is set to false. The CMLeS agent

has reason to believe that j may not be playing the same
algorithm. {ǫτ

e}τ∈1,2,... represents a decreasing sequence of
positive numbers converging to 0 in the limit. Similarly
{Nτ}τ∈1,2,... represents an increasing sequence of positive
numbers converging to infinity in the limit. The ǫτ

e and Nτ

values for each τ are assigned in a similar fashion to Awe-
some (Definition 4 of [5]).
Steps 10 - 20: Once AAPE is set to false, the algorithm
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Algorithm 2: CMLeS

input : n, τ = 0
for ∀j ∈ {1, 2, . . . , n} do1

π∗
j ← ComputeNashEquilibriumStrategy()2

AAPE ← true3

while AAPE do4

for Nτ rounds do5

Play π∗
self6

for each agent j update φτ
j7

recompute AAPE using the φτ
j ’s and π∗

j ’s8

if AAPE is false then9

if τ = 0 then10

Play ao, Kmax+1 times11

else if τ = 1 then12

Play ao, Kmax times followed by a13

random action other than ao14

else15

Play ao, Kmax+1 times16

if any other agent plays differently then17

AAPE ← false18

else19

AAPE ← true20

τ ← τ + 121

Play MLeS22

goes through a series of steps in which it checks whether the
other agents are really CMLeS agents. The details are ex-
plained below when we describe the convergence properties
of CMLeS (Theorem 4.1).
Step 22: When the algorithm reaches here, it is sure (proba-
bility 1) that the other agents are not CMLeS agents. Hence
it switches to playing MLeS.

4.2 Theoretical underpinnings
We now state our main convergence theorems.

Theorem 4.1. CMLeS satisfies both the criteria of tar-
geted optimality and safety.

Proof. To prove the theorem, we need to prove:
1. For opponents not themselves playing CMLeS, CMLeS
always reaches step 22 with some probability;
2. There exists a value of τ , for and above which, the above
probability is at least δ.
Proof of 1. We utilize the property that a K adaptive oppo-
nent is also a Kmax adaptive opponent (see Observation 1).
The first time AAPE is set to false, it selects a random
action ao and then plays it Kmax+1 times in a row. The
second time when AAPE is set to false, it plays ao, Kmax

times followed by a different action. If the other agents have
behaved identically in both of the above situations, then
CMLeS knows : 1) either the rest of the agents are play-
ing CMLeS, or, 2) they are adaptive and plays stochasti-
cally for a Kmax bounded memory where all agents play ao.
The latter observation comes in handy below. Henceforth,
whenever AAPE is set to false, CMLeS always plays ao,
Kmax+1 times in a row. Since a non-CMLeS opponent must
be stochastic (from the above observation), at some point of
time, it will play a different action on the Kmax+1’th step
with a non-zero probability. CMLeS then rejects the null hy-
pothesis that all other agents are CMLeS agents and jumps
to step 22.

Proof of 2. This part of the proof follows from Hoeffd-
ing’s inequality. CMLeS reaches step 22 with a probability
at least δ in τ polynomial in 1

κ
and ln( 1

δ
), where κ is the

maximum probability that any agent assigns to any action
other than ao for a recent Kmax joint history of all agents
playing ao.

Theorem 4.2. In self-play, CMLeS converges to playing
the Nash equilibrium of the repeated game, with probability
1.

Proof. We prove the theorem by proving the following:
1) In self-play, every time after AAPE is set to false, there
is a non-zero probability that AAPE is never set to false
again.
2) If AAPE is never set to false again, then CMLeS con-
verges to the Nash equilibrium with probability 1.

The proof of (1) follows by similar reasoning as in Awe-
some (Theorem 3 of [5]). If AAPE is never set to false, then
all agents must be playing CMLeS (From Theorem 4.1). As
Nτ approaches ∞, φτ

j approaches π∗
j . So the agents con-

verge to playing the Nash equilibrium with probability 1 in
the limit.

5. RESULTS
We now present empirical results that supplement the the-

oretical claims. We focus on how efficiently CMLeS models
adaptive opponents in comparison to existing algorithms,
PCM(A) and Awesome. For CMLeS, we set ǫ = 0.1, δ =
0.01 and Kmax = 10. To make the comparison fair with
PCM(A), we use the same values of ǫ and δ and always in-
clude the respective opponent in the target set of PCM(A).
We also add an adaptive strategy with K = 10 to the target
set of PCM(A), so that it needs to explore joint histories of
size 10.

We use the 3-player Prisoner’s Dilemma (PD) game as our
representative matrix game. The game is a 3 player version
of the N-player PD present in GAMUT.4 The adaptive op-
ponent strategies we test against are :
1. Type 1: every other player plays defect if in the last 5
steps CMLeS played defect even once. Otherwise, they play
cooperate. The opponents are thus deterministic adaptive
strategies with K = 5.
2. Type 2: every other player behaves as type-1 with 0.5
probability, or else plays completely randomly. In this case,
the opponents are stochastic with K = 5.
The total number of joint histories of size 10 in this case
is 810, which makes PCM(A) highly inefficient. However,
CMLeS quickly figures out the true K and converges to op-
timal behavior in tractable number of steps. Figure 2 shows
our results against these two types of opponents. The Y-
axis shows the payoff of each algorithm as a fraction of the
optimal payoff achievable against the respective opponent.
Also plotted in the same graph, is the fraction of times CM-
LeS chooses the right memory size (denoted as convg in the
plot). Each plot has been averaged over 30 runs to increase
robustness. Against type-1 opponents (Figure 2(i)), CMLeS
figures out the true memory size in about 2000 steps and
converges to playing optimally by 16000 episodes. Against
type-2 opponents (Figure 2(ii)), it takes a little longer to
figure out the correct memory size (about 35000 episodes)
because in this case, the number of feasible joint histories of

4http://gamut.stanford.edu/userdoc.pdf
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Figure 2: Against adaptive opponents

size 6 are much more. Both Awesome and PCM(A) perform
much worse. PCM(A) plays a random exploration strategy
until it has visited every possible joint history of size Kmax,
hence it keeps getting a constant payoff during this whole
exploration phase.

When Kmax was set to 4, MLeS converged to playing the
maximin strategy in about 10000 episodes against both of
the above opponents. The convergence part of MLeS uses
the framework of Awesome and the results are exactly sim-
ilar to it.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a novel MAL algorithm, CM-

LeS, which in an arbitrary repeated game, achieves conver-
gence, targeted-optimality against adaptive opponents, and
safety. One key contribution of CMLeS is in the manner
it handles adaptive opponents: it requires only a loose up-
per bound on the opponent’s memory size. In contrast, the
existing state of the art algorithm, PCM(A), requires a com-
plete specification of the adaptive opponents at the begin-
ning, which it calls a target set. Second, and more impor-
tantly, CMLeS improves on PCM(A), by promising targeted
optimality against adaptive opponents in time steps poly-
nomial in λ−Size(K+1) where Size(K + 1) is the number of
feasible histories of size K+1, and λ is the minimum non-
zero probability that the opponent assigns to an action, in
any history. PCM(A) guarantees the same, but in steps

polynomial in λ−Size(Kmax).
Right now, the guarantees of CMLeS are only in self-play

or when all other agents are adaptive. Any other distribu-
tion of agents is considered arbitrary, and MLeS converges to
playing the maximin strategy. Our ongoing research agenda
includes improving CMLeS to have better performance guar-
antees against arbitrary mixes of agents, i.e., some adaptive,
some self-play, and the rest arbitrary.
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ABSTRACT
Imitation learning enables a learner to improve its abilities by ob-
serving others. Most robotic imitation learning systems only learn
from a single class of demonstrators, and often only a single demon-
strator, because of the complexity involved in dealing with variation
between observed activities. When heterogeneous robots are intro-
duced, learning becomes much more difficult, due to potentially
major differences in physiology between learner and demonstra-
tors (e.g. if a learner is a wheeled robot and the demonstrator is
a humanoid). To be successful under such conditions, the imitator
must be able to abstract the behaviour it observes and approximate
this with possibly very different actions that it is able to perform.
This paper describes an approach to imitation learning from het-
erogeneous demonstrators, using global vision to observe demon-
strations from an oblique angle. It supports not only working with
physiologically different demonstrators (e.g., wheeled vs. legged),
but integrates the examples provided by different individuals, pos-
sibly of different skill levels, in such a way that different parts of
a task can be learned from different individuals. We assume the
imitator has no initial knowledge of the observable effects of its
own actions, and train a set of Hidden Markov Models to map ob-
servations to actions and create an understanding of the imitator’s
own abilities. We then use a combination of tracking sequences
of primitives and predicting future primitives from existing com-
binations using forward models to learn abstract behaviours from
the demonstrations of others. We evaluate our work using a group
of heterogeneous robots that we have previously used in RoboCup
competitions in various leagues: a wheeled robot from the Small-
Size League, a Citizen Eco-Be micro-robot used in the Mixed Re-
ality Competition, and a Humanoid robot.

1. INTRODUCTION
Imitation learning - the ability to observe demonstrations of be-

haviour and reproduce functionally equivalent behaviour with ones
own abilities - is a powerful mechanism for improving the abilities
of an intelligent agent. Evidence of learning from the demonstra-
tions of others can be seen in primates, birds, and humans [10, 16,
4]. From an AI perspective, this is attractive because of its po-
tential for dealing with the general problem of knowledge acqui-
sition: instead of programming a robot for each individual task,
robots should ultimately be able to gather information from human
demonstrations [15, 19, 5], or from one another [2, 5, 21] with the
result that the robot’s performance at that task improves over time.
Additionally, demonstrations do not have to be active teaching ex-
ercises: the imitator can simply observe a demonstrator with no
communication necessary. That is, the demonstrator does not even
need to be aware that it is being observed.

To make imitation learning useful, an agent must first have an
understanding of its own primitive motor skills, observe demon-
strations and their outcomes, and ultimately interpret these within
the context of its own primitives. In doing so, the agent develops
new motor skills by creating hierarchical combinations of prim-
itives [16], providing a deeper understanding of the imitated be-
haviour. In any real world setting, this will be complicated by the
fact that multiple demonstrations will likely be performed by dif-
ferent agents. Arguably this should be the case, since seeing the
full range of ways in which a task could be accomplished is faster
than the learner discovering these itself, and different agents will
likely perform a task in different ways.

When the imitator and its demonstrators have heterogeneous phys-
iologies (distinct differences such in body type or size) imitation is
much more difficult. Humans naturally deal with heterogeneous
demonstrators: even a small child can imitate the actions of an an-
imal that is not bipedal, for example. If a child’s first exposure to
the game of frisbee is through observing a dog catching a frisbee in
its mouth, when the frisbee is thrown to the child they will likely at-
tempt to catch it in their hand instead. This way they are using the
skills that are natural and available to them to complete the task,
even if the demonstration displayed a different set of skills. In a
robotic environment, physiological differences are generally much
more broad than this. Robots have been developed for many pur-
poses, and consequently differ in size, control programs, sensors
and effectors. These differences result in a broader range of ways
in which a single activity can be performed. A humanoid robot
(or any bipedal robot), for example, can step over some obstacles
that a wheeled robot cannot, but might trip over very low obstacles
that a wheeled robot could simply drive over. In order to increase
the performance of a learner and allow it to learn from whatever
demonstrators happen to be available (ultimately, a mixture of hu-
mans and other robots), overcoming differences in physiology is
absolutely necessary [18].

In this paper, we present a framework for imitation through global
vision, which models multiple demonstrators by approximating the
visual outcomes of their actions with those available to the imita-
tor, with no prior knowledge of demonstrators’ abilities or physiol-
ogy. The results presented here focus on illustrating the ability of
this framework to adapt for differences between a broad range of
heterogeneous robots, and we explore this using a group of robots
that is broadly different in both size and physiology. Having said
that, because demonstrators are modelled individually, the same ap-
proach allows learning from demonstrators with a different range of
skills. Having a rough idea of the competence of your teachers is
very useful, especially if you are being taught one task by many
teachers. Individually modelling ones teachers gives an imitation
learner the ability to compare the quality of the teachers relative to
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each other, even within parts of the same task. This enables the
robot to be more resistant to bad demonstrations as well as adapt-
able to heterogeneous demonstrators.

The experimental domain we use to ground this work is robotic
soccer. In our evaluation, an imitating robot learns to shoot the soc-
cer ball into an open goal, from a range of demonstrators that differ
in size as well as physiology (humanoid vs. wheeled). While this
problem may seem trivial to a human adult, it is quite challeng-
ing to an individual that is learning about its own motion control.
Manoeuvring behind the soccer ball and lining it up for a kick is
a difficult task for an autonomous agent to perform, even without
considering the ball’s destination - just as it would be for a young
child. It is also a task where it is easy to visualize a broad range
of skills (demonstrators that have good versus poor motor control),
and one where heterogeneity matters (that is, there are visual dif-
ferences in how physiologically-distinct robots move).

Beyond simply improving learning, there are good application-
independent reasons for allowing a robot to learn from heteroge-
neous demonstrators. The time taken to create or adapt a control
program for a particular robot physiology is often wasted when
robots are abandoned in favour of newer models, or different de-
signs (e.g. switching from a wheeled robot to a one that has tank
treads). A learning system needs to be able to learn from others
that are physiologically different than the imitator if the knowledge
of various demonstrators is to be passed on. Learning should be
robust enough to allow any type of demonstrator to work. Learning
should also benefit correspondingly from a heterogeneous breadth
of demonstrators. It may be possible to discover and adapt ele-
ments of a performance by a physically distinct demonstrator that
have not yet been exploited by demonstrators of the same physi-
ology, for example. Further, imitating robots that can learn from
any type of demonstrator can also learn from robots that developed
their control programs through imitation. Imitation can therefore
provide a mechanism for passing down knowledge between gener-
ations of robots.

2. RELATED WORK
A number of imitation learning approaches have influenced this

work. Demiris and Hayes [10] developed a computational model
based on the phenomenon of body babbling, where babies prac-
tice movement through self-generated activity [17]. Demiris and
Hayes [10] devised their system using forward models to predict
the outcomes of the imitator’s behaviours, in order to find the best
match to an observed demonstrator’s behaviour. A forward model
takes as input the state of the environment and a control command
that is to be applied. Using this information, the forward model
predicts the next state and outputs it. In their implementation, the
effects of all the behaviours are predicted and compared to the ac-
tual demonstrator’s state at the next time step. Each behaviour has
an error signal that is then used to update its confidence that it can
match that particular demonstrator behaviour. Our work differs in
that we use forward models to model entire behaviour repertoires
of demonstrators, not individual behaviours.

Demiris and Hayes [10] use one forward model for each be-
haviour, which is then refined based on how accurately the forward
model predicts the behaviour’s outcome. By using many of these
forward models, Demiris and Hayes construct a repertoire of be-
haviours with predictive capabilities. In contrast, the forward mod-
els in our framework model the repertoire of individual demonstra-
tors (instead of having an individual forward model for each be-
haviour), and contain individual behaviours learned from specific
demonstrators within them (the behaviours can still predict their
effects on the environment, but these effects are not refined during

execution). This provides the imitator with a model that can make
predictions about what behaviours a specific demonstrator might
use at a given time.

Prior work in imitation learning has often used a series of demon-
strations from demonstrators that are similar in skill level and phys-
iologies [8, 19]. The approach presented in this paper is designed
from the bottom up to learn from multiple demonstrators that vary
physically, as well as in underlying control programs and skill lev-
els.

Some recent work in humanoid robots imitating humans has used
many demonstrations, but not necessarily different demonstrators,
and very few have modelled each demonstrator separately. Those
that do employ different demonstrators, such as [8], often have
demonstrators of similar skills and physiologies (in this work all
humans performing simple drawing tasks) that also manipulate their
environment using the same parts of their physiology as the imita-
tor (in this case the imitator was a humanoid robot learning how to
draw letters, the demonstrators and imitators used the same hands
to draw). Inamura et al. [13, 12] use HMMs in their mimesis ar-
chitecture for imitation learning. They trained a humanoid robot to
learn motions from human demonstrators, though they did not sep-
arately model or rank demonstrator skills relative to each other as
we do in our work. Moreover, they also only use humanoid demon-
strators, significantly limiting heterogeneity.

Nicolescu and Matarić [19] motivate the desire to have robots
with the ability to generalize over multiple teaching experiences.
They explain that the quality of a teacher’s demonstration and par-
ticularities of the environment can prevent the imitator from learn-
ing from a single trial. They also note that multiple trials help to
identify important parts of a task, but point out that repeated obser-
vations of irrelevant steps can cause the imitator to learn undesir-
able behaviours. They do not implement any method of modelling
individual demonstrators, or try to evaluate demonstrator skill lev-
els as our work does. By ranking demonstrators relative to each
other and mixing the best elements from among all demonstrators,
we believe that our system can minimize the behaviours it learns
that contain irrelevant steps.

3. METHODOLOGY
The robots used in this work can be seen in Figure 1. The robot

imitator, a two-wheeled robot built from a Lego Mindstorms kit, is
on the far left. One of the three robot types used for demonstrators
is physically identical (i.e. homogeneous) to the imitator, in order
to provide a baseline to compare how well the imitator learns from
heterogeneous demonstrators. Two demonstrators that are hetero-
geneous along different dimensions are also employed. The first is
a humanoid robot based on a Bioloid kit, using a cellphone for vi-
sion and processing. The choice of a humanoid was made because
it provides an extremely different physiology from the imitator in
terms of how motions made by the robot appear visually. Both the
differences in outcomes of individual actions, as well as the visual
appearance produced by the additional motions necessary for hu-
manoid balancing should be a significant challenge to a framework
for imitation learning in terms of adapting to heterogeneity. The
third demonstrator type is a two-wheeled Citizen Eco-Be (version
I) robot which is about 1/10 the size of the imitator. This was
chosen because while its physiology is similar, the large size dif-
ference (accompanied by significant variation in how long it takes
the robot to move the same distance) makes for a different extreme
of heterogeneity than the challenge presented by a humanoid robot.

The imitation learning robot observes one demonstrator at a time,
with the demonstrated task being that of shooting a ball into an
empty goal, similar to a penalty kick in soccer. This task should
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Figure 1: Two views of the heterogeneous robots used in this
work (a standard ballpoint pen is used to give a rough illus-
tration of scale). The right side of the image shows the robots
with visual markers in place to allow motion to be tracked by a
global vision system.

allow for enough variation between approaches for both different
skill levels and different physiologies to have an impact. All knowl-
edge of the task to be learned is gained by observing the demonstra-
tors: no communication between the imitator and its demonstrators
is allowed (or necessary).

The problem of an imitator physically relating to its demonstra-
tors (human or robotic) is referred to as the correspondence prob-
lem [6]. In this work, this is partly handled through the use of a
global vision system (Ergo [3]). The use of the oblique view pro-
vided by our global vision system provides a common frame of ref-
erence for the physical locations of the demonstrator and all objects
in the environment, similar to that provided by GPS. This supports
the ability to map demonstrator positional movements (coordinate
movements) onto the imitator’s own possible motions. The Ergo
system provides information about the movements of marked ob-
jects in three-dimensional space, such as orientation, location, and
velocity. Our approach uses the x and y coordinates of the demon-
strators, imitator, and ball, as well as the orientations of the imitator
and demonstrators. This data is sufficient for the imitator to learn
the chosen task.

Whether a robot is learning from imitation or not, it must begin
with a set of motion primitives that it can use to accomplish ac-
tions. In our implementation we have defined these as the atomic
motor commands available to the wheeled imitator as (forward,
backward, left, right and stop). To properly imitate others, espe-
cially those of differing physiologies, an imitation learner must be
able to understand what its own actions accomplish. In our work,
we begin by allowing the imitator to develop such an understand-
ing based on its own motions. The imitator starts out by collecting
visual data of the outcomes of its own primitive actions using the
Ergo vision system, by executing primitives on the field and cre-
ating a mapping between these and the visual changes that result.
The raw vision frames obtained as the robot moves on the field
are converted into vectors that represent the change in position of
the imitator between the first frame of the primitive action and the
current frame. Each vector contains data relating to the x and y
coordinates, as well as the orientation of the imitator. These frame
change vectors are then clustered using the k-means algorithm [11].
This clustering generalizes the visual changes between frames dur-
ing a portion of the execution of a primitive, such as removing the
specific changes in the x and y coordinates involved. To recognize
a complete primitive from a series of these visual changes, the im-
itator must associate the various legitimate strings of symbols that
could make up a primitive. To do this, we employ Hidden Markov
Models (HMMs) [20], a modelling mechanism often used to rec-
ognize time-sensitive events. Each primitive has a unique HMM

Figure 2: Imitation Learning Architecture

trained to recognize it, which can then be used to recognize primi-
tives from visual data obtained from demonstrations.

Once a demonstration has been converted into a sequence of
primitives, the primitive sequence is used to construct a more mean-
ingful abstraction of the demonstration using behaviours. Behaviours
provide mechanisms to integrate the important actions of the demon-
strations, overcome differences in physiology, and deal with differ-
ing demonstrator skill levels.

Behaviours are learned by combining primitives to produce more
complex actions based on observations [7, 4, 19]. In our implemen-
tation, forward models are used to manage and create behaviours
from the imitator’s primitives and existing behaviours, as seen in
Figure 2. In our implementation a new behaviour is created from
a combination of two primitives or existing behaviours when the
frequency of the two occurring in sequence surpasses a thresh-
old. For example, suppose the primitive forward is recognized in
demonstrations, followed by the primitive left often enough that the
frequency of their sequential occurrence surpasses the threshold.
A forward-left behaviour is created, made from the primitive se-
quence forward followed by left. Similarly, a behaviour that causes
the robot to drive in a square formation might be achieved by a be-
haviour that is made from four forward-left behaviours in sequence.
To keep the number of behaviours learned reasonable, behaviours
will slowly decay over time, to the point where they are deleted.
If they are predicted frequently enough, their decay will slow and
they will become permanent.

The behaviours are built and stored using a type of forward model
which essentially represent frequencies of primitives and behaviours
occurring in sequence. This idea is based on work by [9] who im-
plement forward models that make predictions of the effects of the
imitator’s actions on its environment. In our approach, a unique
forward model is created for each demonstrator that the imitator
is exposed to. This serves to both abstract how that demonstrator
performs parts of the task at hand over multiple demonstrations,
and recommend elements of this activity that might be useful for
the imitator. There is also an additional forward model for the im-
itator itself, which is used to model how the demonstrator should
perform the given task once imitation learning is complete. The
forward models representing demonstrators begin with only the
imitator’s primitives. Once behaviours for a particular demonstra-
tor have been learned, the corresponding forward model acts as a
predictive model for that specific demonstrator. That is, given the
observed behaviour thus far, the model can be used to predict fu-
ture behaviour of that demonstrator. Throughout the training of
the demonstrator forward models, frequently occurring candidate
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Figure 3: Demonstrations from each individual demonstra-
tor are first used to train a forward model representing that
demonstrator. Frequently occurring behaviours in each session
are are moved to the forward model representing the imitator
as potential behaviours to use in its own activities.

Figure 4: In the final phase of training, all demonstrations are
first passed to the demonstrator models to elicit any candidate
behaviour nominations before the forward model for the imita-
tor processes the demonstration.

behaviours are added to the forward model representing the imita-
tor, as seen in Figures 3. Each model representing a demonstrator
is then used to process each demonstration from all demonstrators
one last time before the forward model does its processing. Essen-
tially this is the stage where the imitator is using the forward models
representing each of its demonstrators to predict what each individ-
ual demonstrator would do in the current situation. By the time all
the forward models representing all the demonstrators are trained,
the model representing the imitator has a number of additional be-
haviours in its repertoire as a result of this process, and serves as
a generalized predictive model of all useful activity obtained from
all demonstrators. Finally, the imitator does the processing of each
demonstration using the candidate behaviours added by the forward
models for the demonstrators as shown in Figure 4. The same pro-
cess of behaviour proposal and decay described earlier allows the
imitator to keep some demonstrator behaviours, and discard oth-
ers, while also learning new behaviours of its own as a result of the
common behaviours extrapolated from multiple demonstrators.

To model the relative skill levels of the demonstrators in our sys-
tem, each of the demonstrator forward models maintain a demon-
strator specific learning rate, the learning preference (LP). The learn-
ing preference is analogous to how people favour certain teachers,
and tend to learn more from these preferred teachers. A higher LP
indicates that a demonstrator is more skilled than its peers, so be-
haviours should be learned from it at a faster rate than a demonstra-
tor with a lower LP. The LP is used as a weight when updating the
frequency of two behaviours or primitives occurring in sequence.
The LP of a demonstrator begins at the half way point between
the minimum (0) and maximum (1) values. When updating the fre-
quencies of sequentially occurring behaviours, a minimum increase
in frequency (referred to as minFreq in equation 1) is preserved (a
value of 0.05, obtained during experimentation), to ensure that a
forward model for a demonstrator that has an LP of 0 does not
stagnate. The forward model for a given demonstrator would still
update frequencies, albeit more slowly than if its LP was above 0.
Equation 2 shows the decay step, where the decay rate is equal to
1 − LP and the decayStep is a constant (0.007 was used in our
experiments).

freq = freq + minFreq + minFreq × LP (1)

Perm = Perm− decayRate× decayStep (2)

LP = LP ± lpShapeAmount (3)

The LP of a demonstrator is increased if one of its behaviours
results in the demonstrator (ordered from highest LP increase to
lowest): scoring a goal, moving the ball closer to the goal, or mov-
ing closer to the ball. The LP of a demonstrator is decreased if
the opposite of these criteria results from one of the demonstra-
tor’s behaviours. Equation 3 shows the update step, where lpSha-
peAmount is either a constant (0.001) if the LP is adjusted by the
non-criteria factors, or plus or minus 0.01 for a behaviour that re-
sults in scoring a correct/incorrect goal, 0.005 for moving the ball
closer to the goal, or 0.002 for moving the robot closer to the ball.
These criteria are obviously domain-specific, and are used to shape
the learning (a technique that has been shown to be effective in
other domains [14]) in my system to speed up the imitator’s learn-
ing. Though this may seem like pure reinforcement learning, these
criteria do not directly influence which behaviours are saved, and
which behaviours are deleted. The criteria merely influence the
LP of a demonstrator, affecting how much the imitator will learn
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Figure 5: Field configurations. The demonstrator is repre-
sented by a square with a line that indicates the robot’s ori-
entation. The target goal is indicated by a black rectangle, the
demonstrator’s own goal is white.

from that particular demonstrator. Dependence on these criteria
was minimized so that future work (such as learning the criteria
from demonstrators) can remove them entirely.

When the learning process is complete, the imitator is left with
a final forward model that it can use as a basis for performing the
tasks it has learned from the demonstrators.

4. EXPERIMENTAL RESULTS
To evaluate this approach in a heterogeneous setting, we em-

ployed the robots previously shown in Figure 1 to gather demon-
strations. Each of the robots used in these experiments was con-
trolled using its own behaviour-based control system - since the
work presented here focusses on overcoming differences in phys-
iology, all of the robots used code that was developed for robotic
soccer competitions, and all would be considered expert demon-
strations. The Bioloid and Lego Mindstorms robots were demon-
strated on a 1020 x 810 cm field, while the Citizen was demon-
strated on a 56 x 34.5 cm field (this was because the size difference
of the robot made for significant battery power issues given the dis-
tances covered on the large size field). The ball used by the Bioloid
and Lego Mindstorms robots was 10 centimeters in diameter, while
the ball used by the Citizen robot was 2.5 centimeters in diameter.

We limited the positions to the two field configurations shown
in Figure 5. In the configuration on the left, the demonstrator is
positioned for a direct approach to the ball. As a more challeng-
ing scenario, we also used a more degenerate configuration (on the
left), where the demonstrator is positioned for a direct approach to
the ball, but the ball is lined up to its own goal – risking putting the
ball in one’s own net while manoeuvering, and requiring a greater
field distance to traverse with the ball.

The individual demonstrators were recorded by the Ergo global
vision system [3] while they performed 25 goal kicks for each of
the two field configurations. The global vision system continually
captures the x and y motion and orientation of the demonstrating
robot and the ball. The demonstrations were filtered manually for
simple vision problems such as when the vision server was unable
to track the robot, or when the robot broke down (falls/loses power).
The individual demonstrations were considered complete when the
ball or robot left the field.

One learning trial consists of each forward model representing a
given demonstrator training on the full set of kick demonstrations
for that particular demonstrator, presented in random order. Once
the forward models representing each demonstrator are trained, the
forward model representing the imitator begins training. At this
point all the forward models for the demonstrators have been trained
for their own data, and have provided the forward model represent-
ing the imitator with candidate behaviours. The forward model for
the imitator then processes all the demonstrations for each of the
two field configurations (a total of 150 attempted goal kicks) in

Demonstrator Goals Scored Wrong Goals Scored
RC2004 27 4
Citizen 15 3
Bioloid 12 1

Table 1: The number of goals and wrong goals scored for each
demonstrator.

random order. All of the forward models for each demonstrator
predict and update their models at this time, one step ahead of the
forward model for the imitator. This is done to allow each forward
model a chance to nominate additional candidate behaviours rele-
vant to the current demonstration instance, to the forward model
for the imitator.

The total number of goals each demonstrator scored during all
50 of their individual demonstrations is given in Table 1.

To determine if the order in which an imitator using our approach
is exposed to the various demonstrators - specifically, the degree of
heterogeneity - had any effect on its learning, we chose to order
the demonstrators in two ways. The first is in order of similarity
to the imitator. In this ordering, the MindStorms robot demonstra-
tor (labelled RC2004 here because its expert-level control code was
from our small-sized team at RoboCup-2004) is first, then the Citi-
zen demonstrator (which is much smaller than the imitator, but still
a two-wheeled robot), and finally the Bioloid demonstrator. The
shorthand we have adopted for this ordering is RCB. The second
ordering is the reverse of the first, that is, in order of most physical
differences from the imitator. The second ordering is thus Bioloid,
Citizen, RC2004, or BCR for short. The orderings determine when
each set of training data is used to train the demonstrator forward
models (starting with the first demonstrator’s set in the order). The
imitator’s final model follows the same ordering when passing each
set of demonstrations to the demonstrator forward models during
the final training phase described in Section 3.

For each of the two orderings, we ran 100 trials. The results
of the forward model training processes using the RCB and BCR
demonstrator orderings are presented here. All the following data
has been averaged over 100 trials. Though the resulting LPs of the
demonstrators are not given in this paper, all three demonstrators in
both orderings ended up with LPs (with a range of 0 to 1) close to
the maximum (over 0.95 on average). In our experiments on differ-
ing skill levels, poor demonstrators had LPs of approximately 0.25,
while average demonstrators had LPs of approximately 0.5. These
results indicate that the LP is accurately judging all demonstrators
to be skilled, even those that have different physiologies from the
imitator.

Figures 6 and 7 show results for the number of behaviours cre-
ated and deleted for each of the forward models representing the
given demonstrators, with the two orderings for comparison pur-
poses and standard deviations given above each bar. It can be seen
that the RCB and BCR demonstration orderings do not affect the
number of behaviours created or deleted from any of the forward
models. The forward models representing the Bioloid demonstra-
tor can be seen to create many more behaviours than the other for-
ward models (and have a higher standard deviation), but they also
end up deleting many more than the others. The vast difference in
physiology from the other two-wheeled robots cause the forward
models representing the humanoid to build many behaviours in an
attempt to match the visual outcome of the Bioloid’s demonstra-
tions. When trying to use those behaviours to predict the outcome
of the other two-wheeled robot demonstrators, they do not match
frequently enough (i.e. they are not a useful basis for imitation),
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Figure 6: The number of behaviours created, comparing RCB
and BCR demonstrator orderings. Corresponding standard
deviations are given at the top of each bar.

Figure 7: The number of behaviours deleted, comparing RCB
and BCR demonstrator orderings. Corresponding standard
deviations are given at the top of each bar.

and are eventually deleted as a result.
In Figure 8, the number of permanent behaviours for each of the

forward models are shown along with standard deviations above
each bar, grouped by RCB and BCR to see any effect on demon-
strator orderings. It can be seen that the orderings do not affect the
number of behaviours made permanent to any of the forward mod-
els, indicating that ordering does not affect the number of useful be-
haviours acquired by the forward models representing the demon-
strators, or the imitator itself. Even though the Bioloid has a very
different physiology, the forward models representing its actions
still learn a relatively similar number of behaviours as the other two
forward models for the other demonstrators. The forward models
representing the imitator have fewer permanent behaviours, partly
because the forward model for an imitator filters the candidate be-
haviours given to it by the forward models representing the demon-
strators, but it could also be due to the fact that the imitator is only
exposed to each set of demonstrations once, while the other for-
ward models see all demonstrations once, but the demonstrations
for their particular demonstrator twice.

Figure 8: The number of permanent behaviours in each for-
ward model, comparing RCB and BCR demonstrator order-
ings. Corresponding standard deviations are given at the top of
each bar.

Figure 9: The number of candidate behaviours moved to the
forward model representing the imitator, comparing RCB and
BCR demonstrator orderings. Corresponding standard devia-
tions are given at the top of each bar.

Figure 9 shows the number of candidate behaviours nominated
by each forward model representing the demonstrators, as well as
their standard deviations above each bar. It can be seen that the
order in which the forward models are trained slightly affects the
number of candidate behaviours moved to the forward model rep-
resenting the imitator. The forward models for the Citizen demon-
strator are mostly unaffected by ordering, which makes sense as
they are in the middle for both orderings. The forward models
representing the RC2004 demonstrator have slightly more candi-
date behaviours nominated when they are first (the RCB ordering)
than when they are last (the BCR ordering). The forward mod-
els representing the Bioloid have similar results (though with the
opposite orderings), with more candidate behaviours in the BCR
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Figure 10: The number of candidate behaviours not moved to
the forward model representing the imitator, because they were
already there, comparing RCB and BCR demonstrator order-
ings. Corresponding standard deviations are given at the top of
each bar.

Demonstrator Ordering Goals Scored Wrong Goals Scored
RCB 11 9
BCR 7 13

Table 2: The number of goals and wrong goals scored for two
imitators trained with the different demonstrator orderings.

ordering than the RCB ordering. This is likely due to the number
of candidate behaviours that get rejected because they already ex-
ist in the forward model representing the imitator, but the standard
deviation could also explain this. The results for duplicate candi-
date behaviours can be seen in Figure 10. The forward models for
the RC2004 demonstrator have fewer duplicates rejected when they
are first (RCB), as is true for the forward models for the Bioloid
when the Bioloid is first (BCR). In both cases, however, this is not
much of a difference given the standard deviations involved. The
forward models for both demonstrators appear to have more candi-
date behaviours rejected when they are last in the ordering, but this
could also be explained simply by the standard deviations involved.
Again, the forward models representing the Citizen demonstrators
are less affected by ordering, as they appear in the middle both
times.

Similar results are found when looking at the number of can-
didate behaviours that achieve permanency to the forward model
representing the imitator. In Figure 11, the forward models repre-
senting the RC2004 and Bioloid demonstrators can be seen to have
more behaviours made permanent to the forward model for the imi-
tator when their demonstrations appear first in the ordering, but this
is explainable by considering the standard deviation. The forward
models representing the two-wheeled demonstrators seem to have
an advantage in the number of their candidate behaviours becoming
permanent to the forward model for the imitator over the forward
models representing the Bioloid demonstrator. This is likely due
to the same reasons of physiology discussed when looking at the
number of behaviours created and deleted by each of the forward
models.

To evaluate the performance of the imitators trained using this
approach, we selected two imitators from the learning trials eval-

Figure 11: The number of candidate behaviours that earned
permanency after being moved to the forward model repre-
senting the imitator, comparing RCB and BCR demonstrator
orderings. Corresponding standard deviations are given at the
top of each bar.

uated in this section at random (one from the RCB training order,
and one from the BCR order). We used the forward models to con-
trol (as described in Section 3) the Lego Mindstorms robots and
recorded them in exactly the same way that we recorded the demon-
strators, for 25 shots on goal in each of the two field configurations
(Figure 5) for a total of 50 trials. Table 2 shows the results of these
penalty kick attempts by the two imitators trained using our frame-
work. The orderings do not show a significant difference. The
main reason the final trained imitator did not perform objectively
better is that the current behaviour being executed was not stopped
if another behaviour became more applicable during its execution.
This caused the imitator, when demonstrating its skills, to stick to
a chosen behaviour, even if using that behaviour resulted in poor
results. That is, it is a flaw in the learner demonstrating its skills,
not in its learning. The only time the execution of a behaviour was
stopped was when the primitives it was about to execute predicted
that it might move the imitator off the field, since the imitator was
not tasked with learning behaviours that kept it on the field. In the
end, the results from heterogeneous demonstrators were compa-
rable to those using only homogeneous demonstrators of the same
skill level [1], which is itself very positive because of the additional
difficulties involved with heterogeneity.

5. CONCLUSION
We have presented the results and analysis of the experiments

used to evaluate our approach to developing an imitation learning
architecture that can learn from multiple demonstrators of varying
physiologies and skill levels. The results in Section 4 show that
our approach can be used to learn from demonstrators that have
heterogeneous physiologies. The humanoid demonstrator was not
learned from as much as the two-wheeled robots that had similar
physiologies to the imitator, but the imitator still learned approxi-
mately 12% of its permanent behaviours from the Bioloid, as seen
in Figures 11 and 8. The Citizen robot was nearly as effective a
demonstrator as the RC2004 robot. This is somewhat surprising,
as the RC2004 robot has an identical physiology to the imitator,
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while the Citizen robot is approximately 1/10 the imitator’s size.
This could be partially due to the fact that the Citizen robot has the
same limited command set as the imitator, compared to the vastly
expanded set of primitive commands available to the RC2004. The
Citizen moves much slower due to its size, so the demonstration
conversion process must have compensated substantially to give
the Citizen demonstrator results so close to the RC2004 demonstra-
tor. Size differences, apparently, are easier to compensate for than
differences in physiology, at least to the degree of the differences
between wheeled and humanoid robots.

The results presented in Section 4 also show that this framework
is not affected drastically by the order that demonstrators are pre-
sented to the forward models. There is some effects from candidate
behaviours being rejected if a forward model for a given demon-
strator is the last to be trained, since the other forward models have
already had a chance to get their candidate behaviours added, in-
creasing chances of duplicates. In practice this does not seem to
adversely affect the LP of any of the forward models, and so the
order of demonstrations is mostly negligible.

The results for the performance of our forward models when
used as control systems did not perform as well as the expert demon-
strators, but they still were able to control the imitator adequately.
The main focus on our research was in developing an imitation
learning architecture that could learn from multiple demonstrators
of varying physiologies and skill levels. The results of the con-
version processes, predictions, and the influence that the LP of a
forward model for a given demonstrator has on what an imitator
learns from that particular demonstrator all indicate that the learn-
ing architecture we have devised is capable of properly modelling
relative demonstrator skill levels as well as learn from physiologi-
cally distinct demonstrators. A stronger focus on the refinement of
behaviour preconditions and control similar to the work of Demiris
and Hayes [10] could make our entire system more robust.
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ABSTRACT
This paper investigates the impact of reward shaping in multi-agent
reinforcement learning (MARL) as a way to incorporate domain
knowledge about good strategies. We demonstrate the performance
of reward shaping in the domain of RoboCup KeepAway by de-
signing three reward shaping schemes, encouraging specific be-
haviour such as keeping a minimum distance from other players
on the same team, and taking on specific roles, e.g. tackling the
ball-controlling opponent or marking others. Results show that re-
ward shaping does speed up learning, while having a comparable
asymptotic performance to RL without reward shaping. The exper-
iments demonstrate that reward shaping can be successfully used
in MARL to incorporate domain knowledge and to improve perfor-
mance by encouraging heterogeneous role behaviour.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial Intellig-
ence]: Problem Solving, Control Methods, and Search; I.2.11 [Dis-
tributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Experimentation, Theory

Keywords
Domain knowledge, Heuristics, Multi-Agent Reinforcement learn-
ing, Reward shaping

1. INTRODUCTION
Multi-agent systems are becoming increasingly popular because

in many practical applications they naturally model the environ-
ment or the problem decomposition may allow for more efficient
solutions in domains which are inherently single-agent [21]. One
of the methods of designing intelligent agents is the use of machine
learning to implement adaptive, autonomous, and self-improving
behaviour. Reinforcement learning (RL) in particular represents a
natural fit to learn adaptive behaviour in a multi-agent scenario.

Whilst reinforcement learning can deal with problems with com-
binatorially huge state spaces in a fully observable setting [12, 17],
the multi-agent scenario is a bigger challenge [3]. The most signif-
icant problem is that the existence of other agents, which execute
their own actions and those actions influence the state of the world,
has to be dealt with. This makes the problem partially observable
because of the uncertainty in the behaviour of other agents, and
also non-stationary because other agents may concurrently learn
and improve their behaviour. Additionally, a rather elementary but
serious problem comes from the fact that the state-action space of a

multi-agent system grows exponentially with the number of agents,
which may considerably slow down convergence.

Most existing RL algorithms were proposed under the assump-
tion that there is no knowledge available about the problem and
about the MDP model in particular. This is however often not the
case in many practical applications. In many domains, heuristic
knowledge can be easily identified by the designer of the system
[14] or inquired using reasoning or learning [6]. In the area of sin-
gle agent RL, reward shaping has been proven to be a principled
and theoretically correct method of incorporating heuristic knowl-
edge into RL agents [11]. To date, multi-agent scenarios have not
been studied with regard to reward shaping, and our paper takes
first steps in this direction. In this work we focus on the RoboCup
domain and look for good heuristics and their evaluation with the
long term goal of drawing general conclusions about reward shap-
ing in multi-agent RL.

Our empirical evaluation is based on the RoboCup KeepAway
task for two reasons. Firstly, RoboCup is an international project
(see Section 4 for details) which has been proven to provide an ex-
perimental framework in which various technologies can be inte-
grated and evaluated. Since, the full game of soccer is complex, re-
searchers developed several simulated environments which can be
used to evaluate techniques for specific sub-problems. One of these
sub-problems is the KeepAway task [15, 16]. There are two types
of opponents in this domain: a team of keepers which learn how
to maintain possession of the ball and a team of takers which learn
how to get the ball. In this paper, experiments on RoboCup takers
are presented because multi-agent learning could be implemented
with the action space provided by the KeepAway framework. For
keepers, new actions would have to be introduced making compar-
isons to existing work more difficult. The second reason why we
focus on the KeepAway domain is that our aim in this project is
to investigate knowledge-based multi-agent RL approaches. This
requires a well defined and challenging domain where domain spe-
cific knowledge can be identified. RoboCup is suitable for this un-
dertaking.

In our experiments we investigate three types of multi-agent kno-
wledge: (1) how agents should maintain states relative to each other
(e.g. keep a minimum distance); (2) how role specialization can
improve overall performance by explicitly encouraging heteroge-
neous behaviours in a multi-agent team (e.g. specialising in tack-
ling the ball-controlling opponent); and (3) the combination of (1)
and (2). Our empirical results show that reward shaping does speed
up learning, while having a comparable asymptotic performance
to RL without reward shaping. The experiments demonstrate that
reward shaping can be successfully used in MARL to incorporate
domain knowledge and to improve performance by encouraging
heterogeneous role behaviour.
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Our research presented here is the first step of a bigger ongoing
project on the use of domain knowledge and analysis of the suit-
ability of reward shaping in KeepAway and in multi-agent RL in
general.

The paper is organised as follows. Section 2 presents a more
detailed introduction to reinforcement learning and Section 3 intro-
duces reward shaping. The subsequent section introduces RoboCup
Soccer and the problem of learning takers in that domain. Next,
Section 5 discusses our approach to learning takers with reward
shaping. Details of experimental evaluation are in Section 6 and
obtained results are collected and discussed in Section 7. The final
section concludes the paper.

2. REINFORCEMENT LEARNING AND
MARKOV DECISION PROCESSES

Reinforcement learning is a paradigm which allows agents to
learn by reward and punishment from interactions with the environ-
ment [19]. The numeric feedback received from the environment is
used to improve agent’s actions. The majority of work in the area
of reinforcement learning (RL) applies a Markov Decision Process
as a mathematical model [13].

A Markov Decision Process (MDP) is a tuple 〈S,A, T,R〉, where
S is the state space,A is the action space, T (s, a, s′) = Pr(s′|s, a)
is the probability that action a in state s will lead to state s′, and
R(s, a, s′) is the immediate reward received when action a taken
in state s results in a transition to state s′. The problem of solving
an MDP is to find a policy (i.e., mapping from states to actions)
which maximises the accumulated reward. When the environment
dynamics (transition probabilities and a reward function) are avail-
able, this task can be solved using iterative approaches like policy
and value iteration [2].

MDPs constitute a modeling framework for RL agents whose
goal is to learn an optimal policy when the environment dynamics
are not available and, thus, value iteration cannot be used. However
the concept of an iterative approach in itself is the backbone of
the majority of RL algorithms. These algorithms apply so called
temporal-difference updates to propagate information about values
of states, V (s), or state-action, Q(s, a), pairs [18]. These updates
are based on the difference of the two temporally different estimates
of a particular state or state-action value. The SARSA algorithm is
such a method [19]. After each real transition, (s, a) → (s′, r), in
the environment, it updates state-action values by the formula:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (1)

It modifies the value of taking action a in state s, when after exe-
cuting this action the environment returned reward r, moved to a
new state s′, and action a′ was chosen in state s′.

3. REWARD SHAPING
Immediate reward r which is in the update rule given by Equa-

tion 1 represents the feedback from the environment. The idea
of reward shaping is to provide an additional reward which will
improve the convergence of the learning agent with regard to the
learning speed, the quality of the final solution or both [11, 14].
This concept can be represented by the following formula for the
SARSA algorithm:

Q(s, a)← Q(s, a) + α[r + F (s, a, s′) + γQ(s′, a′)−Q(s, a)],
(2)

where F (s, a, s′) is the general form of the shaping reward.
Even though reward shaping has been powerful in many exper-

iments it quickly turned out that, when used improperly, it can be

also very misleading [14]. To deal with such problems potential-
based reward shaping was proposed [11] as the difference of some
potential function Φ defined over a source s and a destination state
s′:

F (s, s′) = γΦ(s′)− Φ(s), (3)

where γ is the discount factor. When the potential function Φ(s)
is a function of states only, actions can be omitted in F yielding
F : S × S → R and F (s, s′). Ng et al. [11] proved that re-
ward shaping defined in this way, that is, according to Equation 3,
guarantees learning a policy which is equivalent to the one learned
without reward shaping when the same heuristic knowledge repre-
sented by Φ(s) would be used directly to initialise the value func-
tion. This is an important fact, because when function approxima-
tion is used in big environments, where the structural properties of
the state space are not clear, it is not easy to initialise the value func-
tion. Reward shaping represents a flexible and theoretically correct
method to incorporate background knowledge into RL algorithms.
Its properties have been proven for RL in both infinite and finite
horizon MDPs [11]. It was however indicated in [5] that the stan-
dard formulation of potential-based reward shaping according to
[11] can fail in domains with multiple goals. One of the solutions
suggested in [5] to overcome this problem is to use F (·, ·, g) = 0
for each goal state g ∈ G.

When the shaping reward is computed according to Equation 3,
the application of reward shaping reduces to the problem of how to
define the potential function, Φ(s). In this paper, we address this is-
sue is a novel context of multi-agent learning (details in Section 5)
and evaluate it in the RoboCup KeepAway domain [15, 16] which
is introduced in the next section. Our experiments apply function
approximation to represent the value function in this task. Even
though with function approximation the optimal policy might not
be representable, our application of potential-based reward shaping
is still valid and justified. Potential based reward shaping guaran-
tees that the new MDP with a modified reward function has the
same solution as the original MDP solved by reinforcement learn-
ing without reward shaping. Therefore the learning problem re-
mains the same, allowing the methods presented here to be applied
with or without an approximate function representation.

The work of Ng. et al. [11] formally specified requirements on
reward shaping. The idea of giving an additional external reward
was investigated by numerous researchers before that. For exam-
ple, interesting observations on the behaviour and problems of re-
ward shaping were reported in [14] and were then influential in the
formalisation of the potential-based reward function. Another early
work suggesting progress estimators, which also resembles the idea
of the potential function, was presented in [9].

4. MULTI-AGENT LEARNING
IN ROBOCUP SOCCER

RoboCup is an international project1 which aims at providing an
experimental framework in which various technologies can be in-
tegrated and evaluated. The overall research challenge is to create
humanoid robots which would play at human masters level. Since,
the full game of soccer is complex, researchers developed several
simulated environments which can be used to evaluate techniques
for specific sub-problems. One of such sub-problems is the Keep-
Away2 task [15, 16]. In this task (see Figure 1),N players (keepers)
learn how to keep the ball when attacked byN−1 takers and when
1See http://www.robocup.org/ for more information
2See http://userweb.cs.utexas.edu/ AustinVilla/sim/Keepaway/ for
more information
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Figure 1: Snapshot of a 3 vs. 2 KeepAway game.

playing within a small area of the football pitch, which makes the
problem more difficult.

This task is multi-agent [21] in its nature, however, most research
has focused on learning one specific behaviour at a time. Overall,
there are three types of high level behaviour in this task. The be-
haviour of the agents trying to take the ball is one of these high
level behaviours but let us first consider the agents trying to main-
tain possession of the ball; the keepers.

For keepers there are two distinct situations, either the keeper
has possession of the ball or it does not. If it is not in possession of
the ball, a keeper executes a fixed hand-coded policy which directs
it to be in a position convenient to receive the ball from the keeper
which is. The third behaviour is that of the keeper in possession of
the ball. Previous work has attempted to learn this behaviour using
reinforcement learning whilst the takers adhere to a hand-coded
policy [15, 16, 4].

However, in this work we are interested in learning the behaviour
of the takers and so the keepers shall now follow a hand-coded
policy both with and without the ball. The hand-coded behaviour
of a keeper with the ball was originally specified in [16] and has
since been used in other work on learning takers [7, 10].

Although the work of [15, 16, 4] has multiple agents learning
during each episode, the implementation is not a true multi-agent
learning example. At any one time only one agent is learning,
namely the keeper in possession of the ball, and all other agents
are following fixed hand-coded policies. Therefore the agent is in
effect learning within a static environment. However, when we con-
sider takers with the ability to learn, the problem becomes multi-
agent as all takers learn simultaneously.

Previous attempts to learn the behaviour of takers proved rela-
tively successful [7, 10] and were a useful resource when attempt-
ing to develop novel approaches. In [7] the first basic learning taker
was developed using SARSA reinforcement learning with tile cod-
ing to decide the action of a taker every 15 cycles. This work
emphasised that allowing a taker to decide an action every cycle
caused indecisiveness in the agent because the short time elapsed
between decisions did not allow adequate time for the true benefit
or cost of an action to be realised. In experiments allowing de-
cisions to be made every cycle takers oscillate between decisions
causing poor performance.

This observation was again witnessed by [10], who noted that
updates at any interval between 15 and 40 had comparable results
but intervals larger than 60 or less than 10 were largely unsuccess-
ful. To avoid this hesitation they chose to switch from the SARSA
algorithm for reinforcement learning to the Advantage(λ) Learning
algorithm. In their work a significant improvement in performance
was seen when takers learnt every cycle by Advantage(λ) Learning
instead of infrequently by SARSA. However, the comparison is not
complete as takers using the Advantage(λ) Learning also imple-
mented a more advanced function approximation technique. Also

the two bodies of work [7, 10] can not be directly compared as they
used different state representations.

These two papers appear to encompass the entirety of current
published work in this problem domain. However, there still re-
mains a large room for improvement in the development of a learn-
ing taker. The more challenging a taker can become, the more it
will challenge researchers interested in learning the behaviours of
keepers. The work we have undertaken has resulted in takers per-
forming significantly better than the performances reported in both
these papers against the same opposing keepers in games with the
same set up and in games more challenging to the takers.

This problem domain also provides a suitable test bed for other
more generally applicable research into multi-agent reinforcement
learning. Given the learning taker we have developed we were able
to then expand upon the basic implementation and incorporate three
novel approaches to potential based reward shaping in a multi-agent
context.

5. PROPOSED METHOD
In this section we provide more details on our learning takers

and the reward shaping techniques used. In our investigation we
compare the performance of RL takers without reward shaping (the
base learner) to takers using one of three types of reward shaping
detailed below.

5.1 Base Learner
Our base learning taker combines the work of both previous pa-

pers [7, 10] on learning takers in KeepAway. As in both these
papers, the takers can on each update choose either to tackle the
keeper with the ball or mark any of the remaining keepers. To
tackle a keeper, the taker runs directly to the keeper currently in
posession of the ball. To mark a keeper, the taker moves close to
the keeper trying to maintain their position on the intercepting line
of a straight pass of the ball from its current location to the current
location of the keeper.

To learn when to perform these actions we use the SARSA algo-
rithm with tile coding, as in [7]. Then from [10] we use the state
representation (originally suggested in [16]) and the reward func-
tion, -1 for every cycle the episode continues to run and +10 for
ending the episode. Given the observations made by both papers
we update only after every 15 cycles.

Figure 2: State Representation of Base Learner (from [10]).

We chose the state representation from [10] as opposed to the
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one used by [7], because the latter represented less observations of
the environment and we expected this to limit the performance of
learning takers. Our experiments presented below show that the
more detailed state representation, from [10] and illustrated in Fig-
ure 2, improves the performance of the basic learning taker sup-
porting our expectations and providing a useful comparison to the
more novel approaches we take in the following two subsections.

5.2 Simple Reward Shaping
Our first extension is to apply a simple potential based reward

shaping function to the existing base agent to incorporate prior
domain knowledge into the agent. It is expected that given this
knowledge the agent will converge quicker to an equal or better
performance than the base learning approach alone. This agent is
intended to show that the use of reward shaping is both applicable
and beneficial in multi-agent reinforcement learning.

Specifically, the domain knowledge we have applied states that
takers can improve their performance by separating and marking
different players. By following this principle, they are able to limit
the passing options of the keepers and reduce the time the keepers
maintain possession.

We have implemented a reward shaping function that encourages
separation by adding the change in distance between the takers to
the reward they receive from the basic learning algorithm. Assum-
ing our domain knowledge is correct, the addition of this potential
based function will ensure better co-operation between the agents
developed than those following the hand-coded policy. Also, al-
though this knowledge could be learned by the base learner, the
new agent will know from the beginning to attempt to separate and
so will converge quicker.

5.3 Heterogeneous Shaping
In experiments with the previous agent based upon a simple re-

ward shaping, all taker agents will be equivalent or homogeneous.
A more interesting problem is that of heterogeneous agents, whereby
different agents co-operating on the same team combine different
skills to outperform their homogeneous counterparts [1].

Given the previous hypothesis, that takers sticking together is
detrimental to performance, more complex prior domain knowl-
edge can be incorporated stating that it is beneficial for one taker to
tackle and another to fall back and mark.

In effect, this new domain knowledge defines two roles; one of
a tackling taker and one of a marking taker. We thus use hetero-
geneous reward shaping to encourage these roles in the learning
takers, which to our knowledge is a novel idea. By rewarding one
taker for choosing a tackling action when previously choosing a
marking action and punishing it when it changes from choosing
tackling to now marking, the agent will be encouraged to tackle.
A similar approach reversing the punishment and reward will then
encourage the other taker to mark.

These roles however are not hard-coded, we are not limiting the
action choices available to the takers. Both takers can still choose
either to mark or tackle and reinforcement learning will still have
them explore the use of both action choices. Therefore in extreme
cases when it is necessary for the marking agent to tackle he will
still make the correct decision and tackle, but in general it will
choose to mark as the reward shaping function applied will make
this appear more lucrative.

Therefore, it is hoped that these two roles are beneficial to win-
ning possession. If they are, then the agent will converge quicker
to an equal or better performance as the base learner because the
takers without reward shaping will have to learn these roles them-
selves. However, if these roles are not beneficial the takers will still

be able to learn an equal policy as the roles are not enforced but
merely encouraged.

The successful application of this reward shaping will illustrate
the potential benefits of using heterogeneous reward shaping in
multi-agent systems to encourage roles.

5.4 Combining Shaping Functions
Finally, we have also considered the incorporation of both pieces

of domain knowledge into one team of takers. This way the takers
can be encouraged to take roles but also consider the benefit of
separating.

When combining shaping functions it is important that each is
scaled individually because to calculate the potential difference of
both states and scale the sum would give a different meaning to
the resultant reward shaping, it would not accurately represent the
domain knowledge intended. Therefore the potential based reward
shaping function changes from Equation 3 given in Section 3 to:

F (s, s′) = τ1(γΦ1(s′)− Φ1(s)) + τ2(γΦ2(s′)− Φ2(s)), (4)

where γ is the discount factor, Φ1 and Φ2 are the potential functions
and τ1 and τ2 are two separate scaling factors.

Given that our motive is to publicise the use of heterogeneous
reward shaping for encouraging roles our scaling will emphasise
the heterogeneous reward shaping function. This agent will still
include the separation based reward shaping function but by scal-
ing the function appropriately it will have less of an impact on the
resultant behaviour than the encouragement to take up a specific
role.

It is expected that as this agent will benefit from both pieces of
domain knowledge that this will be our best performing agent and
as such will be a beneficial contribution to the RoboCup KeepAway
research field.

6. EXPERIMENTAL DESIGN
The experiments undergone were performed in RoboCup Soc-

cer Simulator v11.1.0 compiled against RoboCup Soccer Simu-
lator Base Code v11.1.0. The KeepAway player code used was
keepaway-player v0.6. Keepers were based upon the hand coded
policy publicly available in this release and takers were based upon
our own extensions to this base player.

For takers both with and without reward shaping the SARSA al-
gorithm of reinforcement learning was used with the parameters;
α = 0.125, γ = 1.0 and ε = 0.01. For function approximation a
tile coding function with 13 groups of 32 single-dimension tilings
was used. All takers used one group per each feature in the obser-
vation and split angles into ten degree intervals and distances into
three meter intervals.

Experiments were performed on pitches of sizes 20×20, 30×30,
40×40, and 50×50 meters. These values were chosen to show the
performance of our takers in similar contexts to previous work on
learning the behaviour of takers and also in more complex problem
domains.

The addition of reward shaping functions must be scaled to max-
imise the performance of the respective agents. The value of these
scaling factors was found through experimental testing, therefore
they may not be the optimal settings. However, they are sufficient
to show the improvement in performance the methods are capable
of. For the simple reward shaping agent the value of separation was
doubled before added to the basic reward function.

For the heterogeneous shaping approach agents were either re-
warded or penalised by 5 for changing their action from marking to
tackling and vice versa.
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When combining shaping functions we wanted to emphasise the
heterogeneous knowledge and so for changing their action these
takers were either rewarded or penalised by 10 and for separation
the change in distances were simply added and not doubled as they
are in takers only relying upon this knowledge.

Experiments with each combination of pitch size and reward
shaping function were repeated 15 times. The results provided in
Section 7 illustrate the change in average episode length over all
repeat experiments against time. Given that we are learning the be-
haviour of the takers, we are aiming to minimise the length of the
average episode.

7. RESULTS
Experiments on the simplest domains were relatively unhelp-

ful. All agents converged quickly to good results with little vari-
ation between approaches used. For both pitches of size 20x20 and
30x30, illustrated in Figures 3 and 4, it is important to consider
that both axis represent small changes in time in their given dimen-
sion and the differences between agents is both brief and insignif-
icantly small (only 0.4 seconds for pitch size 20x20). When tak-
ing into consideration the statistical variation between samples, no
one agent is seen to reliably be significantly better than any other.
Therefore, the problem domain at pitches of this size is too simple
to gain useful insight.
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Figure 3: Takers v KA06 at 20x20.

These results, however, have been included for comparison to
previous work on learning takers. Existing work against the same
keeper on pitches of size 20x20 had significantly worse perfor-
mance, converging at best to an average of 12.9 seconds [7], or
approximately equivalent performance, converging on average to
5.8 seconds [10]. All learning takers, both the existing and our own
base learner, outperform the standard hand coded takers defined by
[16] that perform consistantly around 15 seconds. Therefore, the
basic learner we have developed is both a suitable and highly com-
petitive test agent to compare our approaches to.

At a pitch size of 40x40 the problem appears to become suffi-
ciently difficult, with the base learner unable to converge quickly.
With this level of difficulty a clear difference in agents is now evi-
dent. All agents with reward shaping immediately benefit from the
additional domain knowledge with gains of up to approximately
4.5 seconds on average witnessed for takers using the combined
knowledge of both shaping functions.
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Figure 4: Takers v KA06 at 30x30.
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Figure 5: Takers v KA06 at 40x40.

Initially, all agents with reward shaping learn at an equivalent
rate to the base learner and so maintain their positive difference in
performance. However, after approximately two hours of training
the learning of takers using reward shaping begins to slow and the
base learner begins to outperform the agents using domain knowl-
edge. Therefore, in this specific problem domain the policy repre-
sented by the domain knowledge we have suggested is not optimal.
If more suitable domain knowledge were available a taker could
be designed to benefit both the initial gain in performance and in
the long term converge to the better performing policy discovered
naturally by the base learner.

Regardless, there is a benefit to initially using these reward shap-
ing functions. A useful extension to this work would consider
maintaining two value functions whilst learning begins. One that is
updated by the sum of the reward and the reward shaping function
and another updated solely by the reward. For the first two hours
of training (a domain specific parameter) the taker would decide on
which action to perform from the value function updated using the
shaping function, then after this time the reward shaping would be
stopped. Now only the value function not using the reward shap-
ing function would be maintained and would subsequently be used
for all further action decisions. In this manner the taker would re-
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ceive the initial performance improvement from exploiting the do-
main knowledge but later, instead of being hindered by this flawed
knowledge, would gain the benefit of exploring all potential deci-
sions and so match the superior converged performance of the base
learner.
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Figure 6: Takers v KA06 at 40x40 with Performance Variation
Illustrated.

Given that the reinforcement learning method is stochastic, it is
important at this time to consider the statistical variation in the re-
sults obtained. In Figure 6 the standard error has been illustrated to
highlight the variations we witnessed, similarly Figure 9 highlights
the same error measurements for agents in the 50x50 problem do-
main.

The results in Figure 6 empirically demonstrate that there is a
statistically significant gain in initial performance between the base
learner and the simplest reward shaping function. Also, all subse-
quent increases in the complexity of domain knowledge applied
through reward shaping result in a significant increase in perfor-
mance. These initial gains in performance are highlighted for clar-
ity in Figure 7.
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Figure 7: Takers v KA06 at 40x40 with Initial Performance
Highlighted.

Finally with regard to the 40x40 problem domain, it is support-
ive of our method to note that the slight difference in performance

previously noticed in the takers’ performances after convergence
is contradicted by Figure 6. Although the average performance of
the base learner is lower than all of the takers using reward shap-
ing, the upper bounds of variation in this result are higher than the
lower bounds of all takers using reward shaping and equivalent to
the average of some. Therefore the one benefit of using the ba-
sic learner instead of incorporating domain knowledge, namely the
perceived improvement in performance at the time of convergence,
is not statistically significant.
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Figure 8: Takers v KA06 at 50x50.
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Figure 9: Takers v KA06 at 50x50 with Performance Variation
Illustrated.

The results of Figures 8 and 9 further support the conclusions
made thus far. As previously seen in the change from pitch sizes of
30x30 to 40x40, there is a significant rise in difficulty when increas-
ing the pitch size from 40x40 to 50x50. Given the yet again higher
difficulty, a more significant improvement can and has been wit-
nessed when incorporating domain knowledge into multiple agents
co-learning in a single system.

Firstly, there is now a significant gap between the upper bound
of initial performance in takers using even just the simplest reward
shaping function and the the lower bound of initial performance by
the base learner. On average takers benefiting from both reward
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shaping functions can begin taking possession of the ball 6 seconds
faster than takers not using any reward shaping. The initial gain in
performance is highlighted in Figure 10.
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Figure 10: Takers v KA06 at 50x50 with Initial Performance
Highlighted.

This gain in performance remains roughly constant throughout
the first 4 hours of training. It then begins to shrink but still out-
performs the base learner for up to approximately 8 hours. Even
after the first 8 hours of training, the base learner can only match
the performance of the novel approaches and never significantly
outperforms any of them.

Furthermore, the agents solely encouraged to take heterogeneous
roles did adhere to the encouragement and after convergence were
seen to almost exclusively stick to their assigned roles. The ex-
ceptions being the specific contexts at which it was more bene-
ficial to performance to ignore the encouraged role and make a
non-characteristic action decision. By using RL with reward shap-
ing to encourage roles, these deviations from the encouraged role
were possible whereas an agent with enforced roles would not have
learnt to nor been able to exploit these specific contexts.

Finally, a closing note of some interest. It appears, in particular
in Figure 9 but also to a degree in Figure 6, that the variation in per-
formances achieved is notably smaller in agents making use of the
heterogeneous reward shaping. These results are not broad enough
to make any firm conclusions at this time, but it would be inter-
esting in a deeper study of the heterogeneous reward shaping for
multi-agent systems approach to explore this observation further.
It may be that this is characteristic of the encouragement of roles,
however it may also be the case that this is simply an artifact of
this specific piece of domain knowledge in this particular problem
domain.

8. CONCLUSION
In conclusion, we have demonstrated the applicability and ben-

efits of using potential based reward shaping in multi-agent rein-
forcement learning. By incorporating domain knowledge in an
agents design the agent can converge quicker to an equal or su-
perior policy than agents learning by reinforcement alone.

The results documented here are a first step in demonstrating
the potential benefit of heterogeneous reward shaping to encour-
age roles. We have successfully designed heterogeneous agents
that co-operate in a multi-agent system to outperform agents using
either homogeneous reward shaping functions or incorporating no

domain knowledge. By encouraging roles through reward shaping,
as opposed to enforcing them through hard-coded limitation to ei-
ther actions or state representations, agents can choose to exploit
the given domain knowledge, and so benefit from fast convergence
rates, but also can choose still to explore allowing the discovery of
optimal policies where they diverge in specific contexts from their
encouraged roles.

Although the specific reward shaping functions implemented have
used domain specific knowledge the types of domain knowledge
represented are generally applicable. The knowledge that takers
should try to stay separate is an example of knowledge regarding
how agents should maintain states relative to each other. Maintain-
ing a state relative to either team-mates or opponents is a common
type of knowledge applicable in many multi-agent systems. For
example, it has been shown in the predator/prey problem domain
that it is beneficial for predators to consider the relative location of
its supporting predator to aid co-ordination [20]. Similarly, having
one tackler and one marker is specific to takers in KeepAway but
the knowledge that agents should specialise into roles is common
in multi-agent systems. For example, again in the predator/prey
problem domain, it has been shown that it is beneficial to have one
predator take a hunting role and another take a scouting role [20].
Therefore the use of reward shaping, both homogeneous, heteroge-
neous and combined, could be applied in general to any multi-agent
system that would benefit from agents having these types of knowl-
edge with the expected benefits being similar to those documented
in the KeepAway domain.

Finally, our last contribution is that of the taker learning with the
combined domain knowledge of both encouraging separation and
roles. This taker has the best currently published performance of
any taker in the RoboCup KeepAway problem domain.

We intend to continue this work along the following avenues.
Firstly, we believe that there is the potential to apply similar re-
ward shaping functions to the keepers in a true multi-agent learning
domain. Recent work [8] has expanded the keepers to learn both
whilst on and off the ball. Currently, despite simultaneous learn-
ing, the behaviour of keepers with the ball is very different to that
of those without the ball. However, the application of a separation
based reward shaping function could be adapted to further improve
the performance of the keepers. This continued cycle of improving
takers and then improving keepers will continue to push research
efforts in this problem domain. Eventually, leading to research into
the simultaneous learning of both keepers and takers.

A larger more general contribution however would continue to
investigate the potential of heterogeneous reward shaping in multi-
agents systems. Again this could foreseeably be applied to a true
multi-agent learning set of keepers, with perhaps some keepers en-
couraged to mislead takers by making runs off the ball and oth-
ers encouraged to sneak away from markers to true open posi-
tions. Other classic multi-agent domains, such as task distribution
or predator/prey, may also be interesting to study when applying
this technique to highlight its general applicability and widen the
audience to this method.
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ABSTRACT
Programming robot or virtual agent behaviors can be a chal-
lenging task, and makes attractive the prospect of automat-
ically learning the behaviors from the actions of a human
demonstrator. However, learning complex behaviors rapidly
from a demonstrator may be difficult if they demand a large
number of training samples. We describe an architecture for
rapid learning of recurrent behaviors from demonstration.
The architecture is based on deterministic hierarchical finite-
state automata (HFAs) with classification algorithms taking
the place of the state transition function. This architecture
allows for task decomposition, statefulness, parameterized
features and behaviors, per-behavior feature set customiza-
tion, and storage of learned behaviors in libraries to be used
later on as elements in more complex behaviors. We describe
the system, then illustrate its application in a simple, but
nontrivial, foraging task involving multiple behaviors.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Design, Human Factors

Keywords
Learning from Demonstration, Hierarchical Finite-state Au-
tomata, Agents, Robotics

1. INTRODUCTION
Our goal is to enable the rapid, real-time training of com-

plex, stateful agent behaviors. Agent behavior training has
applications in a variety of fields, including 3D animation,
game level design, and autonomous robotics. In these areas,
programming custom domain-specific behaviors on-the-fly
may not be desirable or possible, and so it is attractive to
instead have the agent learn them from a trainer.

One of the challenges facing training, however, is the con-
flict between the real-time nature of training and the large
numbers of samples that may be demanded by a challeng-
ing, high-dimensional domain. It may not be feasible to
ask a trainer to perform hundreds of trials to satisfy the
needs of a learning algorithm. Thus, one of our goals is to
develop methods to reduce domain complexity, and ideally
reduce the number of necessary samples, while not sacrific-
ing the gamut of learnable behaviors. We do this by taking

advantage of domain knowledge in various ways, and thus
our method lies somewhere in the middle-ground between
explicit programming (that is, specification) and full, unfet-
tered learning.

Our learned agent behaviors take the form of determinis-
tic hierarchical finite-state automata (HFA). Obviously HFA
are not as expressive as other models: for example, the paral-
lelism inherent in Petri Nets; or the richer computational ca-
pacity afforded stack automata or arbitrary functions. The
motivation underlying the choice of HFAs is twofold. First,
HFA are a widely adopted tool for modeling agent and robot
behaviors, rich enough for a broad range of common be-
haviors, yet are simple enough to allow the straightforward
demonstration of our learning approach. Second, we chose
HFAs as they enabled us to do task decomposition easily.

There are many HFA formulations. Ours is straightfor-
ward: a learned behavior is a standard Moore Machine
finite-state automaton, where each state is associated with a
certain behavior, and also with a transition function which
stipulates, given the current world situation, which state to
transition to in the next time step. There is a start state
but no accepting states.

Our approach is to build an HFA iteratively: we allow the
user to easily create an HFA based on a current library of
behaviors (some of which may themselves be HFAs). When
the HFA is complete, it is added to the library to help build
a more complex higher-level HFA. One can create of course
an HFA by coding it by hand: but of interest to us is the
ability to learn the HFA by watching a demonstrator ma-
nipulate the agent. As the agent moves about in the en-
vironment, the demonstrator directs it to perform various
behaviors (and thus to transition to various new states).
Each time the demonstrator requests such a transition, the
system records the transition and the current world situa-
tion. At the end of the training period, from these records
the system builds, for each state (behavior), a learned tran-
sition function indicating under what conditions the agent
should transition to new states. This is essentially a super-
vised learning task and can employ a variety classification
algorithms: at present our learned models take the form of
decision trees.

The approach also lends itself to both stochastic and de-
terministic transitions. Decision trees traditionally compute
classes deterministically, based on the most common class
among the relevant training examples. Our method can be
set up to do this; or to choose classes stochastically based
on the proportion of examples from a given class. The ex-
periments in this paper apply the latter method.
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The learning domain for an HFA behavior can obviously
be complex and of high dimensionality, depending on the
number of basic behaviors and the dimensionality of the
agent’s feature vector. This in turn can require a large num-
ber of training sessions to adequately describe the domain.
It is not reasonable to expect a demonstrator to perform
that many training sessions, and so it is important to re-
duce the domain space complexity or training difficulty. We
have done this in three ways:

• An HFA encourages task decomposition. Rather than
learn one large behavior, the system may be trained
on simpler behaviors, which are then composed into a
higher-level learned behavior. This essentially projects
the full learning space into multiple lower-dimensional
spaces.

• Feature vector reduction. Our system allows the user
to specify precisely those features he feels are neces-
sary for a given learned HFA, which in turn dramati-
cally reduces the learning space. Each HFA, including
lower-level HFAs, may have its own different reduced
feature vector.

• Generalization by parametrization. All behaviors, in-
cluding HFAs themselves, may be parameterized with
targets: for example, rather than create a behavior
go-to-home-base, we can create a general behavior go-
to(A), and allow for higher-level behaviors to specify
the meaning of the target A at a future time. This
can significantly reduce the number of behaviors which
must be trained.

By employing these complexity-reduction measures, our
system ideally enables the rapid construction of complex be-
haviors, with internal state and a variety of sensor features,
in real time entirely by training from demonstration.

The remainder of the paper is laid out as follows. We be-
gin with a discussion of related work. We then describe the
basic HFA model and our approach to learning the transi-
tion functions in the automaton. We follow this with a train-
ing example of a nontrivial foraging behavior, then conclude
with a discussion of future directions.

2. RELATED WORK
Our approach generally fits under the category of learning

from demonstration [3], an overall term for training agent ac-
tions by having a human demonstrator perform the action
on behalf of the agent. Because the proper action to per-
form in a given situation is directly provided to the agent,
this is broadly speaking a supervised learning task, though
a significant body of research in the topic actually involves
reinforcement learning, whereby the demonstrator’s actions
are converted into a reinforcement signal from which the
agent is expected to derive a policy. The lion’s share of
learning from demonstration literature comes not from vir-
tual or game agents but from autonomous robotics. For a
large survey of the area, see [2].

Learning Plans. One learning from demonstration area,
closely related to our own research, involves the learning
of largely directed acyclic graphs of behaviors (essentially
plans) from sequences of actions [1, 16, 18, 21], possibly

augmented with sequence iteration [25]. Like our approach,
these plans are often parameterizable.

Such plan networks generally have limited or no recur-
rence: instead they usually tend to be organized as se-
quences or simultaneous groups of behaviors which activate
further behaviors downstream. This is mostly a feature of
the problem being tackled: such plans are largely induced
from ordered sequences of actions intended to produce a re-
sult. Since we are training goal-less behaviors rather than
plans, our model instead assumes a rich level of recurrence:
and for the same reason the specific ordering of actions is
less helpful.

Learning Policies. Another large body of work in learning
from demonstration involves observing a demonstrator per-
form various actions when in various world situations. From
this the system gleans a set of 〈situation, action〉 tuples per-
formed and builds a policy function π(situation) → action
from these tuples. This can be tackled as a supervised learn-
ing task [4, 5, 8, 10, 12, 15]. However, some literature in-
stead transforms the problem into a reinforcement learning
task by providing the learner only with a reinforcement sig-
nal based on how closely the learned policy matches the
tuples provided by the demonstrator [9, 24]. This is curious
given that the problem is, in essence, supervised; the rein-
forcement methods are in some sense working with reduced
information.

Our approach differs from these methods in an impor-
tant way. Instead of learning situation→action rules, our
model learns the transition functions of an HFA with pre-
defined internal states, each corresponding to a possible ba-
sic behavior. This enables the demonstrator to differentiate
transitions to new behaviors not just based on the current
world situation but also the current behavior. That is, we
learn rules of the form 〈previous action, situation〉 →action.
Another, somewhat different use of internal state would be
to distinguish between aliased observations of hidden world
situations, something which may be accomplished through
learning hidden Markov models (for example, [13]).

Hierarchical Models. The use of hierarchies in robot or
agent behaviors is very old indeed, going back as early as
Brooks’s Subsumption Architecture [7]. Hierarchies are a
natural way to achieve layered learning [22] via task decom-
position. This is a common strategy to simplify the state
space: see [11] for an example. While it is possible in these
cases to induce the hierarchy itself, usually such methods
iteratively compose hierarchies in a bottom-up fashion.

Our HFA model bears some similarity to hierarchical be-
havior networks such as those for virtual agents [6] or phys-
ical robots [17], in which feed-forward plans are developed,
then incorporated as subunits in larger and more complex
plans. In such literature, the actual application of hierar-
chy to learning from demonstration has been unexpectedly
limited. However, learning from demonstration has been ap-
plied more extensively to multi-level reinforcement learning,
as in [23], albeit with a fixed hierarchy.

Language Induction. One cannot mention learning finite
state automata without noting that they have a long his-
tory in language induction and grammatical inference, with
a correspondingly massive literature. For recent surveys of
techniques using automata for grammar induction, see [19,
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Figure 1: A simple finite-state automaton for wall
following (counter-clockwise). All conditions not
shown are assumed to indicate that the agent re-
main in its current state.

26]. However the goal of this literature is fundamentally
different from ours in this paper. Specifically, in language
induction, the learning algorithm is given a set of positive
and negative string examples and generates an automaton
which induces an underlying language. Typically these al-
gorithms make no assumptions about the number of states,
assume the states are unlabelled, typically assume a small
set of transition conditions, and include accepting or reject-
ing states. In contrast we are not interested in terminating
automata, and seek to induce only the edges among a pre-
specified set of labeled states, given examples with labelled
transitions from state to state.

3. THE HFA MODEL
Using our system, a trainer iteratively develops new finite-

state automata, whose states encompass behaviors drawn
from a behavior library. An automaton is learned by ob-
serving the trainer as he selects various behaviors in various
situations. Once learned, the automaton can then be added
as a behavior in the library, and then may be itself used as
a state in more complex automata. In the following, we first
describe the hierarchical finite state automaton model, and
in the next section we detail our approach for learning the
automaton by demonstration from the trainer.

States and Behaviors. Our HFAs model Moore machines:
that is, each state corresponds to a behavior, and when in a
state, the HFA performs that behavior. A behavior may be
an atomic behavior or may itself be another HFA, leading to
the hierarchical definition of the model. Atomic behaviors
are hard-coded behaviors provided by the system. For ex-
ample, the behavior rotate-left might be an atomic behavior:
when employing this behavior, the agent will spin counter-
clockwise at some rate. The HFA always begins in the start
state, associated with a special idle behavior, and which al-
ways transitions immediately to some other state. Another

special state is the optional done state, whose behavior sim-
ply sets a done flag and immediately transitions to the start
state. This is used to potentially indicate to higher-level
HFAs that the behavior of the current HFA is “done”.

Figure 1 shows a simple automaton with four states, corre-
sponding to the behaviors start, rotate-left, rotate-right, and
forward. It may appear at first glance that not all HFAs can
be built with this model: for example, what if there were two
states in which the rotate-left behavior needed to be done?
This can be handled by creating a simple HFA which does
nothing but transition to the rotate-left state and stay there.
This automaton is then stored as a behavior called rotate-
left2 and used in our HFA as an additional state, but one
which performs the identical behavior to rotate-left.

Features. Transitions from state to state are triggered by
observable features of the environment. One such fea-
ture might be distance-to-closest-obstacle-on-my-left. At any
time, this feature yields a non-negative value indicating
the distance to such an obstacle. In our system features
presently take three forms: categorical features, which re-
turn unordered values like “red” or “blue”; continuous fea-
tures, which return real-valued numbers (like distances);
and toroidal features, which return real-valued numbers but
which are assumed to wrap around in a toroidal fashion (like
angles). Boolean features are typically modeled as categori-
cal features. One special boolean feature is the done feature,
which is true if the current behavior is a lower-level HFA,
and if it has triggered its done flag.

Targets. Importantly, our approach supports parameter-
ized, general-purpose behaviors and transitions. Rather
than create a behavior called go-to-obstacle-number-42, we
can create a behavior called go-to(A), where A may be speci-
fied later. Similarly, rather than the aforementioned feature
distance-to-closest-obstacle-on-my-left, we might instead have
the more general feature distance-to(B). This separates fea-
tures and behaviors from the targets to which they apply.
For example, a feature or behavior may be either specified
with regard to one or more ground targets (“obstacle 42”
or “the closest obstacle on my left”)— resulting in a behav-
ior such as go-to(obstacle-42)—or the target may simply be
left unspecified (A), to be bound to a ground target at some
later time. In the latter case, the unbound target is called a
parameter.

When an HFA employs features or behaviors with as-
of-yet unbound targets (parameters), it must itself present
those parameters when used as a behavior by some higher-
level HFA. Thus HFAs themselves may be parameterized.

Transitions. In traditional finite-state automata, transi-
tions are represented by directed edges between nodes, each
labelled with a condition which may or may not be true
about the current features of the environment. Without
loss of generality, it’s more useful for us to think of a transi-
tion function which maps the current state and the current
feature vector into a new state. The start state always tran-
sitions to a specific other state; and the done state always
transitions to the start state.

Operating the HFA. Each timestep the HFA is advanced
one tick: it performs one step of the behavior associated

Page 63 of 99



with its current state, then applies the transition function
to determine a new state for next timestep, if any. When a
performed behavior is itself an HFA, this operation is recur-
sive: the child HFA likewise performs one step of its current
behavior, and applies its transition function. Additionally,
when an HFA transitions to a state whose behavior is an
HFA, that HFA is initialized: its initial state is set to the
start state, and its done flag is cleared.

Formal Model. For the purposes of this work, we define
the class of hierarchical finite-state automata models H as
the set of tuples 〈S,F , T,B, M〉 where:

• S = {S0, S1, . . . , Sn} is a set of states, including a dis-
tinguished start state S0, and possibly also one done
state S∗. Exactly one state is active at any time.

• F = {F1, F2, . . . , Fn} is a set of observable features in
the environment. The set of features is partitioned
in three disjoint subsets representing categorical (C),
continuous (R) and toroidal (A) features. Each Fi can
assume a value fi drawn from a finite (in the case of C)
or infinite (in the case of R and A) number of possible
values. At any point in time, the present assumed val-
ues "f = 〈f1, f2, . . . , fn〉 for each of the F1, F2, . . . , Fn

are known as the environment’s current feature vector.

• T : F1×F2× . . .×Fn×S → S is a transition function
which maps a given state Si, and the current feature
vector 〈f1, f2, . . . , fn〉, onto a new state Sj . The done
state S∗ is the sole state which transitions to the start
state S0, and does so always: ∀Sk &= S∗ ∀"f T ("f, Sk) &=
S0 and ∀"f : T ("f, S∗) = S0.

• B = {B1, B2, . . . , Bn} is a set of atomic behaviors. By
default, the special behavior idle, which corresponds to
inactivity, is in B, as may also be the optional behavior
done.

• M : S → H ∪ B is a one-to-one mapping function
of states to basic behaviors or hierarchical automata.
M(S0) = idle, and M(S∗) = done. M is constrained by
the stipulation that recursion is not permitted, that is,
if an HFA H ∈ H contains a mapping M which maps to
(among other things) a child HFA H ′, then neither H ′

nor any of its descendent HFAs may contain mappings
which include H.

We further generalize the model by introducing free vari-
ables (G1, . . . , Gn) for basic behaviors and features: these
free variables are known as targets. The model remains un-
altered, by replacing behaviors Bi with Bi(G1, . . . , Gn) and
features Fi with Fi(G1, . . . , Gn). The main differences are
that the evaluation of the transition function and the exe-
cution of behaviors will both be based on ground instances
of the free variables.

4. LEARNING FROM DEMONSTRATION
The above mechanism is sufficient to hand-code HFA be-

haviors to do a variety of tasks; but our approach was meant
instead to enable the learning of such tasks. Our learning
algorithm presumes that the HFA has a fixed set of states,
comprising the combined set of atomic behaviors and all pre-
viously learned HFAs. Thus, the learning task consists only

of learning the transitions among the states: given a state
and a feature vector, decide which state (drawn from a fi-
nite set) to transition to. This is an ordinary classification
task. Specifically, for each state Si we must learn a classi-
fier "f → S whose attributes are the environmental features
and whose classes are the various states. Once the classi-
fiers have been learned, the HFA can then be added to our
library of behaviors and itself be used as a state later on.

Because the potential number of features can be very high,
and many unrelated to the task, and because we want to
learn based on a very small number of samples, we wish
to reduce the dimensionality of the input space to the ma-
chine learning algorithm. This is done by allowing the user
to specify beforehand which features will matter to train a
given behavior. For example, to learn a Figure-8 pattern
around two unspecified targets A and B, the user might
indicate a desire to use only four parameterized features:
distance-to(A), distance-to(B), direction-to(A), and direction-
to(B). During training the user temporarily binds A and B to
some ground targets in the environment, but after training
they are unbound again. The resulting learned behavior will
itself have two parameters (A and B), which must ultimately
be bound to use it in any meaningful way later on.

The training process works as follows. The HFA starts in
the “start” state (idling). The user then directs the agent to
perform various behaviors in the environment as time pro-
gresses. When the agent is presently performing a behavior
associated with a state Si and the user chooses a new be-
havior associated with the state Sj , the agent transitions
to this new behavior and records an example, of the form
〈Si, "f, Sj〉, where "f is the current feature vector. Immedi-
ately after the agent has transitioned to Sj , it turns out to
be often helpful to record an additional example of the form
〈Sj , "f, Sj〉. This adds at least one “default” (that is, “keep
doing state Sj”) example, and is nearly always correct since
in that current world situation the user, who had just tran-
sitioned to Sj , would nearly always want to stay in Sj rather
than instantaneously transition away again.

At the completion of the training session, the system then
builds transition functions from the recorded examples. For
each state Sk, we build a decision tree DSk based on all ex-
amples where Sk is the first element, that is, of the form
〈Sk, "f, Si〉. Here, "f and Si form a data sample for the classi-

fier: "f is the input feature and Si is the desired output class.
If there are no examples at all (because the user never tran-
sitioned from Sk), the transition function is simply defined
as always transitioning to back to Sk.

At the end of this process, our approach has built some
N decision trees, one per state, which collectively form the
transition function for the HFA. After training, some states
will be unreachable because the user never visited them, and
so no learned classification function ever mapped to them.
These states may be discarded. The agent can then be left
to wander about in the world on its own, using the resulting
HFA.

Though in theory many classification algorithms are ap-
plicable (such as K-Nearest-Neighbor or Support Vector Ma-
chines), in our experiments we chose to use a variant of the
C4.5 Decision Tree algorithm [20] for several reasons:

1. Many areas of interest in the feature space of our agent
approximately take the form of rectangular regions
(angles, distances, etc.).
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Figure 2: The foraging scenario in our testbed.

2. Decision trees nicely handle various kinds of data: in
our case, we used categorical, real-valued, and toroidal
data (the latter requiring so-called “pie-slice” decision
tree splits).

3. Decision trees are particularly adept at handling un-
scaled dimensions in the feature space. In our case, we
would otherwise be faced with asking how many units
of distance were equivalent to a degree of angle, or to
a change from “true” to “false”.

In decision trees, the class is most commonly computed
deterministically: the leaf node in a decision tree is set to
the class appearing among the plurality of training examples
which wound up at that leaf node. During the implemen-
tation and the evaluation of our algorithm, we found out
that in many cases we would not want a deterministic clas-
sification. For example, when performing a wall-following
behavior, we’d need to turn left some percentage of time.
As a result, our decision tree procedure can also compute
classes stochastically, with probability based on the propor-
tion of relevant examples at a given leaf node rather than a
plurality vote. In the following example, we solely use this
second method.

5. EXAMPLE
We have implemented an experimental research testbed

for training agents using this approach (Figure 2), writ-
ten with the MASON multiagent simulation toolkit [14] (see
http://cs.gmu.edu/∼eclab/projects/mason/). In the environ-
ment, our agent can sense a variety of things: the relative lo-
cations of obstacles, other agents of different classes, certain
predefined waypoints, food locations, etc. In this testbed,
the experimenter trains an HFA by first selecting features
relevant to the behaviors (see Figure 3), then grounding tar-
gets for behaviors and features, then directing the agent to

Figure 3: Feature selection and target assignment.

perform behaviors by pressing various buttons or keystrokes,
and then finally adding the trained HFA to the system li-
brary.

We have successfully trained several simple behaviors,
tracking and acquiring a target, wall-following, generic ob-
stacle circumnavigation, and tracing paths (such as a figure
eight path between two targets). In this section, we give
an example where we have trained the agent to perform a
moderately complex foraging task: to harvest food from food
sources and bring it back to deposit at the agent’s central
station. Food can be located anywhere, as can the station.
Food at a given location can be in any concentration, and
depletes, eventually to zero, as it is harvested by the agent.
The agent can only store so much food before it must return
to the station to unload. There are various corner cases:
for example, if the agent depletes food at a harvest loca-
tion before it is full, it must continue harvesting at another
location rather than return to the station. The scenario is
shown in Figure 2: the black circle is the agent, pink areas
are food sources, and the red “×” (labelled “Home Base”) is
the station.

Foraging tasks are of course old hat in robotics, and are
not particularly difficult to code by hand. But training such
a behavior is less trivial. We selected this task as an ex-
ample because it illustrates a number of features special to
our approach: our foraging behavior is in fact a three-layer
HFA hierarchy; employs “done” states; involves real-valued,
toroidal, and categorical (boolean) inputs; and requires one
behavior with an unbound parameter used in two different
ways.

The behavior is shown in Figure 4. It requires seven ba-
sic behaviors: start and done, forward, rotate-left, rotate-
right, load-food (deplete the current location’s food by 1,
and add 1 to the agent’s stored food), and unload-food (re-
move all the agent’s stored food). It also requires several
features: distance-to(A), angle-to(A), food-below-me (that is,
how much food is located here), food-stored-in-me, and done.
Finally, it requires two targets to bind to A: the station and
nearest-food.

From this we manually decomposed the foraging task into
a hierarchy of four HFA behaviors, and trained each one in
turn as described next. All told, we were able to train all four

Page 65 of 99



Rotate 
Left

Rotate 
Right

Forward

If A
is to my left

If Ai s roughly
ahead

AlwaysStart

If A is roughly
ahead

If A
is to my right

If A
is to my left

GoTo (A)

Done

If A  is close 
enough

If A
is to my right

If A is close 
enough

If A is close 
enough

Load 
Food

GoTo 
(Nearest 

Food)

Done If I Am Full Start

If No Food is 

Below Me and 

If I am Not Full

If Food is 

Below Me and 

I Am Not Full

If I Am Not Full
If I Am Full

Harvest

Unload 
Food

GoTo 
(Station)

Done If I Am Empty Start

If I Am Empty If I Am Not Empty

If I Am Near 
the Station

Deposit

HarvestDeposit

Start

If Done

If Done

Forage

Always

Figure 4: The Forage behavior and its sub-behaviors: Deposit, Harvest, and GoTo(Parameter A). All condi-
tions not shown are assumed to indicate that the agent remain in its current state.

behaviors, and demonstrate the agent properly foraging, in
a manner of minutes.

The GoTo(A) Behavior. This behavior caused the agent
to go to the object marked A. The behavior was a straight-
forward bang-bang servoing controller: rotate left if A is to
the left, else rotate right if A is to the right; else go forward;
and when close enough to the target, enter the “done” state.

We trained the GoTo(A) behavior by temporarily declar-
ing a marker in the environment to be Parameter A, and
reducing the features to just distance-to(A) and angle-to(A).
We then placed the agent in various situations with respect
to Parameter A and“drove”it over to A by pressing keys cor-
responding to the rotate-left, rotate-right, forward, and done
behaviors. After a short training session, the system quickly
learned the necessary behaviors to accurately go to the tar-
get and signal completion. Once completed, it was made
available in the library as go-to(A).

The Harvest Behavior. This behavior caused the agent to
go to the nearest food, then load it into the agent. When
the agent had filled up, it would signal that it was done.
If the agent had not filled up yet but the food has been
depleted, the agent would search for a new food location and
continue harvesting. This behavior employed the previously-
learned go-to(A) behavior as a subsidiary behavior, binding
its Parameter A to the nearest-food target. This behavior
also employed the features food-below-me and food-stored-
in-me.

We trained the Harvest Behavior by directing the agent
to go to the nearest food, then load it, then (if appropriate)
signal “done”, else go get more food. We also placed the
agent in various corner-case situations (such as if the agent
started out already filled up with food). Again, we were
able to rapidly train the agent to perform harvesting. Once
completed, it was made available in the library as harvest.
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The Deposit Behavior. This behavior caused the agent
to go to the station, unload its food, and signal that it is
done. If the agent was already empty when starting, it
would immediately signal done. This behavior also used the
previously-learned go-to(A) behavior as a subsidiary state
behavior, but instead bound its Parameter A to the station
target. It used the features food-stored-in-me and distance-
to(station). We trained the Deposit Behavior in a similar
manner as the Harvest Behavior, including various corner
cases. Once completed, it was made available in the library
as deposit.

The Forage Behavior. This simple top-level behavior just
cycled between depositing and harvesting. Accordingly, this
behavior employed the previously-learned deposit and har-
vest behaviors. The behavior used only the done feature.

6. CONCLUSION
In this paper, we have presented an approach for train-

ing agent behaviors using a hierarchical deterministic finite
state automata model and a classification algorithm, imple-
mented as a variant of the C4.5 algorithm. The main goal of
our approach is to enable users to train agents rapidly based
on a small number of training examples. In order to achieve
this goal, we trade off learning complexity with training ef-
fort, by enabling trainers to decompose the learning task in a
hierarchical manner, to learn general parameterized behav-
iors, and to explicitly select the most appropriate features to
use when learning. This in turn reduces the dimensionality
of the learning problem.

We have developed a proof of concept testbed simulator
which appears to work well: we can train parameterized,
hierarchical behaviors for a variety of tasks in a short period
of time. We are presently deploying the platform to robots
in our laboratory. In the mean time, there are a number of
interesting issues that remain to be dealt with.

Multiple Agents. Our immediate next goal is to move to
training multiple agents. In the general case, multiagent
learning is a much more complex task than single-agent
learning, involving game-theoretic issues which may be well
outside the scope of the learning facility. However we be-
lieve there are obvious approaches to certain simple mul-
tiagent learning scenarios: for example teaching agents to
perform actions as homogeneous behavior groups (perhaps
by training an agent with respect to other agents not un-
der his control, but moving them similarly). Another area
of multiple agent training may involve hierarchies of agents,
with certain agents in control of teams of other agents.

Unlearning. There are two major reasons why an agent
may make an error. First, it may have learned poorly due
to an insufficient number of examples or unfortunately lo-
cated examples. Second, it may have been misled due to
bad examples. This second situation arises due to errors in
the training process, something that’s surprisingly easy to
do! When an agent makes a mistake, the user can jump
in and correct it immediately, which causes the system to
drop back into training mode and add those new examples
to the behavior’s collection. However this does not cause
any errant examples to be removed. Since the agent made
an error based not on examples but rather based on the

learned function, identifying which examples were improper,
and whether to remove them, may prove a challenge.

Programming versus Training. We have sought to train
agents rather than explicitly code them. However we also
aimed to do so with a minimum of training. These goals are
somewhat in conflict. To reduce the training necessary, we
typically must reduce the problem space complexity and/or
dimensionality. We have so far done so by allowing the user
to inject domain knowledge into the problem (via task de-
composition, for example, or by explicitly training for cer-
tain corner cases). This is essentially a step towards having
the user explicitly declare part of the solution rather than
have the learner induce it. So is this learning or coding?

We think that training of this sort is somewhere in-
between: in some sense the learning algorithm is relieving
the trainer from having to “code” everything himself. The
question worth studying is: how much learning is useful be-
fore the number of samples required to learn outweighs the
reduced “coding” load, so to speak, on the trainer?

Other Representations. HFAs cannot straightforwardly
do parallelism or planning. We chose HFAs largely because
they were simple enough to make training intuitively feasi-
ble. Now that we’ve demonstrated this, we wish to examine
how to train with other common representations, such as
Petri nets or hierarchical task network plans, to demonstrate
the generality of the approach.
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ABSTRACT
Autonomous robots provide many tangible benefits in a mul-
titude of exploration and/or search and rescue tasks. In
both types of applications, robots offer to both reduce the
cost of missions and the risk exposure of humans. How-
ever, such benefits are contingent on robots performing basic
autonomous navigation tasks at significantly higher speeds
than they currently do, without requiring algorithms with
high computational requirements. In this paper, we present
two such approaches to autonomous robot navigation: (i)
a policy search (neuro-evolutionary) algorithm and (ii) a
policy gradient algorithm. Our results show that effective,
adaptive navigation techniques can be developed for mobile
robots in an exploration domain when the robots have simple
sensing and articulation capabilities. In addition, we show
that policy gradient approaches thrive in difficult navigation
tasks but suffer in noisy environments. Policy search meth-
ods on the other hand, handle sensor and actuation noise
well, but suffer when the navigation tasks become complex.
Finally, we show that there is a fundamental difference in be-
havior when the objective functions are based on different
time scales, and though functionally equivalent, simply sum-
ming short-term objective values to provide a time-extended
objective value (or vice versa) does not provide a “fair” com-
parison of these two algorithms.

Categories and Subject Descriptors
I.2.6 [AI]: Robotics

General Terms
Algorithms, Experimentation

Keywords
Learning::Single Agent; Learning::Evolution, Adaptation

1. INTRODUCTION
Advances in mobile autonomous robots have provided so-

lutions to complex tasks previously only considered achiev-
able by humans. Such domains include planetary or un-
derwater exploration [15, 17], operation in urban environ-
ments [4], and unmanned flight [10]. In each of those do-
mains, autonomous navigation plays a key role in the suc-
cess of the robots. However, as navigation has become more
complex, algorithms have become both domain specific and
resource intensive [29].

Indeed, successful navigation algorithms need to operate
in partially observable and dynamic environments that are
often stochastic in nature. One approach to providing such
capabilities is the use of domain knowledge at the expense
of high sensing, computational and power requirements [28].
Another approach is to provide a mapping from sensory
inputs to actions that statistically capture the key behav-
ioral objectives without needing a model or detailed domain
knowledge. Such methods are well suited to domains where
the tools available to learn from past experience and adapt
to emergent conditions are limited [5].

In this work we explore two such approaches, policy search
and policy gradient based navigation [8, 11]. Policy search
approaches are methods where control is achieved through a
search across policies. This search through a population of
policies allows for the discovery of new and robust control
strategies. Policy search approaches have been successfully
applied to benchmark problems [14] as well as real world
control problems [1]. Often the policy, an artificial neural
network, is simple in construction and therefore is inexpen-
sive to modify and evaluate in practice, providing resource
cost benefits as well.

Policy gradient algorithms, on the other hand, modify
the parameters of a policy directly, rather than searching
through sets of potential control strategies [22]. They are
a generalization of table-based reinforcement learning algo-
rithms where a look-up table is replaced by a function ap-
proximator, in this case an artificial neural network [25].
The use of the gradient allows for determining the direction
of change in the parameters that will provide the largest im-
provement to the policy. Policy gradient methods have been
successfully applied to multiple problems, including robot
soccer [23], biped locomotion [27], and multiagent learn-
ing [2]. As in the case of policy search approaches, the use
of a neural network as the function approximator provides
a low cost policy that can be readily modified.

In this paper we provide both a policy search and a pol-
icy gradient approach to adaptive navigation for robots with
limited resources, operating in a partially observable envi-
ronment. In addition, we explore the relationship between
policy search and policy gradient methods, with a particu-
lar focus on the impact objective functions and performance
evaluation time scales on performance. In Section 1.1 we
briefly discuss related work. In Section 2 we describe the
state and action spaces, along with the policy search and pol-
icy gradient algorithms. In Section 3 we present the problem
domain and provide the robot capabilities. In Section 4 we
describe the experimental approach, and provide the simula-

Page 69 of 99

Proceedings of the AAMAS Workshop on Adaptive and Learning Agents, May 2010, Toronto, Canada



tion results. Finally, in Section 5 we provide a summary and
a discussion of the results as well as directions for further
research.

1.1 Related Work
Model-free learning algorithms such as reinforcement learn-

ing can be used for navigation applications [24]. The online
reinforcement learning algorithm OLPOMDP [3] has been
used successfully in applications including general robot con-
trol [9]. By operating on a parameterized functional repre-
sentation of the knowledge gained during operation, instead
of on specific models, important features of the world in
which the robot (or agent) operates can be the focus. This
allows adaptive behavior to be learned as a connection be-
tween features, rather than the degree to which a provided
model is accurate.

Reward shaping in reinforcement learning for robotics al-
lows the balancing of specific agent tasks and automatic
agent-agent or agent-environment interactions [6, 7]. The
methodology was based on domain knowledge first, and then
augmented by suggestions from an external trainer to“shape”
the agent learning progress. The concept was further ex-
panded to reinforcement learning for situated agents [20].

The use of reward shaping concepts has proven successful
in the area of robotics, including its application to policy
search techniques for navigation and non-Markovian pole
balancing [13, 14]. More recently analysis was done to eval-
uate the impact of shaping on reward horizons [19] and gen-
erate a methodology to allow dynamically shaped rewards
(rather than the typical static shaped reward) [18]. Further
extensions on dynamic shaping have moved into the area
of adaptive shaping in general robot domains [16] and the
robot soccer domain [12].

Of particular interest to the work presented in this pa-
per is the empirical analysis of genetic algorithms and tem-
poral difference learning in reinforcement learning robotic
soccer [26, 30]. Both techniques are model-free control ap-
proaches, and the work presented in these papers provides a
comprehensive analysis of the behavior of both in a domain
where the robots have limited resources, including observa-
tional capabilities.

2. ROBOT NAVIGATION
In problems where resources are limited, particularly in

the robots’ abilities to observe their surroundings, correctly
interpreting the incoming information and mapping it to
coherent actions (e.g., navigation) is a key concern. In this
work, we explore three algorithms for navigation based on
environment information obtained from sonar and inertial
sensors: i) a deterministic navigation algorithm is used to
provide a deterministic action choice based on state infor-
mation collected, ii) a policy search algorithm that uses a
multi-layered neural network as a policy and an evolutionary
algorithm as the search method to assign a “quality” to each
potential path, and iii) a policy gradient algorithm that uses
a multi-layered neural network for the policy function.

2.1 State and Action Spaces
In the work presented here, the mobile robotic platform

has a limited set of sensing capabilities, and provides a non-
deterministic outcome of actions taken. As a result, a unique
set of spaces is required to accurately represent the environ-
ment surrounding the robot and provide maximum articu-

lation capabilities.
To encode as much information as possible from the sen-

sors, as simply as possible, incoming state details are dis-
tilled into two state variables:

Object Distance: A distance to the nearest object dθi is
provided for each vehicle relative angle θi. This repre-
sents a potential obstacle, such as a wall or rock.

Destination Heading: The difference between the poten-
tial path heading θi and the vehicle relative destination
heading αdes is provided. This indicates how signifi-
cant of a correction is required for the robot to point
directly toward the destination.

This state representation is of course quite predictable in
the destination heading, never exceeding |180| degrees and
symmetrical about the destination heading αdes. The ob-
ject distance state variable can vary widely however, and
depends strongly on the resolution of the environment sens-
ing available. Both state variables also depend on the ac-
curacy of the sensors that provide distance and track robot
orientation.

To provide a space of actions that is as directly indicative
of robot task needs as possible, but abstract enough to re-
duce the impact of non-determinism, the concept of “path
quality” is introduced. This quality, represented by X(θi),
is calculated in varying ways dependent on the algorithm
used, but represents the quality of a potential path for the
robot to take next. In producing a distribution of quality
for all possible paths at each time-step, the state of the envi-
ronment is represented, and a path can be chosen either via
the maximum quality, or by sampling to inject exploration
behavior.

2.2 Policy Search
The state/action structure of navigation presented in Sec-

tion 2.1 contains a beneficial approach to path selection. It
is simple, which reduces computational complexity as well
as the number of potentially unpredictable behaviors, and
applies well to a mobile robot with limited sensing capabil-
ities.

To capture those benefits while injecting the benefits of
adaptability into navigation control, the state and action
spaces are maintained. Therefore, for this work, the baseline
network structure created is a two layer, sigmoid activated,
artificial neural network with two inputs, one output unit,
and eight hidden units (selected through empirical perfor-
mance study).

This network is run at each time step, for each potential
path, generating a path quality function in a similar fashion
to that of the deterministic algorithm. The difference is in
the replacement of static predefined probability distributions
by an adaptive artificial neural network.

An evolutionary search algorithm for ranking and subse-
quently locating successful networks within a population [21]
is applied here. The algorithm maintains a population of ten
networks, uses mutation to modify individuals, and ranks
them based on a performance metric specific to the domain.
The search algorithm used is shown in Figure 1 which dis-
plays the logical flow of the algorithm.

The definitions for the variables and functions located in
the algorithm shown in Figure 1 are as follows:
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Initialize N networks at T = 0
For T < Tmax Loop:

1. Pick a random network Ni from population

With probability ε: Ncurrent ← Ni

With probability 1− ε: Ncurrent ← Nbest

2. Modify Ncurrent to produce N ′

3. Control robot with N ′ for next episode (tepi time steps)

For t < tepi Loop:

3.1 For θi ≤ 360 Loop:

Run N ′ to produce X(θi)

3.2 αu ← argmaxX(θi)

3.3 Vu ← F (X(αu))

4. Rank N ′ based on performance
(objective function)

5. Replace Nworst with N ′

Figure 1: Policy Search Algorithm: An ε-greedy evo-

lutionary search algorithm to determine the weights of the

neural network policy.

T : Indexes episodes

t: Indexes time-steps within each episode

θi: Angle of potential path i

N : Indexes networks with appropriate subscripts

N ′: Mutated network for use in control of current episode

X(θi): Path quality assigned to each potential path

αu: Chosen vehicle relative robot angle for next time-step

F (X(αu)): Linear function mapping quality of path chosen to
robot speed

Vu: Chosen robot speed

In this domain, modifying a policy (Step 2) involves adding
a randomly generated number to every weight within the
network. This can be done in a large variety of ways, how-
ever it is done here by sampling from a random Cauchy
distribution [1] where the samples are limited to the contin-
uous range [-10.0,10.0]. Ranking of the network performance
(Step 4) is done using a domain specific objective function,
and is discussed in detail in Section 3.

2.3 Policy Gradient
The reinforcement learning technique of adaptive control

is a structure of algorithm that must be formed such that
it can be “rewarded” directly based on a predefined objec-
tive function of the next state of the robot or the next state
and action taken. In this work, the algorithm is rewarded
based on the change of state resulting from an action pre-
viously taken (therefore a direct function of the next state
achieved). There are a great many reinforcement learning al-
gorithm structures, however for this work an online partially
observable MDP [3] algorithm proved the most successful.

The definitions for the variables and functions located in
the algorithm shown in Figure 2 are as follows:

T : Indexes episodes

t: Indexes time-steps within each episode

θi: Angle of potential path i

Initialize ω and e
For T < Tmax Loop:

For t < tepi Loop:

1. Capture current state s

2. Sample action a from π (a|s, ω)

2.1 For θi ≤ 360 Loop:

Run network to produce f
`
a′|s, ω

´
2.2 g(a′) =

P
a′
f
`
a′|s, ω

´
2.3 P (a) =

f(a|s,ω)
g(a′)

3. Execute action a and capture reward r

4. e← βe+∇ωπ (a|s, ω)

5. ω ← ω + αer

6. Vu ← F (f (a|s, ω))

Figure 2: Policy Gradient Algorithm: An online rein-

forcement learning algorithm using eligibility traces to ad-

just the weights (parameters ω) of a neural network policy

function approximator.

ω: Weights of the neural network function approximator

π (a|s, ω): Path quality assignment policy

f (a′|s, ω): Output of the neural network function approximator

P (a): Probability of taking action a

e: Eligibility traces for parameters ω

β, α: Discounting factor and learning rate respectively

F (f (a|s, ω)): Linear function mapping quality of path chosen to
robot speed

Vu: Chosen robot speed

The state and action spaces here are very important as
well. In order to maintain comparability, the spaces are
identical to that used in the deterministic and policy search
techniques described in Sections 2.1 and 2.2. This structure,
where path quality is assigned to potential paths, lends itself
to reinforcement learning, with a minor modification to fit
within the online partially observable MDP [3] policy update
strategy. This change involves normalizing each network
output by the sum over all outputs to produce a probability
distribution for the path quality assignment policy:

π (a|s, ω) =
f (a|s, ω)P

a′
f (a′|s, ω)

(1)

where a is a sampled action, s is the current state, ω are the
network weights and f (a|s, ω) is the output of the neural
network function approximator that provides the value of
the sampled action a (path quality), given current state s
and weights ω 1.

1
The output of the neural network approximator f

`
a′|s, ω

´
is es-

sentially identical to the path quality distribution X(θi) shown in

Figure 1. The neural network does not produce a probability distribu-

tion, so dividing by the sum of all qualities normalizes to a probability

from which the next action can be sampled, injecting exploration into

the algorithm.
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The following is the neural network function approximator
gradient with respect to parameters ω (network weights)2:

∇ωπ (a|s, ω) =

“
d
dω

f (a|s, ω)
” P
a′
f
“
a′|s, ω

”
− f (a|s, ω)

P
a′

“
d
dω

f
“
a′|s, ω

””
˛̨̨̨
˛P
a′
f
`
a′|s, ω

´˛̨̨̨˛
2

(2)

where the derivative term with regard to output weights
is:

d

dωj
f (a|s, ω) = f (a|s, ω) (1− f (a|s, w))hj = δohj (3)

and the derivative with respect to the hidden weights re-
sults in:

d

dωi,j
f (a|s, ω) =

0@X
j

ωj

1A δohj (1− hj) xi =

0@X
j

ωj

1A δoδh,jxi

(4)

where x are network inputs and h are hidden units, indexed
by i and j respectively.

The output and hidden weight derivatives from Equa-
tions 4 and 3 are plugged into Equation 2 which is sub-
sequently plugged into Step (4) of Figure 2 for calculation
of the eligibility traces which are finally used to update the
individual weights.

Under this structure, as with the deterministic and policy
search algorithms, the network is run at each time-step for
each possible action, however each output is then divided
by the sum of the outputs for all possible actions (poten-
tial paths). This generates a probability distribution across
actions from which the next can be sampled. Doing so al-
lows the neural network function approximator to fit within
policy gradient calculation, as well as inherently provide ex-
ploration.

The learning parameters α and β both allow for discount-
ing and were found to produce successful results within their
common ranges, at 0.1 and 0.7 respectively.

3. ROBOT NAVIGATION PROBLEM
Essential in any robotic exploration domain is the ability

to evaluate the performance of techniques used for naviga-
tion. In general a performance metric is needed for eval-
uation and tuning purposes, but specifically when apply-
ing learning algorithms, an objective function is required for
providing the algorithm with a signal indicating success or
failure of action decisions made during the learning process.
This objective preferably will have a clear gradient such that
a learning algorithm can determine in which direction bet-
ter performance can be achieved. In the work here, two ob-
jectives were designed for these purposes; a time-extended
calculation of behavior throughout an entire episode, and a
short-term, focused reward for determining the immediate
result of an action taken.

2
The gradient term has been modified from [3] with the removal of

the logarithmic term. This was done as the function approximating

the policy is highly non-linear (a neural network), where the major-

ity of policy function approximators are kept linear for differentiation

purposes. In our case, a neural network is still continuously differen-

tiable with respect to its parameters, but is non-linear, resulting in a

modification to the gradient calculation.

3.1 Episodic Objective
An episodic objective aims to capture three important as-

pects of mobile robot navigation in unknown environments
under the capability restrictions described above; 1) total
path length the robot uses to reach the destination, 2) time
the robot consumes reaching the destination, and 3) time
the robot consumes recovering from a collision with an ob-
stacle. These incorporate choosing the shortest path, exe-
cuting it with greatest speed, and doing so in a safe manner.
In order to convert the above to maximization rather than
minimization, and support constantly shifting initial condi-
tions, the best possible behavior is incorporated, generating
the following objective function:

R(s) = α (dbest − dactual) + β (tbest − tactual)− γtcollision (5)

where d is the path length (best possible and episode
actual), t is the time consumed, and τcollision is the total
amount of time spent recovering from collisions. The best
possible of these is used to indicate what would happen if
the robot took a straight path, at maximum velocity, with-
out hitting any obstacles. α, β and γ are constants used
to increase or decrease the respective terms’ contribution to
the overall function.

To lead into the focused objective utilized for policy gra-
dient, discussed in the next section, the above episodic ob-
jective can be rewritten as:

R (s) = (αdbest + βtbest)−α
TX
t=0

dstep − β
TX
t=0

τstep−γ
TX
t=0

τcollision

(6)

This objective function is general enough to be used di-
rectly as the ranking for the policy search algorithm (Sec-
tion 2.2, Figure 1 step (4)).

3.2 Focused Objective
The episodic objective in Equation 6 is too general to pro-

duce significant results with the policy gradient algorithm
highlighted in Figure 2. However, R(s) can be further de-
composed into single time-step rewards:

r (s) = ψ − αdstep − βτstep − γτcollision (7)

where ψ is a constant representing the initial conditions,
and the remaining terms are the same as those in Equation 6.
By optimizing the sum of these rewards over time, this objec-
tive becomes identical to the episodic objective. However,
utilizing this objective does not produce learning on time
scales approaching the performance of the policy search al-
gorithm, and does not even produce coherent behavior with
50, 000 training episodes (3×107 parameter updates). While
the decomposed reward is based on robot state, this depen-
dance is highly non-deterministic, as there are many possible
quality assignments (actions) that produce very similar or
identical rewards.

To overcome the assignment problems when applying the
episodic objective to the policy gradient algorithm, a more
specific shaped reward was created to allow the policy gra-
dient algorithm to be directly rewarded based on a single
action, and resulting change in state:

r (s) = η1

`
1− θ̄

´
+ η2d̄ (8)
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where θ̄ is the change in state regarding the robot’s heading
as it relates to the destination heading, and d̄ is the change
in state regarding the distance to the next impassable ob-
ject. The constants η1 and η2 are in place to provide scaling
and additional shaping. This linear formulation provides a
much more deterministic indication as to the source of the
reward in a single action choice, representing the desire for
the policy to assign high quality to paths that turn toward
the goal, but away from nearby objects.

The objective in Equation 8 brought the policy gradient
algorithm into the same learning time scale as the policy
search algorithm. However, overall performance was still
not satisfactory, as poor policies were not sufficiently pe-
nalized. Therefore, the objective was further modified to
exponentially penalize large deviations, leading to:

r(s) = ξ
“

1 + e−η1θ̄ − e−η2d̄
”

(9)

where r is the reward used in Figure 2. This reward pro-
vided more robust performance in both simple and complex
environments, and allowed the policy gradient algorithm to
learn similar successful behavior to that of the policy search
and deterministic algorithms.

This reward is calculated, and therefore the weight update
is performed, at every time-step to allow the algorithm to
directly observe and be rewarded based on the perceived
success or failure of the last action taken. This allows the
eligibility traces to more accurately track the effect of each
network weight on the resulting state over time. Conversely,
utilizing the episodic objective function requires that the
traces interpret the effect of each network weight on up to
600 actions before a reward is received. There are factors
to mitigate the effect of taking so many actions during an
episode, most notably changing how often the parameters
are updated (Figure 3) which effectively reduces how many
actions the robot chooses during an episode.

Figure 3: Effect of changing the interval between weight

updates in the policy gradient navigation algorithm. n is the

number of time steps between updates. The episodic objec-

tive is plotted against learning episode for a representative

selection of update intervals.

The inverse effect to that shown in Figure 3 occurs when
the more specific reward in Equation 9 is used in conjunction
with the policy search algorithm. That algorithm modifies

all weights simultaneously, regardless of their direct affect
on each action taken during an episode. Therefore, if the
evolution search is run at each time-step (or a small subset
of time-steps) and the networks are ranked on such a spe-
cific basis, it is very unlikely that the search will locate a
network capable of being successful over an entire episode.
For example, at the beginning of the episode the search may
locate a successful network, and use it with only ε probabil-
ity of exploration throughout, resulting in low system level
performance.

3.3 Objective Equivalence
The episodic objective (Equation 5) is better suited for

time-extended learning, as with policy search, and the fo-
cused objective (Equation 9) is better suited for state-change
parameter updates, as with policy gradient. Still, it is im-
portant to study the behavior of both algorithms to ensure
that they are achieving the same overall behavior goals and
are being provided with the same level of information.

Equation 5 shows that by minimizing total path length
and collisions while maximizing speed the robot can maxi-
mize system level performance (a maximum of 0, otherwise
negative). Conceptually, Equation 9 shows that if the algo-
rithm minimizes θ̄ by choosing actions that point the robot
toward the destination it is in effect minimizing total robot
path length at the end of the episode. Additionally, the
robot speed is again based linearly on the quality assignment
to the path chosen, and therefore by being more confident
about quality assignment, the algorithm maximizes robot
speed. Finally, if the algorithm maximizes d̄, it is choosing
actions that point the robot away from nearby obstacles and
therefore minimizes collisions.

Figure 4 shows the calculated focused objective r(s) dur-
ing a learning session. The policy search algorithm does not
use the objective for learning, rather the average objective
over an episode is calculated and displayed. It is shown that
while the policy search algorithm does not maximize the fo-
cused objective in a stable fashion, when it converges to the
highest performance of its own objective (Equation 5), it
simultaneously converges to the highest performance of the
focused objective (Equation 9) used by the policy gradient
algorithm. Likewise for policy gradient, shown on the right
of Figure 4, when policy gradient converges to its best per-
formance of the focused objective, it is also converging to
the best performance of the episodic objective. These two
results demonstrate empirically the equivalence of the two
objectives used for learning.

4. EXPERIMENTS
Several experiments were designed to evaluate the navi-

gation algorithms for a specific set of behaviors discussed
in the problem definition. These progressively increased in
difficulty and scope from basic navigation to a destination,
through advanced navigation in cluttered environments. In
all experiments, an arena of 5 meters square was created
with a varying number of obstacles, depending on the ex-
periment. The learning method is episodic in that the robot
is allowed to operate for a fixed maximum amount of time
(tepi = 60 seconds in this work). Learning is executed for
2000 episodes, and each experiment is run 40 times for each
algorithm. These experiments evaluate not only the navi-
gation algorithm’s ability to seek a destination, but safely
and intricately navigate around obstacles in an unknown en-
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Figure 4: Left: The focused reward is plotted for both algorithms during a learning session. The average focused objective

r(s) per episode is calculated for all algorithms, though the policy search algorithm does not use it for learning. Right: The

policy gradient algorithm behavior as measured by two objectives: The algorithm learns using the focused objective, but both

the focused and episodic objectives are plotted. The comparison clearly shows that the two objective functions are functionally

equivalent in measuring robot performance. Error bars are omitted for clarity.

Figure 5: Left: The impact of obstacle density is shown. Maximum episodic objective achieved is plotted against varying

number of obstacles within the environment. Right: The result of the learning in a dense environment containing 20 obstacles.

The objective function is plotted for the random, deterministic, policy search, and policy gradient algorithms as an average over

40 iterations.

vironment, including when state information is inaccurate
and action results are stochastic.

4.1 Impact of Obstacle Density
We now focus on the performance of the algorithms with

respect to the density of obstacles within the environment.
With limited environment detection capabilities, as the envi-
ronment becomes more dense with hazards, the robot must
be careful with path quality assignments such that safe op-
eration is ensured. This is reflected in Figure 5 when the
number of obstacles is low. While both adaptive algorithms
consistently outperform the deterministic navigation algo-
rithm, they have similar performance until the environment
becomes complex.

As expected, all three algorithms drop in performance

when the number of obstacles increases. The deterministic
algorithm consistently drops in performance as the environ-
ment increases in density, and has a sharp deterioration rate.
The policy search algorithm is able to maintain acceptable
performance early on, but sharply declines between 15 and
20 obstacles, unable to locate the destination on occasion
within the time allotted. The best performing algorithm
is policy gradient, which degrades gracefully and is able to
maintain its performance even when the environment is ex-
tremely dense with obstacles.

Figure 5 (right) shows that the policy gradient algorithm,
utilizing the more focused objective, was able to more suc-
cessfully encode information learned during operation. It
does this by trading off robot speed in order to operate more
safely in environments more dangerous for operation. This
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Figure 6: Left: The results of the learning in a dense environment with 15 obstacles while sensor and actuator noise was

present. The objective function is plotted for the random, deterministic, policy search, and policy gradient algorithms as an

average over 40 iterations. Right: The results of the learning in a dense environment with 20 obstacles while sensor and actuator

noise was present. The objective function is plotted for the random, deterministic, policy search, and policy gradient algorithms

as an average over 40 iterations.

trade-off, and subsequent learned behavior, is an important
aspect of mobile robot navigation.

4.2 Sensor and Actuator Signal Noise
Previously the sensors and actuators produced ideal data

and robot motion. This is not a realistic situation for phys-
ical robots, as all sensors contain stochastic differences in
readings of the environment, and actuators may not pro-
duce exactly the intended robot motion. Therefore, random
noise was injected into the sonar and inertial sensor data as
well as the output of the navigation algorithm to the actu-
ators. Specifically, 5% random noise was present from the
beginning of the learning and to simulate potential failures,
the noise level was phased up to 10% over 200 episodes sur-
rounding the 1000th episode (e.g., from 900 to 1100).

The results of the learning presented in Figure 6 show
that the learning process struggles when noise is added to
the system. Note however, that as the additional noise is
phased in (surrounding t = 1000), there is little or no effect
in the performance of the policy search algorithm. Learning
continues unimpeded to significantly outperform the deter-
ministic navigation algorithm which is strongly affected by
the increased noise level in sensing and actuation. This is a
result of the learning occurring while noise is present in the
system such that good behavior is learned despite the noise
and therefore an increase in the noise level during operation
(once successful behavior has been learned) does not affect
the policy search algorithm performance.

Conversely, the policy gradient algorithm suffers from the
additional noise. Not only does the initial noise prevent the
algorithm from achieving the previous level of performance,
but as the additional noise is phased in the performance is
further reduced. However, as shown on the right of Figure 6,
and in confirmation of the results in Figure 5, when the envi-
ronment becomes so complex as to prevent the policy search
algorithm from finding successful behavior, the policy gradi-
ent algorithm takes over as the top performer. This occurs
regardless of the signal noise present because the algorithm

utilizes a focused state-based objective that allows it to learn
intricate behavior in complex environments.

5. DISCUSSION
Autonomous robots provide many tangible benefits in a

multitude of exploration and/or search and rescue tasks. In
both types of applications, robots offer to both reduce the
cost of missions and the risk exposure of humans. The robot
used in this work was not allowed to maintain a detailed
map of its environment, and therefore was required to make
decisions based on information immediately available using
a limited encoding of experience via simple artificial neural
networks. To provide adaptive and robust navigation under
such conditions, we used a unique state/action mapping.
Both policy search and policy gradient navigation provided
better overall behavior than deterministic navigation where
the system designer provided a set of strategies for actions.

The work in this paper demonstrates that in limiting a
robot to only the amount of resources exactly required of it
to complete the navigation task, adaptive behavior can still
be successful, indeed can perform better in the face of sensor
and actuators failures than techniques based on set proba-
bility distributions. The policy gradient method was able
to learn faster, though tended to converge to lower overall
performance in clearer environments. This was due to the
required specificity of the objective structure to promote
learning. Conversely, the policy search algorithm learned
slower, but converged to higher performance in clear envi-
ronments as it was capable of learning on an objective more
directly indicative of performance over a full episode. In
stark contrast, the policy gradient algorithm proved much
more successful in environments cluttered with obstacles, as
such objective specificity provided the details of the required
behavior.

The algorithms presented in this paper are currently being
installed and evaluated on physical robots in a laboratory
setting. In particular, we focus on determining the algorithm
robustness to learning in a platform-based simulation, before
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making the transition to control of a physical robot in a
real-world setting. In addition, our future work will focus
on coordination in multiple physical robots, blending our
current work of robot coordination and robot navigation.
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ABSTRACT
Recent advances in service oriented technologies offer me-
tered computational resources to consumers on demand. In
certain environments these consumers are software agents,
capable of autonomously procuring resources and complet-
ing tasks. The consumer agent can solicit relevant services
from other software agents known as provider agents. These
provider agents are instantiated with various business logic,
which culminates in their service offering. Consumer de-
mand varies over time, meaning each provider agents ser-
vice offering must adapt in order to succeed. Agents of-
fering services for which there is little demand greatly re-
duces the probability of successful provision. Since service
agents occupy a finite resource, offerings for which demand is
low wastes resources. The goal of this research is to create
provider agents capable of adapting their service offerings
to meet the available demand, thus maximising available
revenues. To achieve this we implemented two separate al-
gorithms, each tackling the problem from different perspec-
tives, comparing their efficacy in this environment. Firstly
we adopted a centralised approach where a Genetic Algo-
rithm evolves agents online to meet the fluctuating demand
for services. In our results the genetic algorithm achieved a
significant improvement over a non elastic fixed agent sup-
ply. Secondly a decentralised approach was developed us-
ing Reinforcement Learning. Provider agents individually
learned through trial and error which services to offer. Re-
sults showed that reinforcement learning was slightly less
adaptive than the genetic algorithm in meeting the varying
demand. Both approaches displayed a significant improve-
ment over the fixed aggregate supply. Critically reinforce-
ment learning requires far less computational or communica-
tion overhead as agents make decisions from environmental
experience.

Categories and Subject Descriptors
H.4 [Service Computing, Artificial Intelligence]: Mul-
tiagent Systems

General Terms
Genetic Algorithm, Reinforcement Learning

Keywords
Adaptive services, Demand estimation

1. INTRODUCTION
With the expansion of utility and cloud computing, more

and more companies are outsourcing their computational re-
quirements rather than processing them in-house. This has
led to an increase in the number of providers offering cloud
based services and charging for usage either on fixed rate
tariffs or a pay per use basis. Zimory a German company
launched what is being touted as a global marketplace for
computational resource trading in January 2009. Although
the idea of trading computational resources similarly to tra-
ditional commodities has been around for some time [2],
with a number of projects [6] [7] developing structures for
trading resources, its implementation has not. In this envi-
ronment, potentially excess compute capacity could be sold
on the open market, generating a revenue stream where pre-
viously there was none. Technologies are emerging where
agents are capable of autonomously procuring and supply-
ing services on the web. These agents, must procure the
revelent resources to achieve a specified goal often engaging
with multiple service providers to ensure successful comple-
tion. The service providers must decide what services to
offer for consumption. The selection choice can involve de-
ciding from amongst a large set of possible service offerings.
When market conditions are uncertain the service provider
is presented with a difficult decision. Choosing a service of-
fering for which there is little demand results in wasted re-
sources as the instantiation costs remain. Therefore this pa-
per raises an interesting research question, what service of-
fering should a provider agent expose to increase its chances
of successful consumption?

In addressing this question we have investigated the use
of Reinforcement Learning and a Genetic algorithm to cre-
ate adaptive service agents, capable of autonomously alter-
ing their service offerings online. Using these techniques
the agents can adapt to fluctuating demands for services.
The methods enable them to alter their offerings, meeting
market demand, and concurrently optimising their limited
resources. We compare the two approaches empirically fo-
cussing on optimsing limited resources while maintaining ad-
equate service level. The goal of each approach is to max-
imise the amount of revenue earned from available resources,
while minimising lost revenues resulting from unfulfilled ser-
vice requests. In these environments agent interactions are
often governed by Service Level Agreements (SLA’s), where
a minimum requirement of service level is stipulated. This
can often lead to over provisioning of services to ensure com-
pliance. Over provisioning ensures compliance but it also
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increases costs and inefficiency. Our aim is to find a solu-
tion that can meet agreements but also maximise efficiency,
generating greater revenues from the existing resources. The
genetic algorithm provides a centralised approach to tackling
the problem of service choice among the provider agents. It
is responsible for controlling agent population numbers and
deciding what number of provider agents offer which ser-
vices each time. In contrast reinforcement learning offers a
decentralised approach to tackling the same problem, where
the provider agents make decisions based on their past ex-
periences of what services to offer when.
The following sections of this paper are structured as fol-

lows: Background Research provides an overview of relevant
work in this field. A number of aspects of service computing
are discussed as well as an overview of a genetic algorithm
and reinforcement learning. Model Design details the ser-
vice provider/consumer model and describing the algorithms
used in this paper. Simulator Design describes the simulator
used to generate our service oriented environment test-bed.
Experimental Results evaluates the performance of the two
methods, finally leading to Conclusions.

2. BACKGROUND RESEARCH
This section details relevant work in the area of service

computing. We begin by outlining the artificial intelligence
methods used in this paper. We document related work ad-
dressing the relevancy of these approaches to our problem.
Finally we look at other related research in service comput-
ing.

2.1 Centralised vs Decentralised
In this section we examine both centralised and decen-

tralised approaches to solving the problem. Using the ge-
netic algorithm to evolve suitable agents we address the
problem in a centralised manner. The genetic algorithm de-
termines the agent configuration, evolving the fittest agents
for the environment each time. It is also solely responsible
for adding and removing provider agents to and from the
environment, depending on an agents fitness. The creation
of new agents and subsequent service allocation incurs an
instantiation cost.
In contrast reinforcement learning represents a decentralised

approach to solving the problem, where agents individually
make decisions on what services to offer each time. The
reinforcement learning agents cannot increase the resources
at their disposal and similarly to the genetic algorithm are
limited to choosing from among the available services. A
switching cost is applied should a learning agent elect to
provide a service other than the one it currently provides.
This cost is dealt with through the agents’ returns and is
explained in more detail in section 4. Importantly an un-
successful learning agent can also decide to make itself idle
for a period of time. Once in this idle phase the agents
resources are freed up and available to be used elsewhere.
After a certain time the agent comes out of the idle state
and begins service provision once more.

2.2 Genetic Algorithms
Genetic algorithms are stochastic search and optimisation

techniques based on evolution. In their simplest form, a set
of possible solutions to a particular problem are evaluated in
an iterative manner. From the fittest of these solutions, the
next generation is created and the evaluation process begins

once more. A solutions’ suitability to its environment is
determined using a fitness function. By iterating through
successive generations an optimal solution can be found for
the given environment. In our model the GA attempts to
find optimal solutions continuously, in an online fashion. As
demand for services vary with time, the optimum solution
is not static and changes continuously.

A number of researchers have looked at using genetic al-
gorithms to estimate demand for traditional utilities and
commodities, such as oil [3] and electricity [1]. Using histor-
ical demand figures as well as a number of other parameters
such as, GNP, population, import and export figures, future
projections were made, proving the viability of using the
approach for demand prediction. Demand estimations were
carried out retrospectively and not online.

2.3 Reinforcement Learning
Reinforcement learning involves the agent learning through

trial and error from interactions with its environment. The
reinforcement learning agent has an explicit goal which it
endeavors to achieve. The environment presents the learn-
ing agent with the necessary evaluative feedback required
to achieve this goal. This feedback or reward consists of
a scalar value through which the learning agent determines
its performance. Through repeated interactions with its en-
vironment the agent learns which actions result in higher
rewards. The agent’s goal is to maximise its reward in the
long run.

2.3.1 Value Functions
The objective of the learning agent is to optimise its value

function. The agent makes decisions on its value estimates
of states and actions. V π(s) is called the state value function
for policy π. It is the value of state s under policy π and
amounts to the return you expect to achieve, starting in s
and following policy π from then on.

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s
}

(1)

Qπ(s, a) is called the action-value function. It is the value
of choosing action a while in state s under policy π.

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a
}

(2)

A number of studies have looked at applying reinforce-
ment learning to resource allocation problems [14]. The au-
thor presented a framework using reinforcement learning,
capable of dynamically allocating resources in a distributed
system. While adaptive service provision is not a resource
allocation problem the parallels between them still merit
their inclusion. Tesauro investigated the use of a hybrid
reinforcement learning technique for autonomic resource al-
location [13]. He applied this research to optimising server
allocation in data centers. Germain-Renaud et al. [4] looked
at similar resource allocation issues. Here a workload de-
mand prediction technique was used to predict the resource
allocation required each time. Reinforcement learning has
also been successfully applied to grid computing as a job
scheduler. Here the scheduler can seamlessly adapt its de-
cisions to changes in the distributions of inter-arrival time,
QoS requirements, and resource availability [10].
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Figure 1: Individual Service Demand

2.4 Service Selection and Composition
In service computing, recent work by Jackyno et al. in-

vestigated an approach where agents share local demand es-
timates among one another and adapt their service offerings
to suit [5]. The agents in this work did not learn from their
environment, instead they communicated with one another
and altered their service offerings based on the information
they acquired. By limiting the flow of information between
agents the author was able to show the system had the ca-
pability to self-organise decentrally into communities where
agents reliably provide the most requested service types.
A number of researchers in the field have addressed the

problem of optimal service selection [8] [11]. Optimal ser-
vice selection involves developing approaches to selecting an
adequate number of service providers to ensure task com-
pletion, within certain constraints such as time, quality and
budgetary.
Service composition has also received much attention in

recent years. Composition addresses the issues of compos-
ing required functionality from amongst the available ser-
vices. These services often belong to numerous different
providers, offering varied or similar functionality. The ob-
jective of the composing algorithm is to service the request
by composing the required functionality from the existing
services. Weise et al. [15] compared the performance of
an informed/uniformed search and a genetic algorithm, for
composing web services. The evolutionary approach where
solutions to requests were evolved, proved to be much slower
than the search algorithms but was shown to always success-
fully satisfy requests.

3. MODEL DESIGN
In this section we discuss the model which we use to eval-

uate our learning approaches. We discuss have demand is
generated and controlled and also the architecture of the
agents adopting the different approaches.

3.1 Agent Interactions And Demand Function
The agent environment supports two types of agents, ser-

vice providers and service consumers. Agents interact in a
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Figure 2: Aggregate Service Demand

controlled manner with consumer agents always procuring
services from provider agents. Consumers do not differen-
tiate among the available providers in terms of quality, or
price. Also they are not bound by deadlines nor restricted
by budgetary constraints. The focus of this paper is to
develop techniques to improve service adaptability and dy-
namism. The consumer agent requests a service from any
available provider agent, with the provider agent remuner-
ated upon completion. Payments for services are homoge-
nous. The provider agents goal is to maximize its income
throughout the course of its interactions with the environ-
ment. The income earned through interactions denotes its
fitness. This influences it’s degree of success in the genetic
algorithm, where fitter agents have a higher probability of
producing offspring. It also represents the agents reward
in reinforcement learning biasing the agent interactions in
order to achieve maximum reward.

The demand for each service, manifested through the ser-
vice consumer, is controlled exogenously through the use of
a sin function. The demand pattern generated using the
sin function is purely deterministic with no degree of ran-
domness applied. Using this method we can evaluate per-
formance more accurately over successive runs. Figure 1
shows the demand curve for four separate services where
services are increasing and decreasing in demand. This de-
mand pattern is relatively stable and is depicted in Figure
2 by the stable demand curve. The demand patterns in
Figure 2 depict services on an aggregate level for both sta-
ble and volatile environments. These two demand patterns
were selected in order to perform preliminary analysis of our
approaches in disparate environments. Greater variance in
demand will be addressed in future work.

3.2 Agent Architecture
Implementation of both the genetic algorithm and rein-

forcement learning require two architecturally different provider
agents. Learning agents require greater autonomy, and de-
cision making skills than that of their evolved counterparts.
This section outlines both architectures and introduces SARSA
the reinforcement learning algorithm used in this work.
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3.2.1 Evolutionary Architecture
Each agents service type is encoded as a bit string. This

represents an agents gene and resides in it’s chromosome.
Since our model is currently concerned only with an agents
service type, this is the only gene residing in the chromo-
some. Individuals are selected for reproduction using roulette
wheel selection, based on their fitness. Roulette wheel selec-
tion involves ranking chromosomes in terms of their fitness
and probabilistically selecting them. The selection process
is weighted in favour of chromosomes possessing a higher fit-
ness. To ensure that agents, already optimal for their envi-
ronment are not lost in the evolutionary process elitism is ap-
plied. Elitism involves the selection of a certain percentage
of the fittest chromosomes and moving them straight into
the next generation, avoiding the normal selection process.
In creating offspring for the next generation, the selection of
two parents is required. Each pairing results in the repro-
duction of two offspring. During reproduction crossover and
mutation, fundamental principles of genetic algorithms, are
applied probabilistically. Crossover involves taking certain
aspects/traits of both parents’ chromosomes and creating a
new chromosome. There are a number of ways to achieve
this including, single point crossover, two point crossover
and uniform crossover. Our crossover function employs sin-
gle point crossover, where a point in the bit string is ran-
domly selected, at which crossover is applied. Crossover
generally has a high probability of occurrence, mutation on
the other hand generally does not. Mutation involves ran-
domly altering its bit string changing aspects of a chromo-
some. Occurrences of mutation were biased towards an in-
crease or decrease of only 1 of a possible n services. Once
the chromosome has been created an agent is formed and its
added to the population. The agents performance is mea-
sured through its fitness value.

3.2.2 SARSA Learning
In this paper we use a classical reinforcement learning al-

gorithm known as Sarsa. Sarsa belongs to a collection of
algorithms called Temporal Difference (TD) methods. Not
requiring a complete model of the environment, TD meth-
ods possess a significant advantage. TD methods have the
capability of being able to make predictions incrementally
and in an on-line fashion, without having to wait until the
episode has terminated.
The learning agent interacts with its environment through

a sequence of discretized time steps. At the end of each time
period t the agent occupies state st ∈ S, where S represents
the set of all possible states. Here the agent chooses an
action at ∈ A(st), where A(st) is the set of all possible ac-
tions within state st. The agent receives a numerical reward
or return, rt+1 ∈ ℜ and enters a new state s′ = st+1 [12].
The goal of the Reinforcement learning agent is to maximise
its returns in the long run often forgoing short term gains
in place of long term benefits. By introducing a discount
factor γ, (0 < γ < 1), an agents degree of myopia can be
controlled. A value close to 1 for γ assigns a greater weight
to future rewards, while a value close to 0 considers only the
most recent rewards. For our experiments we have assigned
γ a value of 0.9 forcing the agent to place greater emphasis
on future rewards.
The update rule for Sarsa is defined as

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (3)

and calculated each time a state is reached which is non-
terminal. Approximations of Qπ which are indicative as to
the benefit of taking action a while in state s, are calculated
after each time interval. Actions are chosen based on π the
policy being followed. As mentioned previously Qπ(s, a) is
the value of taking action a while in state s, under policy π.
The research presented in this paper uses an ϵ-greedy policy
to decide what action to select while in a particular state. In
the service environment we wish to reduce the probability of
selection for all non-greedy actions. Put simply we do not
wish to select a service for which there is no demand. All
actions which are non-greedy have a probability of selection
of ϵ

|A(s)| , with the higher probability weighted in favour of

the greedy strategies 1− ϵ+ ϵ
|A(s)| .

4. SIMULATOR DESIGN
The simulations presented in this paper involve agents

interacting with one another in a discrete time environment.
To simulate the performance of the two approaches, slightly
different configurations had to be applied. The design of
each algorithm is detailed below.

4.1 Evolutionary Simulations
For our experiments evolution occurs over the entire pop-

ulation, with offspring from the fittest agents replacing only
the weakest agents in the population. An agents fitness Af

is calculated as the sum of all payoffs divided by the number
of services provided during the time step Af = 1

n

∑n
i=0 xi.

After each time step an agents income from service provision
is representative of its fitness for the environment, resulting
in the fittest agent earning the most income. The popula-
tion of agents is proportional to the amount of services in
the system at any particular time. The percentage of elitism
E applied to the population varies depending on whether a
service is rising or falling in demand. To ensure adequate ser-
vice provision to cater for spikes in demand, the genetic algo-
rithm allows for a certain percentage of over provisioning of
supply. This percentage of over provisioning is probabilisti-
cally chosen, where a greater weighting is applied to increas-
ing supply, where demand is rising. A cross-over rate of 85%
and a mutation rate of 5% are also used. Mutation is fun-
damental to the success of the genetic algorithm, without it
adaptivity could not be achieved. If demand for a particular
service approaches 0, evolution may favour a generation of
offspring which do not support this service. Without muta-
tion this service will become extinct resulting in major losses
should demand for it increase again. The agent population
is initially dispersed randomly ensuring an even distribution
of the available services. Offspring are created using a sin-
gle point cross-over of both parents’ service gene, with the
actual cross-over point being randomly selected each time.
Mutation occurred probabilistically throughout this process.
Occurrences of mutation were biased towards an increase or
decrease of only 1 of a possible n, with n being the number
of services available. Pairings produce two offspring, which
are added to the agent population replacing weaker agents.
To reflect the instantiation costs of loading the various busi-
ness logic, the genetic algorithm is penalised each time it
evolves. This is achieved by restricting evolution process to
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Figure 3: Genetic Algorithm Design

every second time interval. Figure 3 above, gives a general
overview of the design of the genetic algorithm.

4.2 Learning Simulations
For our experiments the service environment contains n

number of services from which an agent can choose. The
set of all possible service choices C = { c1, c2......cn, c∗ }
contains all the services the environment supports. c∗ rep-
resents a temporary idle state which the agent may enter.
When the agent enters this state it is inactive in the envi-
ronment freeing up its resources for usage elsewhere. While
in the idle state the agent releases its lock on the system
resources allowing another process to obtain this lock and
use the resources as they please. Once finished the pro-
cess relinquishes the lock allowing the agent to exit the idle
state. As stated previously the policy being followed is an ϵ
- greedy policy, meaning loosely, choose the action which re-
sults in the highest reward most of the time. All non-greedy
actions with the exception of c∗ are subsequently weighted
similarly. The addition of the idle state reduces the effec-
tiveness of the policy during exploration. The provider only
wishes to choose this action once it has tried all the other
possible actions. To address this we designate a learning
phase where non-greedy actions are not equiprobable. After
each non-greedy action other than the idle state has been
explored, then the learning phase ends and all non-greedy
actions become equiprobable. This increases probability of
the agent entering the idle state. The agents action set for
each state contains a choice of whether to remain in the
current state or switch to one of the n other possibilities.
A = { remain , switchc1,c2......cn,c∗}. The set of returns
achievable is R = {0,+0.5,+1}. Actions that result in suc-
cessful service provision, yield a reward of +1. However if
successful provision is achieved through switching services,
the reward is halved to +0.5. Halving the reward only oc-
curs for the first time interval, with the agent receiving a
reward of +1 thereafter for successful provision, as long as
it doesn’t switch. This represents the expense of instanti-
ating the necessary business logic for the new service. Ap-
plying a switching cost in this way, enhances the stability
of the system, preventing unnecessary switching. From an

efficiency perspective this could prove costly if carried out
in sufficient quantity. Averaged returns for each state ac-
tion pair are stored in a lookup table. Storing Q values
this way is possible as the number of states and actions is
kept relatively small for analytical purposes. Learning in a
more expansive system containing larger numbers of services
would require function approximation or neural nets to ap-
proximate Q values. The steps involved in the reinforcement
learning algorithm are depicted by Algorithm 1 below.

Algorithm 1 Reinforcement Learning Algorithm (SARSA)

Initialise Q(s, a) arbitrarily

Initialise s
Choose a from s using ϵ-greedy policy
repeat

Take action a and observe r, s’
Choose a’ from s’ using ϵ-greedy policy
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′; a← a′

until s is terminal

5. EXPERIMENTAL RESULTS
This section compares the performance of both the cen-

tralised and decentralised approaches using the simulator
discussed in the previous section as a test bed. The ex-
periment evaluates performance in two distinct demand en-
vironments. Depicted in Figure 2, the stable curve sim-
ulates an environment were consumer demand fluctuates
moderately. The volatile demand curve simulates more dra-
matic demand fluctuations. Since all service demand (both
stable and volatile) is generated using a sinusoidal func-
tion the aggregate demand will be sinusoidal in nature, as
sinA+ sinB = sinC.

The corresponding results are empirically analysed and
presented in both graphical and tabular form. A number
of the metrics used to explain the results are not intuitive
and require further explanation. Demand represents the to-
tal aggregate demand curve and not the demand curve for
a single service. Aggregated in this demand curve are all
the services present in the system at run-time. Missed re-
quests is the percentage of consumer requests which provider
agents were unable to fulfil. For analytical purposes we term
the difference between total adaptive supply and the fixed
rate supply as the efficiency Ef of the approach. It can be
calculated as follows

Ef =

∫ T

0

f(t)dt−
∫ T

0

g(t)dt ≈
T∑

t=0

(f(t)− g(t)) (4)

where T is the terminal state, the function f(t) represents
the fixed supply and g(t) the aggregate supply (genetic algo-
rithm or reinforcement learning). This value represents the
number of resources freed up during the experiment which
can subsequently be reallocated to other processes.

5.1 Efficiency Comparison
This experiment evaluates each algorithms performance

in a substantially sized agent community. The number of
agents initially added to the community is 400. For analysis
purposes only 4 services are available for selection, mean-
ing provider agents must select a service from this service
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Figure 4: Aggregate Curves for RL and GA

Table 1: Stable Demand
Algo Demand Missed Requests (%) Efficiency (%)
GA 183,693 0.9 28.75
RL 183,693 0.03 23.35

Fixed 183,693 0 0

set. Peak quantity demanded for the entire simulation is
restricted to 100 units demanded per service. This restric-
tion is only necessary for evaluation purposes in order to
ground our results within measurable bounds. At times of
peak demand for individual services, the maximum demand
requires 100 provider agents to completely satisfy consumer
requests. In a system where supply is fixed and peak demand
is known, its possible to adequately meet demand by setting
the minimum level of provision to 100 provider agents per
service. This is depicted by the flat-lined fixed supply curve
shown in Figures 4 and 5. In service environments it is un-
likely that this value would be known or could be reliably
estimated from experience. Therefore over provisioning of
providers may be much higher than the minimum fixed sup-
ply used here. In any case we demonstrate the performance
of our approaches against this minimum fixed rate supply
in terms of efficiency. As detailed above, this paper terms
efficiency as the percentage difference between the flat rate
supply and the adaptive approaches.

5.1.1 Stable Demand
Figure 3 shows the performance for both approaches when

averaging over 50 runs. From the graph it is clear that
the evolutionary approach slightly outperforms the learning
approach in adapting to demand. The genetic algorithm
converges faster than reinforcement learning, as it quickly
identifies least fit agents and removes them. Reinforcement
learning takes longer to converge as unsuccessful agents ex-
plore their non-greedy actions first before moving into the
idle state.The average number of service requests missed
by service providers was higher for the genetic algorithm
than for reinforcement learning. While marginally missing
more service requests the genetic algorithm had a greater
efficiency of 28.75% as opposed to 23.35% for reinforcement
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Table 2: Volatile Demand
Algo Demand Missed Requests (%) Efficiency (%)
GA 192,805 1.47 28.73
RL 192,805 0.13 14.48

Fixed 192,805 0 0

learning. Both approaches performed very strongly at meet-
ing the majority of service requests. The results show that
the percentage of missed requests for both approaches is very
low, standing at 0.9% for the genetic algorithm, with an even
lower percentage value of 0.03% for reinforcement learning.
Potentially if the percentage of missed requests is high, con-
sumer confidence may decline, reducing overall demand. An
important consideration is to maintain the balance between
increased efficiency and the percentage of missed requests.
While increasing efficiency generates greater revenues, if this
increase comes at the expense of reduced consumer confi-
dence, this could negatively impact market share in the long
run.

5.1.2 Volatile Demand
Similarly to the previous experiment the results are av-

eraged over 50 runs. Figure 4 shows the supply curves for
both the genetic algorithm and reinforcement learning where
demand for services exhibits greater volatility. Its evident
from the graphs that the genetic algorithm displays greater
adaptability in this environment. As shown in Figure 4 the
genetic algorithm’s supply curve tracks the aggregate de-
mand curve. The efficiency of the genetic algorithm, shown
in Table 2, is much higher than reinforcement learning. The
genetic algorithm maintains similar adaptability in both en-
vironments with a performance of 28.73%. Reinforcement
learning however does not perform as well in the volatile en-
vironment, achieving an efficiency value of 14.48%, a reduc-
tion of 9.27% from the stable environment. The principle
factor affecting the measure of efficiency in reinforcement
learning is the number of agents occupying the idle state. In
a volatile environment distribution of consumer demand is
more equitable among the provider agents. This results in
less agents entering the idle state, as they will have received
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returns from service provision. If the learning agent does
not enter the idle state then other processes will not be able
to obtain a lock on its resources, thus reducing efficiency.
The percentage of missed requests is higher for the genetic
algorithm at 1.47% than for reinforcement learning 0.05%.
Although this value is still quite low, this might be unac-
ceptable for some critical systems, such as stock or bank-
ing services. Only missing 0.05% of requests reinforcement
learning performs extremely well in this regard. It’s able to
maintain a much more stable supply while still achieving an
acceptable level of efficiency.

6. CONCLUSIONS
This paper has presented two separate approaches aimed

at tackling agent adaptivity in a service environment. Cre-
ating dynamic and adaptive processes has been identified
as one of the principle research challenges in service ori-
ented computing [9]. Furthermore these processes should
possess the capability, of continually morphing themselves
to respond to environmental demands.
Earlier we proposed a research question, where service de-

mand is uncertain, which service offering should a provider
agent choose to expose? The work outlined in this paper
has demonstrated two approaches which successfully cre-
ated provider agents, capable of reconfiguring their service
offering to meet the available demand. We showed for both
techniques how the provider agents were capable of deciding
which service offering to select in order to maximse available
revenues. Both approaches have achieved significant perfor-
mance gains, when compared to a fixed rate supply. While
the genetic algorithm demonstrated greater efficiency, the
costs involved in evolving an entire population of distributed
agents may outweigh the resource saving. Gathering global
information from hundreds or possibly thousands of service
agents in a distributed environment could outweigh the per-
formance benefits detailed in the results section. In smaller
service environments where resources are limited and the
computational overheads required to run the genetic algo-
rithm is small, the genetic algorithm will achieve excellent
adaptivity and efficiency.
This paper also defined a formal specification for an emer-

gent service environment, depicting it as a continuous action-
state space reinforcement learning problem. Learning through
trial and error the agents quickly identified services that
were in demand and adapted their offering to meet them.
The efficiency of the learning approach outperformed the
fixed rate supply for both demand environments. The ser-
vice level maintained by the learning agents was superior to
the evolved agents, demonstrating its reliability for critical
systems, where failed requests carry large penalties.
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ABSTRACT
Knowledge transfer has been suggested as a useful approach for
solving large Markov Decision Processes. The main idea is to
compute a decision-making policy in one environment and use it
in a different environment, provided the two are "close enough". In
this paper, we use bisimulation-style metrics (Ferns et al., 2004) to
guide knowledge transfer. We propose algorithms that decide what
actions to transfer from the policy computed on a small MDP task
to a large task, given the bisimulation distance between states in
the two tasks. We demonstrate the inherent "pessimism" of bisim-
ulation metrics and present variants of this metric aimed to over-
come this pessimism, leading to improved action transfer. We also
show that using this approach for transferring temporally extended
actions (Sutton et al., 1999) is more successful than using it exclu-
sively with primitive actions. We present theoretical guarantees on
the quality of the transferred policy, as well as promising empirical
results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Performance, Theory

Keywords
Markov Decision Processes, Planning, Bisimulation, Policy trans-
fer

1. INTRODUCTION
Autonomous intelligent agents are often faced with the problem

of making decisions with favorable long-term consequences, in the
presence of stochasticity. In this paper, we consider this problem
in the context of Markov Decision Processes (MDPs) (Puterman,
1994), in which the agent has to find a way of behaving that max-
imizes its long-term expected return. Much of the work on using
MDPs in AI and operations research focuses on solving a single
problem. However, in practice, AI agents often exist over a longer
period of time, during which they may be required to solve several,
related tasks. For example, a physical robot may be in use for a
period of several years, during which it has to solve many different
tasks (navigating to different locations, picking up different objects,
etc.). Typically, these tasks will be distinct, but they will share im-
portant properties (e.g., the robot may be located in one specific
building, where all its tasks take place). This type of scenario

has motivated a significant amount of recent research inknowl-
edge transfermethods for MDPs. The idea is to allow an agent
to continue to re-use the expertise accumulated while solving past
tasks, over its lifetime. Several approaches for knowledge trans-
fer in MDPs have been proposed; Taylor & Stone (2009) provide a
comprehensive survey1. Broadly speaking, the goal of knowledge
transfer is two-fold. On one hand, it should speed up the process of
solving new tasks. On the other hand, it should enable solving tasks
which are very complex in the given (raw) representation. The first
goal has been particularly emphasized in reinforcement learning,
while the second goal is more prevalent in general machine learn-
ing.

In this paper we focus on transferring knowledge in MDPs that
are specified fully by their states, actions, rewards and model of
state transition probabilities. The knowledge to be transferred is
in the form of apolicy, i.e. a way of behaving for the agent. The
goal is to specify a transfer method with strong guarantees on the
expected returns of this policy in the new MDP. In particular, we fo-
cus on bisimulation metrics (Ferns, Panangaden & Precup, 2004 ;
Taylor, Precup & Panangaden, 2009), which measure the long-term
behavioral similarity of different states. States which are “close” in
terms of these metrics also have similar expected returns (Ferns,
Panangaden & Precup, 2004). However, bisimulation suffers from
three drawbacks. The metrics are very expensive to compute; the
optimal policy or value function is irrelevant to the metric; and
their estimates tend to be too pessimistic. We present a variant
of the bisimulation metrics which overcomes these problems and
improves the empirical behavior significantly, while still retaining
good theoretical properties (in some cases).

Previous work has also illustrated the fact that using temporally
extended actions (and their models) can significantly improve knowl-
edge transfer in MDPs (e.g., Perkins & Precup, 1999, Andre & Rus-
sell, 2002; Ravindran & Barto, 2003; Konidaris & Barto, 2007).
Intuitively, it is easier to transfer high-level controls rather than
low-level primitive actions. For instance, someone giving driving
directions will use high-level specifications (such as street names
and physical landmarks), and will not mention lower-level controls,
such as how to drive a car. This overcomes many of the difficulties
that arise when comparing dynamics on a primitive-action level:
different individuals will have differences in how they drive, but
the high-level description will “smooth” them out. We establish
bisimulation metrics for MDPs with temporally extended actions,
using the framework of options (Sutton, Precup & Singh, 1999).
All theoretical results hold in this case as well, and options provide
better empirical behavior, as expected.

The paper is organized as follows. In Sec. 2 we introduce our

1Note that a tutorial on the topic was also presented by Taylor and
Lazaric at AAMAS’09.

Page 85 of 99

Proceedings of the AAMAS Workshop on Adaptive and Learning Agents, May 2010, Toronto, Canada



notation and discuss related work. In Sec. 3 we present knowl-
edge transfer using bisimulation metrics, and discuss its theoretical
properties. Sec. 4 presents approximants to overcome bisimula-
tion’s blindness to a state’s value function, while Sec. 5 presents
approximations to the bisimulation metrics, designed speed up the
computation. In Sec. 6 we discuss the use of bisimulation with
options. Sec. 7 contains empirical illustrations of the proposed
algorithms. Finally, in Sec. 8 we conclude and present ideas for
future work.

2. BACKGROUND
A Markov decision process (MDP) is a 4-tuple〈S,A,P,R〉, where

S is a finite state space,A is a finite set of actions,P : S×A→
Dist(S) 2 specifies the next-state transition probabilities, andR :
S×A→ R is the reward function. A policyπ : S→ A specifies
the action choices for each state. The value of a states∈ S un-
der a policyπ is defined as:Vπ(s) = Eπ{∑∞

t=0 γt rt |s0 = s}, where
rt is the reward received at time stept, and γ ∈ (0,1) is a dis-
count factor. Solving an MDP means finding the optimal value
V∗(s) = maxπVπ(s), and the associated policyπ∗. In a finite MDP,
there is a unique optimal value function, and at least one determin-
istic optimal policy. The optimal value function obeys the Bellman
optimality equations:

V∗(s) = max
a∈A

[

R(s,a)+ γ ∑
s′∈S

P(s,a)(s′)V∗(s′)

]

(1)

The action-values function,Q∗ : S×A→R, gives the optimal value
for each state-action pair, given that the optimal policy is followed
afterwards. It obeys a similar set of optimality equations:

Q∗(s,a) = R(s,a)+ γ ∑
s′∈S

P(s,a)(s′)V∗(s′) (2)

Several types of knowledge can be transferred between MDPs.
Existing work includes transferring models (e.g., Sunmola & Wy-
att, 2006), using samples obtained by interacting with one MDP
to learn a good policy in a different MDP (e.g., Lazaric, Restelli
& Bonarini, 2008), transferring values (e.g., Ferrante, Lazaric &
Restelli, 2008), or transferring policies. In this paper, we focus on
the latter approach, and mention just a few pieces of work, most
closely related to our approach. The main idea of policy trans-
fer methods is to take policies learned on small tasks and apply
them to larger tasks. Sherstov & Stone (2005) show how policies
learned previously can be used to restrict the policy space in MDPs
with many actions. Taylor et al. (2007) transfer policies, repre-
sented as neural network action selectors, from a source to a target
task. A hand-coded mapping between the two tasks is used in the
process. MDP homomorphisms (Ravindran & Barto, 2002) allow
correspondences to be defined between state-action pairs, rather
than just states. Follow-up work (e.g., Ravindran & Barto, 2003;
Konidaris & Barto, 2007) uses MDP homomorphisms and options
to transfer knowledge between MDPs with different state and ac-
tion spaces. Wolfe & Barto (2006) construct a reduced MDP us-
ing options and MDP homomorphisms, and transfer the policy be-
tween two states if they both map to the same state in the reduced
MDP. Unfortunately, because the work is based on an equivalence
relation, rather than a metric, small perturbations in the reward or
transition dynamics make the results brittle. Soni & Singh (2006)
transfer policies learned in a small domain as options for a larger
domain, assuming that a mapping between state variables is given.
A closely related idea was presented in (Sorg & Singh, 2009) where

2Dist(X) is the set of distributions over the setX

the authors use soft homomorphisms to perform transfer and pro-
vide theoretical bounds on the loss incurred from the transfer.

3. KNOWLEDGE TRANSFER USING BISIM-
ULATION METRICS

Suppose that we are given two MDPsM1 = 〈S1,A,P,R〉, M2 =
〈S2,A,P,R〉 with the same action sets, and a metricd : S1×S2→R

between their state spaces. We define the policyπd onM2 as

∀t ∈ S2. πd(t) = π∗(argmin
s∈S1

d(s, t)) (3)

In other words,πd(t) does what is optimal for the state inS1 that
is closest tot according to metricd. Algorithm 1 implements this
approach.

Algorithm 1 PolicyTransfer(M1,M2,d)
1: Computed∼
2: for t ∈ S2 do
3: s∗(t)← argmins∈S1 d∼(s, t)
4: πd(t)← π∗(s∗(t))
5: end for
6: return π∼

Note that the mapping between the states of the two MDPs is de-
fined implicitly by the distance metricd. Hence, it is clear that this
is an important choice. We will now study the use of bisimulation
metrics as a choice ford.

Bisimulation for MDPs was defined by Givan, Dean & Greig
(2003) based on the notion of probabilistic bisimulation from pro-
cess algebra (Larsen & Skou, 1991). Intuitively, bisimilar states
have the same long-term behavior.

Definition 1. A relation E ⊆ S×S is said to be a bisimulation
relation if wheneversEt:

1. ∀a∈ A. R(s,a) = R(t,a)

2. ∀a∈ A.∀C∈ S/E.∑s′∈C P(s,a)(s′) = ∑s′∈C P(t,a)(s′)

whereS/E is the set of all equivalence classes inSw.r.t equivalence
relationE. Two statess andt are called bisimilar, denoteds∼ t if
there exists a bisimulation relationE such thatsEt.

Ferns, Panangaden & Precup (2004) defined a bisimulation met-
ric, and proved that it is an appropriate quantitative analogue of
bisimulation. The metric is not brittle, like bisimulation: if the
transitions or rewards of two bisimilar states are changed slightly,
the states will no longer be bisimilar, but they will remain close in
the metric. A metricd is a bisimulation metric if for anys, t ∈ S,
d(s, t) = 0⇔ s∼ t.

The bisimulation metric is based on the Kantorovich probability
metricTK(d)(P,Q) applied to state probability distributionsP and
Q, whered is a semimetric onS. It is defined by the following
primal linear program (LP):

max
ui ,i=1,··· ,|S|

|S|

∑
i=1

(P(si)−Q(si))ui (4)

subject to:∀i, j.ui −u j ≤ d(si ,sj)

∀i.0≤ ui ≤ 1
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The following is the equivalent dual formulation:

min
lk j ,k=1,··· ,|S|, j=1,··· ,|S|

|S|

∑
k, j=1

lk jd(sk,sj ) (5)

subject to:∀k.
|S|

∑
j=1

lk j = P(sk)

∀ j.
|S|

∑
k=1

lk j = Q(sj )

∀k, j.lk j ≥ 0

Intuitively, TK(d)(P,Q) calculates the cost of “converting”P into
Q underd. The dual formulation is a Minimum Cost Flow (MCF)
problem, where the network consists of two copies of the state
space, a source node and a sink node. The source node is con-
nected to one of the copies of the state space, each nodei with
supply equal toP(si), each nodej of the second copy of the state
space are all connected to the sink node, each with demand equal to
Q(sj ). Each “supply” node is connected to every other “demand”
node, with cost from supply nodei to demand nodej of d(si ,sj ).
(see Ferns et al., 2004 for more details).

THEOREM 3.1. (From Ferns et al., 2004)Let M be the set of
all semimetrics on S and define F: M→M by

F(d)(s,s′) = max
a∈A

(|R(s,a)−R(s′,a)|+ γTK(d)(P(s,a),P(s′,a)))

Then F has a least-fixed point, d∼, and d∼ is a bisimulation metric.

Phillips (2006) has used bisimulation metrics before to trans-
fer policies in MDPs, assuming that a state mapping between the
MDPs is given. Here, we will relax this requirement and let the
mapping be determined automatically from bisimulation.

When transferring knowledge from one MDP to another, we are
really only interested in computing the distance between the states
of S1 and the states ofS2, but not between states of the same MDP.
Because of this, the primal LP (4) can be rewritten as:

max
ui ,i=1,··· ,|S1|,vi ,i=1,··· ,|S2|

|S1|

∑
i=1

P(si)ui −
|S2|

∑
j=1

Q(sj )v j

subject to:∀i, j.ui −v j ≤ d(si ,sj )

∀i.−1≤ ui ≤ 1

Let V∗1 (Q∗1) andV∗2 (Q∗2) denote the optimal policies (optimal Q-
values) forM1 and M2, respectively. The following lemmas are
necessary for Theorem 3.4.

LEMMA 3.2. For all s∈S1 and t∈S2, |V∗1 (s)−V∗2 (t)| ≤d∼(s, t).

PROOF. The proof will be omitted for succinctness, but is al-
most identical to the proof of Theorem 5.1 of Ferns et al., 2004.

LEMMA 3.3. For all t ∈S2 let st = argmins∈S1 d∼(s, t) and aTt =
π∗(st). Then
|Q∗2(t,a

T
t )−V∗1 (s)| ≤ d∼(s, t).

PROOF.

|Q∗2(t,a
T
t )−V∗1 (s)|= |Q∗2(t,a

T
t )−Q∗1(s,a

T
t )|

=

∣

∣

∣

∣

∣

R(t,aT
t )+ γ ∑

t ′∈S2

P(t,aT
t )(t ′)V∗2 (t ′)

−

(

R(s,aT
t )+ γ ∑

s′∈S1

P(s,aT
t )(s′)V∗1 (s′)

)
∣

∣

∣

∣

∣

≤max
a∈A

{∣

∣

∣
R(t,aT

t )−R(s,aT
t )
∣

∣

∣

+ γ

∣

∣

∣

∣

∣

∑
t ′∈S2

P(t,aT
t )(t ′)V∗2 (t ′)− ∑

s′∈S1

P(s,aT
t )(s′)V∗1 (s′)

∣

∣

∣

∣

∣

}

≤max
a∈A

{
∣

∣

∣
R(t,aT

t )−R(s,aT
t )
∣

∣

∣
+ γTK(d∼)(P(t,a),P(s,a))

}

= d∼(s, t)

where the second to last line follows from the fact thatV∗1 and
V∗2 together constitute a feasible solution to primal LPTK(d∼) by
Lemma 3.2.

We can now use the last lemmas to bound the loss incurred when
using the transferred policy.

THEOREM 3.4. For all t ∈ S2 let aT
t = π∼(t), then

|Q∗2(t,a
T
t )−V∗2 (t)| ≤ 2mins∈S1 d∼(s, t).

PROOF. Let st = argmins∈S1 d∼(s, t).

|Q∗2(t,a
T
t )−V∗2 (t)|= |Q∗2(t,a

T
t )−V∗1 (st)+V∗1 (st)−V∗2 (t)|

≤ |Q∗2(t,a
T
t )−V∗1 (st)|+ |V

∗
1 (st)−V∗2 (t)|

≤ |Q∗2(t,a
T
t )−V∗1 (st)|+d∼(st , t)(by Lemma 3.2)

≤ 2d∼(st , t)(by Lemma 3.3)

= 2min
s∈S1

d∼(s, t)

The following simple example proves that the above bound is
tight. Consider the following two systems:

s

a,[1+ε]
��

b,[1−ε]
��

t

a,[0]

��
b,[2]

��
s′

a,b,[0]

XX t ′

a,b,[0]

XX

There are two available actions,a andb. The numbers in brackets
in the transitions indicate the reward received when following that
branch. We can see that the optimal action for states is a, yielding
V∗1 (s) = 1+ ε, while the optimal action for statet is b, yielding
V∗2 (t) = 2. Sinces′ andt ′ are bisimilar states,sandt have the same
probability of transitioning to all bisimulation equivalence classes.
Thus,d∼(s, t) = 1+ε andd∼(s′, t) = 2, telling us that if we perform
policy transfer from the system on the left to the one on the right,
the policy froms will be used fort, yielding Q∗2(t,a

T
t ) = 0. We

then have|Q∗2(t,a
T
t )−V∗2 (t)| = 2≤ 2(1+ ε) = 2d∼(s, t), proving

that our bound is tight.
A shortcoming of the bisimulation approach is that it requires

both systems to have the same action sets. This not only restricts
the target domain to those that have equal action sets as the target,
but it also means the transfer will not work if the target domain
has a different ordering for the actions. To overcome this problem,
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Taylor, Precup & Panangaden (2009) introduce lax bisimulation
metrics,dL. The idea is to have a metric for state-action pairs rather
than just for state pairs. Given two MDPsM1 = 〈S1,A1,P1,R1〉
M2 = 〈S2,A2,P2,R2〉, for all s∈ S1, t ∈ S2, a∈ A1 andb∈ A2,

dL((s,a),(t,b)) = |R1(s,a)−R2(t,b)|+ γTK(dL)(P1(s,a),P2(t,b))

From the distance between state-action pairs we can then define a
state lax-bisimulation metric. We use the same symboldL for the
state lax-bisimulation metric, but the arguments will resolve any
ambiguity. For alls∈ S1 andt ∈ S2:

dL(s, t)= max

(

max
a∈A1

min
b∈A2

d((s,a),(t,b)),max
b∈A2

, min
a∈A1

d((s,a),(t,b))

)

Now we can define our transferred policy via Algorithm 2.

Algorithm 2 laxBisimTransfer(S1,S2)
1: ComputedL
2: for All t ∈ S2 do
3: st ← argmins∈S1 dL(s, t)
4: bt = minb∈A2 dL((st ,π∗(st)),(t,b))
5: πL(t)← bt
6: end for
7: return πL

In other wordsπL(t) finds the closest states∈ S1 to t underdL
and then chooses the actionb from t that is closest toπ∗(s). With
little extra effort we can obtain a similar theorem as for Algorithm
1.

THEOREM 3.5. For all t ∈ S2 let aT
t = πL(t), then|Q∗2(t,a

T
t )−

V∗2 (t)| ≤ 2mins∈S1 dL(s, t).

Although the example after Theorem 3.4 no longer applies for
this algorithm, the following example demonstrates that the bound
of Theorem 3.5 is tight.

s

a,[0]

��
b,[1−ε]

��

t

a,[0]

��
b,[2]

��
s′

a,b,[0]

XX t ′

a,b,[0]

XX

We can see thatdL(s, t) = dL((s,b),(t,b)) = 1+ε anddL(s′, t) = 2,
so the policy fromswill be used to transfer tot. Sinceπ∗(s) = band
a= argminc∈{a,bd((s,b),(t,c)), πT(t) = a, yieldingQ∗2(t,a

T
t ) = 0.

Thus,|Q∗2(t,a
T
t )−V∗2 (t)|= 2≤ 2(1+ε) = dL(s, t), proving that our

bound is tight.

4. USING THE VALUES OF STATES
In this section we improve the policy transfer by considering not

only bisimulation distances, but also the known value function of
states in the target system.

4.1 Pessimistic approach
Although we are considering all actions in the source system,

we really only transfer the optimal ones. This suggests a simple
way to modify the lax bisimulation approach to speed up the com-
putation of the metric by only considering the optimal actions in
the source system. Given two MDPsM1 = 〈S1,A1,P1,R1〉 M2 =
〈S2,A2,P2,R2〉, for all s∈ S1, t ∈ S2 andb∈ A2, wherea∗s = π∗(s),

d≈(s,(t,b)) = |R1(s,a
∗
s)−R2(t,b)|+ γTK(dL)(P1(s,a

∗
s),P2(t,b))

Again, we use the same symbold≈ for the state metric, but the
arguments will resolve any ambiguity. For alls∈ S1 andt ∈ S2,

d≈(s, t) = max
b∈A2

d≈(s,(t,b))

We can now use Algorithm 2 again, but with the new metricd≈
to obtain the transferred policyπ≈. In other wordsπ≈(t) finds the
closest states∈S1 to t underd≈ and then chooses the actionb from
t that is closest toπ∗(s).

We can then prove the following results.

LEMMA 4.1. For all s∈S1 and t∈S2 |V∗1 (s)−V∗2 (t)| ≤d≈(s, t).

PROOF.

|V∗1 (s)−V∗2 (t)|= |Q∗1(s,a
∗
s)−Q∗2(t,a

∗
t )|

≤ |R(s,a∗s)−R(t,a∗t )|

+ γ

∣

∣

∣

∣

∣

∑
s′∈S1

P(s,a∗s)(s
′)V∗1 (s)− ∑

t ′∈S2

P(t,a∗t )(t
′)V∗2 (t ′)

∣

∣

∣

∣

∣

≤ |R(s,a∗s)−R(t,a∗t )|γTK(d≈(P(s,a∗s),P(t,a∗t ))

by induction

= d≈((s,a∗s),(t,a
∗
t ))

≤max
b∈S2

d≈((s,a∗s),(t,b))

= d≈(s, t)

LEMMA 4.2. For all s ∈ S1, t ∈ S2 and b∈ A2, |Q∗2(t,b)−
V∗1 (s)| ≤ d≈(s, t).

PROOF. The proof is similar to that of Lemma 4.1 and will be
omitted.

COROLLARY 4.3. For all s∈ S1, t ∈ S2, let aT
t = π≈(t). Then

|Q∗2(t,a
T
t )−V∗1 (s)| ≤ d≈(s, t).

From the last lemmas we can obtain a similar result as before.

THEOREM 4.4. For all t ∈ S2 let aT
t = π≈(t), then

|Q∗2(t,a
T
t )−V∗2 (t)| ≤ 2mins∈S1 d≈(s, t).

This last result confirms our claim that we really need only con-
sider the optimal actions in the source MDP. However, there is still
a problem inherent to the previous transfers. In the following ex-
ample we can see an instance of a poor transfer. We only indicate
the optimal actions in the source system.

s1

a∗s1 ,[1] ��?
??

??
??

?
s2

a∗s2 ,[3]����
��

��
��

t

a,[1]

��
b,[2]

��
s′

a∗
s′
,[0]

XX t ′

a,b,[0]

XX

We can see thatd≈(s1, t)= 1,V∗(s1)= 1,d≈(s2, t)= 2 andV∗(s2)=
3, butπ≈(t)= argminc∈{a,b}d≈((s1,a∗s1

),(t,c))= a, yieldingVT(t)=

1 < 2 = V∗(t). This illustrates the problem in the last algorithms:
when performing the transfer the target system is trying to find the
state in the source system which it can most closely simulate, re-
gardless of the actual value this produces.

From Corollary 4.3 we obtain an interesting result.

COROLLARY 4.5. For all s∈ S1, t ∈ S2, let aT
t = π≈(t). Then

Q∗2(t,a
T
t )≥V∗1 (s)−d≈(s, t).
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With this result we now have a lower bound on the value of the ac-
tion transferred which takes into consideration the value function in
the source system. This suggests Algorithm 3 to obtain transferred
policy πPess. In other wordsπPess(t) uses the source state with the

Algorithm 3 pessTransfer(S1,S2)
1: Computed≈
2: for All t ∈ S2 do
3: for All s∈ S1 do
4: LB(s, t)←V∗1 (s)−d≈(s, t)
5: end for
6: st ← argmaxs∈S1 LB(s, t)
7: bt = minb∈A2 d≈(st ,(t,b))
8: πPess(t)← bt
9: end for

10: return πL

highest guaranteed lower bound on the value of its optimal action.
This clearly overcomes the problem of the last example.

4.2 Optimistic approach
The idea of the pessimistic approach is appealing as it uses the

value function of the source system as well as the metric to guide
the transfer. However, there is still an underlying problem in all of
the previous algorithms. This is in fact a problem with bisimulation
when used for transfer. The problem is an inherent “pessimism” in
bisimulation: we always consider the action that maximizes the
distance between two states. This pessimism is what equips bisim-
ulation with all the mathematical guarantees, since we are usually
“upper-bounding”. However, one may (not so infrequently) en-
counter situations where this pessimism produces a poor transfer.
For instance, assume there is a source states whose optimal action
can be transferred with almost no loss as actionb in a target state
t (i.e. d≈(s,(t,b)) is almost 0); however, assume there is another
actionc in t such thatd≈(s,(t,c)) is very large. This large distance
may disqualify statesas a transfer candidate for statet, when it may
very well be the best choice! The inherent pessimism of bisimula-
tion would have overlooked this ideal transfer. If we would have
taken a more “optimistic” approach, then we would have ignored
d≈(s,(t,c)) and focused ond≈(s,(t,b)). This idea motivates the
main algorithmic contribution of the paper.

We start by defining a new metric,
dOpt(s, t)= minb∈A2 d≈((s,a∗s),(t,b)), and use Algorithm 3 but with
dOpt instead ofd≈ in the computation ofLB(s, t) to obtain our
transferred policyπOpt. In other wordsπOpt(t) chooses the action
with the highestoptimisticlower bound on the value of the action.
By removing the pessimism we lose our theoretical properties, so
we can no longer say that this lower bound is guaranteed. How-
ever, intuition tells us that this should be a better method to guide
the transfer. Indeed, we shall see in Section 7 that this method out-
performs all the rest.

5. SPEEDING UP THE COMPUTATION
As was mentioned previously, the long computation time of these

methods is mainly due to the fact that each iteration of the Kan-
torovich metric computation (see Theorem 3.1) requires solving
|S1|× |S2|× |A2| MCF problems, which is very expensive. In the
first approximation we propose to solveTK(d) only once, with
d(s, t) =V∗1 (s)−maxb∈A2R(t,b) for all s∈ S1 andt ∈ S2. The intu-
ition behind this rough distance estimate is that we want the target
state to try to match the optimal value of the source state. Since the
optimal value function for the target system is not known, we use

the immediate reward as a myopic estimate.
The second approximant still will not scale very well to large

problems, due to the MCF computations. As the number of states
increases, the number of variables and constraints of each MCF
problem also increases. In this second approximation we fix a num-
ber of clustersk which will split our reward region (i.e. the interval
from the minimum reward to the maximum reward) intok regions.
For eachs∈S1 we choose what cluster it belongs to by checking in
which of thek reward regionsR(s,π∗(s)) falls; similarly, for each
t ∈S2 we choose what cluster it belongs to by checking in which of
thek reward regions maxb∈A2 R(t,b) falls. Having thus reduced the
state space intok clusters, when we computeTK(d)(P(s,a),P(t,b))
we are no longer looking at transition probabilities into individual
states, but rather, transition probabilities into one of thek clusters.
By doing so we have put an upper limit on the number of variables
and constraints of each MCF. If the reward structure in the domains
in question are relatively sparse, we can get away with a smallk.
Finally, we only iterate the Kantorovich metric computation once,
settingd(s, t) = |R(s,π∗(s))−maxb∈A2 R(t,b)| for all s∈ S1 and
t ∈ S2.

6. BISIMULATION FOR OPTIONS
An option o is a triple 〈Io,πo,βo〉, whereIo ⊆ S is the set of

states where the option is enabled,πo : S→ Dist(A) is the policy
for the option, andβo : S→ [0,1] is the probability of the option
terminating at each state (Sutton, Precup & Singh, 1999). Options
are temporally abstract actions and generalize one-step primitive
actions. Given that an optiono is started at states, we can define
Pr(s′|s,o) as the discounted probability of ending in states′ given
that we started in states and followed optiono. We can also define
the expected reward received throughout the lifetime of an option
asR(s,o) (see Sutton, Precup & Singh, 1999 for details). Based
on the above definition, we introduce bisimulation for MDPs with
options.

Definition 2. A relationE⊆S×Sis said to be an option- bisim-
ulation relation if wheneversEt:

1. ∀o∈OPT. R(s,o) = R(t,o)

2. ∀o∈OPT.∀C∈ S/E.
∑s′∈C Pr(s′|s,o) = ∑s′∈C Pr(s′|t,o)

Two statess andt are said to be option-bisimilar if there exists an
option-bisimulation relationE such thatsEt. Let s∼O t denote the
maximal option-bisimulation relation.

Similarly, a metricd is an option-bisimulation metric if for any
s, t ∈ S, d(s, t) = 0⇔ s∼O t.

Ferns et al. (2004) pass the next state transition probabilities in
to TK(d). However, in our case we will pass inPr(·|s,o) for s∈ S
ando ∈ OPT, which is a subprobability distribution. To account
for this, we add two dummy nodes in the dual formulation of the
Kantorovich metric above, which absorb any leftover probability
mass. These dummy nodes are still connected as the other nodes,
but with a cost of 1 (see Van Breugel & Worrell, 2001 for more
details).

Option-bisimulation metrics are very similar to the usual bisim-
ulation metrics, in terms of properties, as can be seen from the fol-
lowing theorem:

THEOREM 6.1. Let

F(d)(s, t)= max
o∈OPT

(|R(s,o)−R(t,o)|+γTK(d)(Pr(·|s,o),Pr(·|t,o))

Then F has a least fixed-point, d∼ and df ix is an option-bisimulation
metric.
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Table 1: Running times (in seconds) and‖V∗2 −VT
t ‖∞

First instance (4to4) Second instance (4to4) Second instance (4to3) Second instance (3to4)
Algorithm Running time ‖V∗2 −VT

t ‖∞ Running time ‖V∗2 −VT
t ‖∞ Running time ‖V∗2 −VT

t ‖∞ Running time ‖V∗2 −VT
t ‖∞

Bisim 15.565 0.952872 - - - - - -
Lax-Bisim 66.167 0.847645 128.135 0.749583 67.115 0.749583 100.394 0.749583
Pessimistic 25.082 0.954625 47.723 0.904437 24.125 0.875533 37.048 0.904437
Optimistic 23.053 0.335348 47.710 0.327911 24.649 0.360802 39.672 0.002052

Approximant1 0.725 0.744038 1.484 0.744036 0.820 0.721627 1.214 0.744036
Approximant2 0.443 0.744038 0.949 0.632880 0.556 0.532724 0.762 0.632880

The proof is almost identical to that of Theorem 4.5 in (Ferns et
al, 2004), so we omit it for succinctness. As shown there,d∼ can
be approximated to a desired accuracyδ by applyingF for ⌈ lnδ

lnγ ⌉
steps.

All the results presented for the four algorithms carry over easily
to the option-bisimulation case. Their proofs will be omitted for
succinctness.

7. EXPERIMENTAL RESULTS
To illustrate the performance of the various policy transfer algo-

rithms, we used the grid world navigation task of (Sutton, Precup
& Singh, 1999), consisting of four rooms in a square (a room in
each corner) connected by four hallways, one between each pair of
rooms. There are four primitive actions:∧ (up),∨ (down),< (left)
and> (right). When one of the actions is chosen, the agent moves
in the desired direction with 0.9 probability, and with 0.1 probabil-
ity uniformly moves in one of the other three directions or stays in
the same place. Whenever a move would take the agent into a wall,
the agent remains in the same position.

There are four global options available in every state, analogous
to the∧, ∨, < and> primitive actions. We will refer to them as
u, d, l andr , respectively. If an agent chooses optionu, then the
option will take it to the hallway above its position. If there is no
hallway in that direction, then the option will take the agent to the
middle of the upper wall. The option terminates as soon as the
agent reaches the respective hallway or position along the wall. All
other options are similar. There is a single goal placed in one of
the hallways, yielding a reward of 1. Everywhere else the agent
receives a reward of 0.

Figure 1: Tiny in-
stance with the opti-
mal policy. Red state
is the goal state.

The above topology for the rooms
can be instantiated with different
numbers of cells. We started with a
tiny instance, where there are only
8 states: one for each of the rooms,
and one for each of the hallways,
with the goal in the rightmost hall-
way. (Figure 1). This tiny domain
only has 4 options, which are sim-
ply the primitive actions. The vari-
ous metrics (d∼, dL, d≈, anddOpt)
were computed between the tiny in-

stance and each of the larger instances, using a desired accuracy of
δ = 0.01, and then the policy transfer algorithms were applied. We
also used the two approximants on the optimistic algorithm. For
all experiments we used the CS2 algorithm for the MCF problems
(Frangioni & Manca, 2006) and a discount factor ofγ = 0.9. In
the second approximant we set the number of clusters to 8 (note
that we are looking at option reward regions, rather than primitive
reward regions).

We used a domain with 44 states as the large domain. We varied
the number and type of options available in the larger domain. In

the first instance the target domain only had primitive actions as
options:∧, ∨, < and>. In the second instance, the domain was
equipped with 8 options:{∧,∨,<,>,u,d, l, r}. Clearly the origi-
nal bisimulation metric approach could not be run because of the
difference in number of options. We also ran experiments where
the target system only has 3 rooms (bottom right room was re-
moved), but source still has 4 rooms, and where the source system
only has 3 rooms (bottom right room was removed) and target sys-
tem has 4 rooms. Table 1 displays the running times of the various
algorithms, as well as‖V∗2 −VT

2 ‖∞. In Figure 2 we display the
transferred policies when using lax-bisim, the pessimistic and the
optimistic approach. The colors indicate which state in the tiny in-
stance was used for the transfer. In figures 3 and 4 we compare the
performance of the various algorithms when used to speed up learn-
ing. Standard Q-learning was performed, but the agent was biased
towards the transferred policy. In other words, if the agent did not
have another option with a better Q-value than the current Q-value
estimate for the transferred policy, it would choose the transferred
policy. These results clearly demonstrate the superior performance
of the optimistic approach.

In Table 2 we examine the performance of the second approxi-
mant compared to that of the first as we scale the sizes of the target
systems. The first approximant was only able to solve the problem
with 104 states, at which point it ran out of memory. We can see
that we still obtain reasonable results with the second approxima-
tion, even as the number of states gets larger.

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented six new algorithms for performing

policy transfer on MDPs that were based on bisimulation metrics.
We started off with algorithms that had very strong theoretical re-
sults but poor empirical performance. Using these initial algo-
rithms as inspiration, we defined new algorithms that traded some
of the theoretical guarantees for improved performance. Finally,
we presented two approximation algorithms to overcome the com-
putational overhead of bisimulation metrics. The second of these
was shown to scale very well to very large problems. We presented
empirical evidence of the suitability of our algorithms for speeding
up learning.

Our algorithms would also be very useful if we had a model dis-
tribution from which problems were sampled and we wanted to
avoid solving the value function for each sampled model. This sit-
uation is commonly encountered in Bayesian RL, where a Dirich-
let distribution over models is maintained and updated with each
transition. Most algorithms sample a number of models from the
Dirichlet distribution and solve the value function for each in order
to make the next action choice. We could use our algorithms to
transfer the policy from the small source to just one of the target
systems (the mean model, for instance), and use that policy for all
the other samples. It would be useful to obtain empirical evidence
to justify these claims, as well as theoretical bounds on the loss of
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Figure 2: Transferred policies in second instance. Left: Lax-bisim,middle: Pessimistic, right: optimistic
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Figure 3: Comparison of performance of transfer algorithms (4 rooms to 4 rooms)

optimality that is dependent on the parameters of the underlying
model distribution.

Bowling & Veloso (1999) derive a bound based on the Bell-
man error quantifying the loss of optimality when using policies
of sub-problems to speed up learning. The motivation for consider-
ing solutions to sub-problems is similar to the motivation for using
options in our case. Their bound is applicable for a particular def-
inition of sub-problem, whereas our bounds are general. Sorg &
Singh (2009) use soft homomorphisms to transfer policies, and de-
rive bounds on the loss. The state mapping they suggest is loosely
based on MDP homomorphisms and does not have continuity prop-
erties with respect to its underlying equivalence, as is the case for
bisimulation metrics. Our bounds are tighter because they are state-
dependent while their bound is uniform over the state space.

In Section 7 we demonstrated empirically that our algorithms
can be very effective for speeding up learning. We demonstrated
that both in terms of learning speedup andL∞ norm the optimistic
approach outperforms all the rest. The approximation algorithms
presented come close in terms of performance, but greatly speed up
the computation. The second approximation is very promising, and
was shown to scale relatively well to larger problems. However, the
algorithm is scaling worse than linearly, due to the fact that we are
still runningS1×S2 MCF problems at each iteration (even though
the number of variables is reduced in each MCF due to our reward
clustering method). A possible approach is not only to use the re-
ward clustering to reduce the number of variables in each MCF, but
also to reduce the number of MCFs. However, this could require
that a transfer be performed from a source states to a group of tar-
get states. The problem here is that it does not always make sense
to perform the same transfer to states in one cluster. An approach
such as suggested in (Castro, Panangaden & Precup, 2009) could
be used to refine the clusters in a principled way. Although these
initial results are very promising, more empirical evidence in other
domains is needed.
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Figure 4: Comparison of performance of transfer algorithms (left: 4 rooms to 3 rooms, right: 3 rooms to 4 rooms)

Table 2: Scaling performance of the approximation algorithms
Approximant 1 Approximant 2

Number of states Running time ‖V∗2 −VT
2 ‖∞ Running time ‖V∗2 −VT

2 ‖∞
104 8.715 0.742559 4.284 0.655103
200 - - 15.859 0.656311
328 - - 48.011 0.661011
488 - - 127.611 0.662410
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ABSTRACT
This paper examines the evolution of agent strategies in a
commons dilemma using a tag interaction model. Through
the use of a tag-mediated interaction model, individuals can
determine their interactions based on their tag similarity.
The simulations presented show the significance and bene-
fits of agents that contribute to the commons. A series of
experiments examine the importance of the tag space in a
n-player dilemma. The paper shows the emergence of co-
operation through tag-mediated interactions in the n-player
games. Simulation results show the evolution of strategies
that contribute heavily to the value of the shared commons.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Artificial In-
telligence| Multiagent systems

General Terms
Multi-Agent Cooperation, Learning and Evolution, Tag Me-
diated Interactions

Keywords
Evolution, Learning, Tag Mediated Interactions, Coopera-
tion

1. INTRODUCTION
When a common resource is being shared among a num-

ber of individuals, each individual benefits most by using
as much of the resource as possible. While this is the indi-
vidually rational choice, it results in collective irrationality
and a non Pareto-optimal result for all participants. These
n-player dilemmas are common throughout many real world
scenarios. For example, the computing community is partic-
ularly concerned with how finite resources can be used most
efficiently where conflicting and potentially selfish demands
are placed on those resources. Those resources may range
from access to processor time or bandwidth.

One example commonly used throughout existing research
is the Tragedy of the Commons [7]. This outlines a scenario
whereby villagers are allowed to graze their cows on the vil-
lage green. This common resource will be over grazed and
lost to everyone if the villagers allow all their cows to graze,
yet if everyone limits their use of the village green, it will
continue to be useful to all villagers. Another example is
the Diners Dilemma where a group of people in a restau-
rant agree to equally split their bill. Each has the choice to

exploit the situation and order the most expensive items on
the menu. If all members of the group apply this strategy,
then all participants will end up paying more [5].

These games are all classified as n-player dilemmas, as
they involve multiple participants interacting as a group. N-
player dilemmas have been shown to result in widespread de-
fection unless agent interactions are structured. This is most
commonly achieved through using spatial constraints which
limit agent interactions through specified neighbourhoods
on a spatial grid. Limiting group size has been shown to
benefit cooperation in these n-player dilemmas [24]. Agent
interaction models such as spatial constraints, social net-
works and tags offer a basis for agents to determine there
peer interaction and the subsequent emergence of coopera-
tion. This paper examines a series of simulations involving
a tag-mediated interaction environment. Tags are visible
markings or social cues which serve to bias agent interac-
tions based on their similarity [9].

In this paper we will examine an n-player dilemma, and
study the evolution of strategies when individuals can con-
tribute some of their payoffs towards the value of the com-
mons. The theory that commitment changes the incentives
of players is a familiar principle in economics. Applications
of these principles include bargaining [19], monetary policy
[17], industrial organisation [4], strategic trade policy [2].

The simulations presented in this paper use the well known
n-player Prisoner’s Dilemma (NPD). Agents bias their in-
teractions through a tag mediated environment. The re-
sults show the evolution of widespread contributing strate-
gies throughout the population, despite this being a sub-
optimal strategy.

This paper examines the impact of the tag space and
its effects on the emergence of cooperation in the n-player
dilemma. In this context the experiments will show the ef-
fects of investment strategies on the emergence of coopera-
tion. The research presented in this paper will address three
specific research questions:

1. What is the impact of tag space on the emergence of
cooperation in a n-player dilemma?

2. Will agent strategies evolve investment properties in a
commons dilemma?

3. How do investment strategies impact on the emergence
of cooperation in a commons dilemma?

The following section of his paper will provide an intro-
duction to the NPD and a number of well known agent inter-
action models. The topics of tag-mediated interactions, and
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the n-player Prisoner’s Dilemma will be discussed in detail.
In the experimental setup section we will discuss our simu-
lator design and our experimental parameters. Our results
section will provide a series of game theoretic simulations.
Finally we will outline our conclusions and future work.

2. RELATED RESEARCH
The area of social dilemmas has been addressed by a large

number of researchers from a broad set of subject areas. The
most commonly known areas include, trust [18][3], social
capital [21] and solidarity [22]. Social dilemmas are partic-
ularly useful as analytic tools through which large groups of
agents can be studied. These individuals can have signifi-
cant interdependencies and interact through complex social
structures. These agent interactions have been identified
as being very significant to the study of social dilemmas
[12][1]. The importance of these interaction choices moti-
vates our interest in agent sociability and the evolution of
cooperation in an n-player dilemma.

A number of investigations into social dilemmas have at-
tempted to study ways of evolving cooperation. For exam-
ple, Suzuki extended traditional studies by allowing individ-
uals become charging agents in the tragedy of the commons
[20]. In other work Yamashita et al, have examined the ef-
fects of group dynamics in the NPD [23]. Individuals come
together to form groups and then participate in NPD games
with each other. Yamashita studied a number of group for-
mation mechanisms, which included unilateral choice and
mutual choice. Unilateral stated that once an agent wanted
to join a group then ie is admitted into the group. In mu-
tual choice the agent must be accepted in by a majority
of the existing group members. This mutual choice mecha-
nism was then augmented to include group splitting which
allowed dissenting individuals in the group to split away on
their own when a group applicant divided the voting group
members. The agreeing agents proceeded to accept the new
individual into their group, while the opposing agents would
leave to form a new group of their own [23].

The size of the tag space has been shown to be very signif-
icant to the subsequent emergence of cooperation in the two
player Prisoner’s Dilemma [11]. In this paper we explore the
impact of this parameter in relation to the n-player commons
dilemma, and the effects of allowing the agent strategies in-
vest in the value of the commons.

Existing research has not examined the NPD with respect
to tags and their known ability to effectively bias agent inter-
actions and engender cooperation in two player games such
as the Prisoner’s Dilemma. By proposing a tag mediated
interaction model for n-player games, we hope to bridge the
gap between the research already conducted involving tags
in two player games [15][14], and the need for more research
involving group structures in many n-player games [1][23].

2.1 The N-Player Prisoner’s Dilemma
The n-player Prisoner’s Dilemma is also commonly known

as the Tragedy of the Commons [7] and the payoff structure
of this game is shown in Figure 1.

The x-axis represents the fraction of cooperators in the
group of n players in a particular game. The vertical axis
represents the payoff for an individual participating in a
game. There is a linear relationship between the fraction of
cooperators and the utility received by a game participant.
Importantly, the payoff received for a defection is higher
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Figure 1: The N-Player Prisoner’s Dilemma

than for a cooperation. The utility for defection dominates
the payoff for cooperation in all cases. Therefore, an indi-
vidual that defects will always receive a higher payoff than
if they had chosen to cooperate. The result of this payoff
structure should result in an advantage to defectors in the
agent population. Despite this, a cooperator in a group of
cooperators will do much better than a defector in a group
of defectors.

This game is considered a valid dilemma due to the fact
that individual rationality favours defection despite this re-
sulting in state which is less beneficial to all participants.
In our case where all individuals defect they all receive 0.5.
This state is a non-pareto, sub-optimal, and collectively ir-
rational outcome for the agent population. For all values of
x this can be expressed as follows:

Ud(x) > Uc(x) (1)

x represents the fraction of cooperators while Ud and Uc

are utility functions based on the fraction of cooperators in
the group.

2.2 Tag-Mediated Interactions
The early studies of tags have focused primarily on the

evolution of cooperation [8, 15, 16]. In the commonly used
model proposed by Riolo, tags are represented as values
in the range [0. . . 1]. These values represent an abstract
topology which allows individuals to determine their peer
interactions. Agents are more likely to interact when their
tag values are similar, while they are less likely to interact
when their tags are less similar. The results presented by
Riolo demonstrate the ability of tags to engender coopera-
tion through limiting peer interactions and thereby avoiding
exploitation. This point was examined specifically in later
work by Howley et al. which showed the significance of
partitioning and tag group size on the levels of cooperation
recorded [11].

Tags have been widely used to demonstrate the emergence
of cooperation among clusters of agents that emerge. In
other work tags have also been shown to promote mimicking
and thereby have certain limitations where complimentary
actions are required by agents. Evolving identical actions
among individuals is assisted by using tags, yet behaviours
that require divergent actions are problematic [14, 13]. This
is particularly significant when considering issues such as
cooperation and coordination.
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3. SIMULATOR DESIGN
In this section we outline the overall design of our simula-

tor. Firstly, we will outlined the agent genome and how this
influences agent behaviours. Then we describe our agent
interaction model which uses a tag mediated interaction
model. This paper examines agent learning through evolu-
tion, and as a result we use a genetic algorithm. This genetic
algorithm and its parameter settings are also outlined in this
section.

3.1 Agent Genome
In our model each agent is represented through an agent

genome. This genome holds a number of genes which repre-
sents how that particular agent behaves.

Genome = GC , GT , GI , (2)

The GC gene represents the probability of an agent coop-
erating in a particular move. The GT gene represents the
agent tag. This is represented in the range [0. . . 1] and is
used to determine which games each agent participates. Fi-
nally, GI represents an individuals willingness to contribute
into the commons. This is again represented on a scale to in-
dicate that some individuals may chose to invest more than
others.

Initially these agent genes are generated using a uniform
distribution for the first generation. Over subsequent gen-
erations new agent genomes are generated using our genetic
algorithm. Each of these genes are evolved attributes and
are fixed for that individual’s lifetime, therefore changes in
the population only occur through new offspring which have
evolved genetic traits.

3.2 Investing in the Commons
Individuals can determine whether they wish to invest in

the value of the commons through their GI gene. An agent’s
contribution is considered the fraction represented by their
GI gene. In real terms, this fraction is applied the maximum
value of Uc of the standard game. As shown in the earlier
example in Figure 1, the maximum value of Uc is 5. Since
this is a n-player game, n individuals may choose to make
contributions. These contributions are totalled and added
to the initial Uc value to give U

′
c . The value of U

′
d is then

calculated as follows:

U
′
d = U

′
c × 1.1 (3)

This results in the ratio between U
′
c and U

′
d remaining

consistent for all values of U
′
c regardless of how much is

contributed into the commons. If the U
′
d did not change

proportionally to the U
′
c value, then the dilemma would be

significantly undermined. The temptation to defect would

be proportionally less as the value of U
′
c increased. This

would promote the emergence of cooperation in the model.
When an individual chooses to make a contribution, the

amount it deducted from their payoffs. Only agents who
can make their desired contribution can participate in the n-
player game. Individuals with a strategy gene GI = 0 will be
capable of participating without making any contribution or
having any payoffs in reserve. All individuals are initialised
with a reserve payoff of 30 in order to begin contributing to
games if they wish.

3.3 Agent Interactions
In our simulations each agent interacts through a fixed

bias tag mediated interaction model. We adopt a similar
tag implementation as that outlined by Riolo [15] and more
recently by [10]. In our model each agent has a GT gene
which is used as their tag value. Each agent A is given
the opportunity to make game offers to all other agents in
the population. The intention is that this agent A will host
a game and the probability other agents will participate is
determined using the following formulation.

dA,B = 1− |AGT −BGT | (4)

This equation is based on the absolute value between the
tag values of two agents A and B. This value is used to gen-
erate two roulette wheels Rab and Rba for A and B. These
two roulette wheels will then be used to determine agent A’s
attitude to B and agent B’s attitude to A. An agent B will
only participate in the game when both roulette wheels have
indicated acceptance.

Figure 2: Simulator Design

The diagram shown in Figure 2 shows the sequence of
main events that occur in the simulator for a given genera-
tion (G). Initially individuals are selected to participate in
individual n-player games. Then individuals can make their
contributions towards the size of the commons. This results
in the potential utilities available to players in the commons
game to change. Agents then play the n-player commons
dilemma game using their GC strategy gene. The payoffs
are calculated and this determines each individuals fitness
value. The genetic algorithm provides the final stage of this
process which begins the cycle again.

3.4 Genetic Algorithm
In this paper we have used a genetic algorithm to reflect

learning throughout the agent population [9, 6]. In each
generation individuals participate in a variable number of
games. Therefore, fitness is determined by summing all their
payoffs received and getting an average payoff per game.
Once fitness has been established for each individual, a new
population for generation G + 1 is created. Individuals are
selected through roulette wheel selection based on their fit-
ness from generation G. Parent pairs are selected based on
their fitness and these are used to create a new agent. Each
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parent has a set of three genes GC , GT , GI . A probability
of 0.9 is applied in favor of selecting two random genes from
the the fittest parent, and 1 gene from the other parent.
Each gene is exposed to a 2% chance of mutation. When
applied to a gene, the mutation operator changes it through
a displacement chosen from a Gaussian distribution with a
mean of 0 and a standard deviation of 0.5. Since tag values
are considered arbitrary the tag space is viewed as circular.
Therefore, when adding and subtracting displacements on
the GT gene values over 1.0 are calculated upwards from
0, while values under 0 are calculated downwards from 1.0.
For the two remaining genes, their actual value is significant
and displacements resulting in values above 1.0 are set to
1.0, while those below 0 are set to 0.

4. EXPERIMENTAL RESULTS
In this section we will present a series of experiments ex-

amining the agent environment. Firstly, we will show simu-
lations involving the traditional n-player commons dilemms.
While subsequently we will examine a commons dilemma
with voluntary contributions from the players. All the data
presented in these experiments is averaged from 50 experi-
mental runs.

4.1 Classic N-Player Dilemma
In the following experiment we show a series of simulations

involving a standard commons dilemma using our tag inter-
action model. No investing into the commons was allowed
in this experiment.
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Figure 3: Average Cooperations (Classic N-Player
Dilemma)

Figure 3 shows the standard commons dilemma using a
number of alternative agent population sizes. This has the
effect of altering the size of the tag space in the model. As
shown through a similar experiment by Howley et al, the
size of the tag space has a significant effect on the emer-
gence of cooperation [11]. Where there are only a small
number of agents in the population, cooperators can avoid
exploiters much more easily due to the partitioning effects
of the tag environment. However, in larger populations this
is much more difficult and exploiters are much more likely to
be present in a n-player interaction. Therefore cooperation
is not evolved for larger populations where the tag space
is undermined. The probability of being exploited is much
higher with each peer interaction an individual participates
in, therefore in larger populations it is generally considered

more difficult to establish and maintain cooperative interac-
tions and avoid exploitation.

4.2 N-Player Dilemma with Investment
In this section we will examine the extended version of

the N-player dilemma. All experimental parameters are held
from the previous experiment.
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Figure 4: Average Cooperations (N-Player Dilemma
with Investments)

The results shown in Figure 4 show the levels of cooper-
ation recorded in the commons dilemma with agent contri-
butions. The results show some significant differences with
those in the previous figure. For small populations there
is greater volatility with respect to the high levels of coop-
eration recorded in the previous experiment. Significantly,
higher levels of cooperation were recorded for large popula-
tions despite the tag space being constrained. These results
show that despite all games being valid commons dilemmas,
and the conditions of the game being adhered to stringently,
significant differences could be identified in the strategies
evolved throughout the model.
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Figure 5: Average Investment Gene (N-Player
Dilemma with Investments)

The data shown in Figure 5, shows how the GI gene
evolved in various population sizes. The results show that
high investment strategies evolved in almost all cases accept
for the smallest populations. The evolutionary pressure to
evolve such a strategy stems from the increased fitness of
those individuals who were part of highly investment, coop-
erative groups. This combination facilitates many high value
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games which helps offset exploitation from rogue strategies
on the periphery of the cluster. Once established this trait
will increase throughout the population with the help of the
tag mechanism which promotes homogeneity. As discussed
by many previous authors, individuals who share tag values
are likely to share many other genetic traits due to their
shared ancestry [13].
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Figure 6: Average Commons Value (N-Player
Dilemma with Investments)

The data shown in Figure 6 show the average value of
games in the commons dilemma with investment. These
payoffs represent the entire value of the commons which each
of the players had to then play for. As would be expected
these payoff values correlate strongly with the numbers of
agents in the population, and this would increase the likely
number of individuals participating and contributing to the
n-player games. The most significant aspect of this data are
the scale of the payoffs for the smallest populations. The
influence of the investment extension appears to be smallest
in these populations, and this appears to simply be due to
the fact that there were not enough participants participat-
ing and contributing for the extension to have a major effect
over the population.

To investigate the issue of game participation in more de-
tail, we now examine the average numbers of participants in
each of the models.
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Dilemma)

Figure 7 shows the average number of participants in the
n-player games for each population size. As expected the

levels correlate with the population sizes. Increased num-
bers of participants in a n-player game makes the chances of
maintaining high levels of cooperation less likely. Exploita-
tion is much more likely to occur in a game with many par-
ticipants and therefore undermine any cooperation that may
have been established previously. This data correlates with
the levels of cooperation we identified previously in Figure
3. The model with the most participants was the least co-
operative while the model with the least game participants
was the most cooperative.
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The data shown in Figure 8 mirrors the previous simu-
lations shown in Figure 7. Here we identify many similar
features, yet we also notice that the levels of game partic-
ipation are lower in the extended game environment. This
is as a result of the extended game encouraging more tag
diversity throughout the population. This has the effect of
reducing the size of tag groups to smaller numbers and then
game participation is lower than in the traditional game.
This feature only becomes apparent in larger populations
and therefore it is in the largest population we identify the
most significant changes with respect to game participation
and the strategies evolved.

4.3 Tag Space Evolution
In this section we will examine the evolution of the tag

space in both game environments. In this case we use two
populations of 100 agents, and 100 experimental runs.
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Figure 9, shows the evolution of tags over time through
successive generations. The proportion of unique tag values
is calculated the maximum number of possible tag values,
and then this is recorded and averaged over many genera-
tions and experiments. In the initial generations there is a
very large number of tag values, however over time the num-
ber of unique tag values falls and converges to a relatively
small number of tag groups. This is an indication of the
high levels of mimicking that occurs due to tags. However
we observe the higher numbers of unique tag values in the
n-player commons with investment. This indicates more tag
groups and a higher degree of tag diversity throughout the
population. The n-player dilemma with investment helps
clusters of cooperators to emerge and avoid being exploited
by invaders. This happens as potential defectors must have a
reserve fund available to contribute in line with their strat-
egy or else they cannot participate in the game. Further-
more, high value games have the added benefit of spreading
wealth among a group of individuals with similar tag values,
which has the effect of promoting that groups strategy traits
throughout the population in the following generation. This
inevitably encourages cooperation and contribution strate-
gies as the group can only achieve high levels of fitness if it
is composed of high cooperators and investors.

Table 1: Average Unique Tag Values
Model µ σ

Classic N-Player Dilemma 6.31% 0.52%
N-Player Dilemma with Investments 12.698% 0.87%

As indicated in Figure 9 and also through the data pre-
sented in Table 1 the differences between the two models are
significant. The data shown in Table 1 is recorded from 100
experimental runs using populations of 100 agents. The dif-
ferences between the levels of unique tags recorded in each
model were found to be statistically significant. This was
found when examined using a two tailed t test with a 95%
confidence interval. These difference reinforce our observa-
tions earlier in the paper regarding the contrasting levels of
cooperation recorded in the models.

5. CONCLUSIONS
In this paper we have examined a number of issues. Firstly,

we proposed an adaptation to the classic n-player commons
dilemma to include agent investments into the commons.
This was achieved while maintaining the essential character-
istics of the game. Secondly, we examined the tag space and
its significance with respect to the emergence of cooperation
in the n-player PD. The study of n-player games using tags is
a recent area of research, and the significance of the tag space
is an important consideration in that study. The results pre-
sented in this paper show that the relationship between the
tag space and the population size is vitally important in the
n-player commons dilemma. Finally, this paper has outlined
a series of experiments showing the significant impact of in-
dividuals investing in the commons. Importantly, we have
learned that this has the effect of encouraging cooperation
when sufficient numbers of individuals are participating in
the n-player games. While quite unstable for small popula-
tions, this new adapted game offers a means of engendering
cooperation in larger populations where cooperation is more

difficult to achieve. There are many alternative means of en-
couraging cooperation in these scenarios, but in this case we
wanted to show the benefits of individuals investing in their
shared resource.

Earlier in this paper we posed a number of research ques-
tions. We will now refer to these through the following sub-
headings.

Tag Space: The tag space was found to be very significant
in the emergence of cooperation in the classic n-player
commons dilemma. Clustering was much more diffi-
cult to achieve in larger populations when compared
to smaller populations.

Investment Strategies: Throughout our simulations we
identified the emergence of agents with high invest-
ment genes. This was promoted through the cluster-
ing of the tag environment and the mimicry that it
encourages.

Emergence of Cooperation: The emergence of investment
strategies and the emergence if cooperation in large
populations are very closely linked. The fitness of cer-
tain tag assisted by the investment mechanism as this
helps avoid exploitation. Furthermore, the increased
payoffs help sustain and promote the evolution of a
particular tag cluster. This has the effect of promot-
ing that tags associated strategy characteristics.

Through addressing these research questions, we have pro-
vided a clear picture of the importance of tag space with
respect to the n-player commons dilemma. Importantly, we
have also shown how investment strategies can result in the
promotion of cooperative traits in otherwise difficult con-
ditions. This highlights the potential benefits of studying
extensions to these well known games.

6. SUMMARY AND FUTURE RESEARCH
In this paper we have presented a novel extension to the

n-player commons dilemma and shown the significant effects
this extension has on the emergence of cooperation. Further-
more, this paper has outlined a number of significant experi-
mental results which show the evolution of cooperation with
respect to agent investment and cooperation choices. In fu-
ture research we would like to study the effects of investment
mechanisms on conservation, and more efficient utilisation
of common resources. Examples of these could include such
as fossil fuels, water and computing resources.
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