
Plan-based Reward Shaping for Reinforcement
Learning

Marek Grzes and Daniel Kudenko

Abstract—Reinforcement learning, while being a highly pop-
ular learning technique for agents and multi-agent systems, has
so far encountered difficulties when applying it to more complex
domains due to scaling-up problems. This paper focuses on the
use of domain knowledge to improve the convergence speed and
optimality of various RL techniques. Specifically, we propose the
use of high-level STRIPS operator knowledge in reward shaping
to focus the search for the optimal policy. Empirical results show
that the plan-based reward shaping approach outperforms other
RL techniques, including alternative manual and MDP-based
reward shaping when it is used in its basic form. We show that
MDP-based reward shaping may fail and successful experiments
with STRIPS-based shaping suggest modifications which can
overcome encountered problems. The STRIPS-based method we
propose allows expressing the same domain knowledge in a
different way and the domain expert can choose whether to
define an MDP or STRIPS planning task. We also evaluate the
robustness of the proposed STRIPS-based technique to errors in
the plan knowledge.

Index Terms—Reinforcement learning, reward shaping, sym-
bolic planning, STRIPS

I. INTRODUCTION

Reinforcement learning (RL) is a popular method to design
autonomous agents that learn from interactions with the envi-
ronment. In contrast to supervised learning, RL methods do
not rely on instructive feedback, i.e., the agent is not informed
what the best action in a given situation is. Instead, the agent
is guided by the numerical reward which defines the optimal
behaviour for solving the task. The problem with this kind of
numeric guidance in goal-based tasks is that the reward from
the environment is given only upon reaching the goal state.
Non-goal states are not rewarded which leads to two kinds of
problems:

1) The temporal credit assignment problem, i.e., the prob-
lem of determining which part of the behaviour deserves
the reward.

2) Slower convergence: conventional RL algorithms em-
ploy a delayed approach propagating the final goal
reward in a discounted way or assigning a cost to non-
goal states. However the back-propagation of the goal
reward over the state space is time consuming.

To speed up the learning process, and to tackle the temporal
credit assignment problem, the concept of shaping reward

This research was sponsored by the United Kingdom Ministry of Defence
Research Programme.

M. Grzes and D. Kudenko are with the Department of Computer Science,
University of York, Heslington, YO10 5DD York, United Kingdom, (e-mail:
{grzes, kudenko}@cs.york.ac.uk).

has been considered in the field [1], [2]. The idea of reward
shaping is to give an additional (numerical) feedback to the
agent in some intermediate states that helps to guide it towards
the goal state in a more controlled fashion.

Even though reward shaping has been powerful in many
experiments it quickly turned out that, used improperly, it can
be also misleading [2]. To deal with such problems Ng et al.
[1] proposed potential-based reward shaping F (s, s′) as the
difference of some potential function Φ defined over a source
s and a destination state s′:

F (s, s′) = γΦ(s′)− Φ(s). (1)

They proved that reward shaping defined in this way is
necessary and sufficient to learn a policy which is equivalent
to the one learned without reward shaping.

One problem with reward shaping is that often detailed
knowledge of the potential of states is not available, or very
difficult to represent directly in the form of a shaped reward.
Rather, some high level knowledge of the problem domain
exists, that does not lend itself easily to explicit reward
shaping.

In this paper we focus on the use of high-level STRIPS
operators to automatically create a potential-based reward
function, that improves the ability and speed of the agent
to converge towards the optimal policy. The only interface
between the basic RL algorithm and the planner is the shaping
reward and information about the current state. In related
works where planning operators were also used [3], [4] a
RL agent learns an explicit policy for these operators. In our
approach symbolic planning provides additional knowledge
to a classical RL agent in a principled way through reward
shaping. As a result, our approach does not require frequent
re-planning as is for example the case in [3].

We evaluate the proposed method in a flag-collection do-
main, where there is a goal state (necessary for applying
STRIPS) and a number of locally optimal ways to reach
the goal. Specifically, we demonstrate the success of our
method by comparing it to RL without any reward shaping, RL
with manual reward shaping, and an alternative technique for
automatic reward shaping based on abstract MDPs [5] when
it is used in its basic form. Thus, the contribution of the paper
is the following: 1) we propose and evaluate a novel method
to use the STRIPS-based planning as an alternative to MDP-
based planning for reward shaping; 2) we show that MDP-
based reward shaping may fail and successful experiments
with STRIPS-based shaping suggest modifications which can
overcome encountered problems. The STRIPS-based method

2008 4th International IEEE Conference "Intelligent Systems"

978-1-4244-1739-1/08/$25.00 © 2008 IEEE 10-22

we propose allows expressing the same domain knowledge in
a different way and the domain expert can choose whether
to define an MDP or STRIPS planning task. The STRIPS-
based approach brings new merits to reward shaping from
abstract/high level planning in domains with the intensional
representation [6] which allows for symbolic reasoning.

High-level domain knowledge is often of a heuristic nature
and may contain errors. We address this issue by evaluating
the robustness of plan-based reward shaping when faced with
incorrect high-level state definitions or plans.

The remainder of this paper is organised as follows. Section
2 introduces reinforcement learning. The proposed method to
define the potential function for reward shaping is introduced
in section 3. The experimental domain is described in section
4 and the chosen RL algorithms are presented in section 5.
Section 6 shows how the proposed method can be used in the
experimental domain, and a range of empirical experiments
and results are presented in section 7. Section 8 concludes the
paper with plans for further research.

II. MARKOV DECISION PROCESSES AND REINFORCEMENT

LEARNING

A Markov Decision Process (MDP) is a tuple (S,A, T,R),
where S is the state space, A is the action space, T (s, a, s′) =
Pr(st+1 = s′|st = s, at = a) is the probability that action
a in state s at time t will lead to state s′ at time t + 1,
R(s, a, s′) is the immediate reward received when action a
taken in state s results in a transition to state s′. The problem
of solving an MDP is to find a policy (i.e., mapping from
states to actions) which maximises the accumulated reward.
When the environment dynamics (transition probabilities and
a reward function) are available, this task becomes a planning
problem which can be solved using iterative approaches like
policy and value iteration [7]. Value iteration which is used in
this work applies the following update rule:

Vk+1(s) = max
a

∑

s′
P a

ss′ [Ra
ss′ + γVk(s′)]. (2)

The value of state s is updated according to the best action
after one sweep of policy evaluation.

MDPs represent a modelling framework for RL agents
whose goal is to learn an optimal policy when the environment
dynamics are not available. Thus value iteration in the form
presented in Equation 2 can not be used. However the concept
of an iterative approach in itself is the backbone of the
majority of RL algorithms. These algorithms apply so called
temporal-difference updates to propagate information about
values of states V (s) or state-action Q(s, a) pairs. These
updates are based on the difference of the two temporally
different estimates of a particular state or state-action value.
Model-free SARSA is such a method [7]. It updates state-
action values by the formula:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (3)

It modifies the value of taking action a in state s, when
after executing this action the environment returned reward r,

moved to a new state s′, and action a′ was chosen in state s′.
Model-based RL algorithms (e.g., DynaQ) learn additionally
how the world responds to its actions (transition probabilities)
and what reward is given (reward function) and use this model
for simulated backups made in addition to real experience.

Immediate reward r which is in the update rule given by
Equation 3 represents the feedback from the environment. The
idea of reward shaping is to provide an additional reward
which will improve the performance of the agent. This concept
can be represented by the following formula for the SARSA
algorithm:

Q(s, a)← Q(s, a)+α[r +F (s, a, s′)+γQ(s′, a′)−Q(s, a)],

where F (s, a, s′) is the general form of the shaping reward
which in our analysis is a function F : S × S → R, with
F (s, s′). The main focus of this paper is how to compute this
value in the particular case when it is defined as the difference
of potentials of consecutive states s and s′ (see Equation 1).
This reduces to the problem of how to compute the potential
Φ(s).

III. PLAN-BASED REWARD SHAPING

The class of RL problems is investigated in which back-
ground knowledge allows defining state and temporal abstrac-
tions using intensional representation [6]. Abstract states are
defined in terms of propositions and first order predicates,
and temporally extended actions (or options [8]) can be
treated as primitive actions at the abstract level. The function
fabs(S) = Z maps states s ∈ S onto their corresponding
abstract states z ∈ Z.

A. Potential Based on STRIPS Plan

The intensional representation allows for symbolic reason-
ing at an abstract level when options can be defined in terms of
changes to the symbolic representation of the state space, e.g.,
they can be expressed as STRIPS operators. For such problems
STRIPS planning can be used to reason at this abstract level.
When the RL problem is to learn a policy which moves the
agent from start state s0 to goal state sg it can be translated to
the high level problem of moving from state z0 = fabs(s0) to
state zg = fabs(sg). Because of the intensional representation
at the abstract level, symbolic reasoning can be used to solve
the planning problem of moving form state z0 to goal state
zg . It is a classical planning task which can be solved using
standard STRIPS planners (Graphplan [9] is used in our
experiments). The trajectory ω = (z0, z1, ..., zg) of abstract
states (obtained from plan execution at the abstract level) can
be used to define the potential for low level states as:

Φ(s) = step(fabs(s)),

where the function step(z) returns the time step at which given
abstract state z appears during plan execution. In other words,
the potential is incremented after the RL agent has successfully
completed an abstract action in the plan, and reached a (low-
level) state that is subsumed by the corresponding abstract
state in the trajectory.

10-23

The question remains what potential to assign to those
abstract states that do not occur in the plan. One option is
to ignore such states and assign a default value of zero. This
approach can strongly bias the agent to follow the given path.
The agent would be discouraged from moving away from the
plan. As it will be discussed later, this leads to problems when
the plan is wrong and in particular when there is no transition
from state zi to state zi+1 in the environment. The agent may
not be able to get out of state zi, because of the negative
reward for going to any state other than zi+1.

We propose a more flexible approach that will allow the
agent to abandon the plan and look for a better solution when
the plan is wrong. Figure 1 shows the algorithm. States which
are in trajectory ω (plan states) have their potential set to the
time step of their occurrence in the plan. Non-plan states that
are reachable from any state z ∈ ω have their potential set to
the potential of the last visited plan state (variable last). In
this way the agent is not discouraged from diverging from the
plan (it is also not rewarded for doing so).

A problem with this approach is that some non-plan states
can be reached from different levels of potential. For this
reason, for each non-plan state the highest value of the last
potential is stored in the array Max. The main aim of using

initialise last← 0

if fabs(s) ∈ ω then
last = step(fabs(s))
return step(fabs(s))

else
if last > Max(fabs(s))
then

Max(fabs(s)) = last
return last

else
last = Max(fabs(s))
return
Max(fabs(s))

end if
end if

Fig. 1. Assigning potential Φ(s) to
low level states through correspond-
ing abstract states.

this array is to prevent con-
tinuous changes in the poten-
tial of non-plan states which
may be disadvantageous for
the convergence of the value
function.

The abstract goal state in
the considered class of RL
tasks needs to be defined
as a conjunction of proposi-
tions. The most straightfor-
ward way to define poten-
tial for such goals manually
is to raise it with each goal
proposition which appears in
a given state. This kind of
potential, even though it gives
some hints to the agent which
propositions bring it closer to
the goal, does not take into

account how the environment is regulated (there may be a
certain sequence of achieving goal conditions, that leads to
higher rewards). One example is the travelling salesmen prob-
lem. Potential raised just for each visited town will strongly
bias the nearest neighbour strategy. An admissible heuristic
based on, e.g., minimum spanning trees can be used to give
correct (optimistic) potential [10]. In our approach instead of
encouraging the agent to obtain just goal propositions, a more
informed solution is proposed that takes into account how the
environment behaves.

B. Potential Based on Abstract MDP

Marthi [5] proposed a general framework to learn the
potential function by solving an abstract MDP. In this section
we show how this idea can be applied with the same kind
of knowledge that is given to the STRIPS-based approach.
The automatic shaping algorithm obtains potential by firstly
learning dynamics for options (i.e., actions at the abstract
level) and secondly solving an abstract MDP. Options can
be defined as policies over low level actions. Because in
our class of problems options are assumed to be primitive
and deterministic actions at an abstract level, computation of
their dynamics can be omitted. An abstract MDP (e.g., value
iteration from Equation 2 can be applied) can be solved before
target RL learning and the obtained value function is used
directly as the potential. The following equation describes this
fact:

Φ(s) = V̂ (fabs(s)),

where V̂ (z) is the value function over state space Z and it
represents an optimal solution to the corresponding MDP-
based planning problem. Because the high level model is
deterministic and options make transitions between abstract
states, this planning task can be solved using the following
formula:

Vk+1(z) = max
z′

[Rzz′ + γVk(z′)]. (4)

Knowledge equivalent to STRIPS operators can be used to de-
termine the next possible states z′ for given state z. The reward
given upon entering the abstract goal state and discount factor
γ can be chosen to make the difference in the value function
between neighbouring states equal to one, thus enabling us
to perform easier comparisons with the STRIPS-based reward
shaping approach.

IV. EXPERIMENTAL DOMAIN

The proposed algorithms are evaluated on an extended
version of the navigation maze problem. This problem has
been used in many RL investigations, and is representative of
RL problems with the following properties:

• There exists an abstract goal state. This can stand for
a number of actual states. A well-defined goal state is
necessary for applying STRIPS planning.

• There are many ways to reach the goal, with varying
associated rewards. In other words, there are local policy
optima that the RL agent can get stuck in.

We use the artificial domain to evaluate our algorithm, there-
fore, it will be suitable for any real-world problem with these
properties (approach adopted also in [4]).

In the basic navigation maze problem an agent moves in a
maze and has to learn how to navigate to a given goal position.
In the extended version of this problem domain, the agent
additionally has to collect flags (i.e., visit certain points in
the maze) and bring them to the goal position. The reward
at the goal is proportional to the number of flags collected.
In order to introduce abstraction and demonstrate the use of
high-level planning, the maze is additionally partitioned into
areas (rooms).

10-24

G

S

RoomA

C

D

B

F

A

E

RoomB RoomE

RoomC

RoomD

HallA HallB

Fig. 2. The map of the maze problem. S is the start position and G the goal
position. Capital letters represent flags which need to be collected.

Because an episode ends when the agent reaches the goal
position regardless of the number of collected flags, this
problem has been used in the past to evaluate sophisticated
exploration strategies (e.g., [11], [12]). The learning agent can
easily get stuck in a local optimum, bringing only a reduced
number of flags to the goal position.

An example maze is shown in Figure 2. The agent starts
in state S and has to reach goal position G after collecting
as many flags (labelled A, B, C, D, E, F) as possible. The
episode ends when the goal position has been reached and the
reward proportional to the number of collected flags is given.
Thus the reward is zero in all states except the goal state.
The agent can choose from eight movement actions which
deterministically lead to one of eight adjacent cells when there
are no walls. The move action has no effect when the target
cell is separated by a wall.

V. EVALUATED ALGORITHMS AND PARAMETERS

To conduct the evaluation two RL algorithms are used:
SARSA and DynaQ. The usage of SARSA aims at inves-
tigating the influence of potential-based reward shaping on
model-free reinforcement learning. Model-based methods are
represented by DynaQ. All these RL algorithms were used
in its basic form as they are presented in [7]. The following
common values for parameters were used: α = 0.1, γ = 0.99,
the number of episodes per experiment 105. In all experiments
an ε-greedy exploration strategy was used where epsilon was
decreased linearly from 0.3 in the first episode to 0.01 in the
last episode.

Reward shaping was applied to all the above RL algorithms.
Plan-based reward shaping was compared with a non-shaping
approach and with three other shaping solutions. This results in
five reward shaping options: 1) no reward shaping, 2) STRIPS-
based reward shaping, 3) abstract MDP-based reward shaping,
4) flag-based reward shaping, 5) composed reward shaping.
STRIPS-based and abstract MDP-based reward shaping appear
in the form as they were introduced. In the above no-shaping
case no shaping reward is given. The flag-based shaping
reward is determined by the number of collected flags, and
the potential is the function Φ(s) = flags(s), where flags(s)
is the number of collected flags in state s. It is an instance
of the manual shaping approach (discussed in Section III-A)
which raises the potential for each goal proposition achieved in

the current state. This kind of reward shaping thus represents
the ”nearest flag” heuristic. In composed reward shaping the
potential is a sum Φ(s) = plan(s) + flags(s) of STRIPS-
based potential (plan(s)) and the number of collected flags
in state s (flags(s)). Flag-based reward shaping when com-
bined in this way with STRIPS-based shaping may hurt the
performance of pure STRIPS-based approach. However the
”nearest flag” bias added by flag-based information can help
in the case of incorrect planning knowledge. For this reason
such composition of flag- and STRIPS-based shaping named
composed is also evaluated.

If not explicitly mentioned otherwise, all experiments were
repeated ten times and the average performance is shown in
the result graphs.

VI. POTENTIAL FOR EXPERIMENTAL DOMAIN

This section shows how the proposed RL and reward
shaping approaches were applied to the flag collection domain.

A. Low Level Model

In our experiments, reinforcement learning is carried out at
the low level which is defined by the target MDP (S,A,R,T),
where S is the state space defined by the position of the agent
in the 13x18 maze and by the collected flags, and A is the set
of eight primitive actions corresponding to eight movement
directions. The reward function R and transition probabilities
T are not known to the agent in advance.

B. High Level Knowledge

Plan-based reward shaping assumes that there exists a high
level structure in the modelled world. The access to two types
of knowledge is required:

1) State mapping The mapping from low level to abstract
states. The function which maps low level states into
abstract states identifies each abstract state as the area
in the maze in which the given low level position is
located. Hence, the abstract state is determined by the
room location of the agent and the collection of collected
flags. Such a state can be symbolically expressed as:

robot in(roomB) ∧ taken(flagE) ∧ taken(flagF).

2) Transitions Possible transitions between high level
states. In this case there are two types of knowledge
which allow defining transitions at the abstract level:

a) Possible transitions between areas in the maze (i.e.,
which adjacent rooms have doors between them).

b) Location of flags: in which room a given flag is
located.

C. High Level Planning Problems

Knowledge about the high level structure of the world is
used to define high level planning problems. The abstract state
representation attributes are used to define state representation
for both classical and MDP-based planners. In the case of the

10-25

STRIPS representation the location of the robot and symbolic
names of collected flags are used for an intensional description
of the world. For the MDP-based planner the state space is
enumerated and all possible states are collected in the tabular
representation which has 448 entries. In both cases the state
encoding preserves the Markov property.

Both investigated planning approaches require action mod-
els. In this case knowledge about transitions and intensional
state representation is used to define high level actions. The
following STRIPS operators were used:

(TAKE ((<flag> FLAG) (<area> AREA))
(preconds (flag-in <flag> <area>) (robot-in <area>))
(effects (del flag-in <flag> <area>) (taken <flag>)))

(MOVE ((<from> AREA) (<to> AREA))
(preconds (robot-in <from>) (next-to <from> <to>))
(effects (del robot-in <from>) (robot-in <to>)))

These operators together with the knowledge about the
possible transitions between areas and the location of flags
allow reasoning about the changes in the environment. The
same knowledge is used to define possible transitions between
abstract states in the abstract MDP, strictly to find for each
state the set of reachable states. According to the description of
the algorithm, deterministic options are assumed which allow
for deterministic transitions between abstract states.

Introduced STRIPS actions allow reasoning symbolically
about the changes in the world. The planner has to find a
sequence of MOVE and TAKE actions which can transform the
system from the start state in which robot in(hallA) to the
goal state:

robot in(roomD) ∧ taken(flagA) ∧ ... ∧ taken(flagF).

Because of the closed-world assumption (everything not men-
tioned explicitly in the description of the state is assumed to be
false) the start state has to define all initial facts, like locations
of flags (e.g., flag − in(flagA, roomA) and connections
between rooms (e.g., next − to(hallB, roomC)). The last
group of facts is called rigid facts because they do not change
over time (the fact whether rooms are connected or not remains
unchanged).

Both the MDP and STRIPS planning problems can be
solved in advance before the learning takes place. Once
these problems have been solved they can be used to assign
potential to high level states directly and to low level RL states
indirectly via the mapping function, which translates low level
states to high level abstract states. The potential is assigned to
abstract states in the manner presented earlier.

VII. EMPIRICAL RESULTS

In this section the empirical results are presented and
discussed.

Even though the high level plans used for reward shaping
are optimal according to the provided high level knowledge,
this knowledge may contain errors. Therefore, the plan may
not be optimal at the low level where the RL agent operates.
For this reason the presentation of experimental results is
divided into two sections. First, the results on different RL
algorithms are analysed when the high level plan is optimal.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

Lo
ng

 te
rm

 r
ew

ar
d

Episode

MDP-based
composed

no-shaping
STRIPS-based

flag-based
optimal

Fig. 3. SARSA results with all reward configurations.

Afterwards, various possible plan deficiencies are defined and
their impact is empirically evaluated.

A. Results with Optimal Plan

Results presented in this section are for the test domain as
shown in Figure 2. High level plans generated by STRIPS
planning and the abstract MDP are both optimal at the lower
RL level. The STRIPS plan is shown in Figure 5. The MDP-
based plan leads to the same sequence of visited abstract states
as in the STRIPS plan when the policy determined by the value
function is followed from the start to the goal state.

The discussion of experimental results is done separately
for model-free and model-based RL algorithms.

1) Model-Free Methods: The first set of experiments looks
at the performance of the different reward shaping approaches
when used with model-free RL. In Figure 3 results with
SARSA are presented. They show the difficulty of the investi-
gated maze problem in terms of exploration. In all 10 runs the
no-shaping RL version was not able to learn to collect more
than one flag. It quickly converged to a sub-optimal solution
which takes only flag D and directly moves to position G (the
goal position). The only approaches that were able to learn
to collect all flags (though not in all runs) are using STRIPS-
based and composed reward shaping.

The experimental results show that this problem poses a
challenge to model-free methods and is difficult to solve
without properly used background knowledge.

In the above results the MDP-based reward shaping dis-
played a particularly worse performance than not only
STRIPS-based but also less informed methods. A more de-
tailed analysis was undertaken to look for the reason of this
low performance.

Some conclusions can be drawn from the analysis of the
histogram (see Figure 4) which shows how many times each
abstract state was entered in both STRIPS-based and MDP-
based approaches. The presented graph is for a single run of
SARSA.

10-26

 0

 50

 100

 150

 200

 250

 300

S
ta

te
 e

nt
er

ed

Abstract state

STRIPS-based
MDP-based

Fig. 4. Histogram presents how many times abstract states were entered
during first 50 iterations of the single run of the SARSA algorithm.

The first observation from this experiment is that
the algorithm with MDP-based plan tried many different
paths, especially in the first episodes of learning. In the

MOVE(hallA,hallB)
MOVE(hallB,roomC)
TAKE(flagC,roomC)
MOVE(roomC,roomE)
TAKE(flagE,roomE)
TAKE(flagF,roomE)
MOVE(roomE,roomC)
MOVE(roomC,hallB)
MOVE(hallB,roomB)
TAKE(flagB,roomB)
MOVE(roomB,hallB)
MOVE(hallB,roomA)
TAKE(flagA,roomA)
MOVE(roomA,hallA)
MOVE(hallA,roomD)
TAKE(flagD,roomD)

Fig. 5. The optimal
STRIPS plan.

STRIPS-based case there is only one
path along which potential increases.
In the MDP-based case many differ-
ent paths can be tried because the
potential increases along many paths
when moving towards the goal. When
the agent moves away form the plan
it can still find a rewarded path to the
goal because the MDP-based policy
defines an optimal path to the goal,
not only from the start but from all
states. This led to a rather ”unde-
cided” behaviour of the algorithm in
the early stages of learning. The agent
tries many different and advantageous
paths, but because different paths are tried, they do not
converge quickly enough (compare the number of steps made
by SARSA with MDP-based shaping shown in Figure 6).

In effect, short and sub-optimal paths, like, e.g., the one
that goes from start state S directly to goal G after taking flag
D, quickly dominate because they lead to better performance
than very long paths that collect more flags, because they have
not converged yet. The histogram shown in Figure 4 provides
more evidence for this hypothesis. First of all, it can be noticed
that the number of visited abstract states is almost twice bigger
in the MDP-based case. The agent considers a higher number
of paths to be ”interesting” in this case. In this particular run
the number of visited abstract states was 106 in the STRIPS-
based and 202 in the MDP-based case (there were 3141 and
6876 visited low level states respectively). Specifically, in
the STRIPS-based case, the states that are visited when the
optimal plan is followed, are those with the highest number
of visits in the histogram. Other abstract states which also have
high values in the histogram are adjacent to those which follow
the optimal path. It is worth noting that states which follow

the optimal path are not visited very often in the MDP-based
case.

The main conclusion from this empirical analysis is that in
the case of model-free RL algorithms and a difficult problem
domain (in terms of exploration), it may be better to assign
potential according to one particular path which can converge
quickly rather than to supply many paths with increasing
potential. The latter raises the probability of converging to
a sub-optimal solution.

This observation suggests one potential improvement to
MDP-based reward shaping when problems discussed here
may arise. Instead of using the value function for the entire
state space as potential, the best path which corresponds to the
STRIPS plan can be extracted. When this path (in the same
way as the STRIPS plan) is used with our algorithm to define
potential, it can direct the agent in a more focused way toward
the goal when it can be easily misled by a suboptimal result.

2) Model-based Methods: In our experiments, DynaQ rep-
resents the category of model-based reinforcement learning
algorithms. Figure 7 shows the results with the different reward
shaping techniques. The first observation is that DynaQ can
deal much better with the problem domain than model-free
SARSA. Even in the no-shaping case on average 5.4 flags were
collected. The informed reward shaping methods (composed,
MDP-based, STIRPS-based) performed better, showing the
fastest increase in the obtained reward during almost the
entire period of learning. With STRIPS-based and composed
schemas to assign potential to abstract states, all six flags were
collected in all ten test runs.

Results with model-free SARSA showed that reward shap-
ing is essential in solving problems where it is easy to get
stuck in a sub-optimal solution. Model-based methods like
DynaQ make better use of what has been experienced during
the learning process and make additional simulated backups
over the state space. In this way it is possible to propagate
information about highly rewarded areas even without visiting
these areas many times (in a deterministic environment it is
enough to make each transition once).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 500 1000 1500 2000 2500 3000

T
he

 n
um

be
r

of
 s

te
ps

 in
 th

e
ep

is
od

e

Episode

MDP-based
no-shaping

STRIPS-based
flag-based
composed

Fig. 6. The number of steps made by SARSA with different reward settings.

10-27

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

Lo
ng

 te
rm

 r
ew

ar
d

Episode

MDP-based
composed

no-shaping
STRIPS-based

flag-based
optimal

Fig. 7. DynaQ results with all reward configurations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

Lo
ng

 te
rm

 r
ew

ar
d

Episode

composed
STRIPS-based

optimal
plan-optimal

Fig. 8. SARSA learning when planner did not know about connection E and
B.

B. Results with Sub-optimal Plans

In this section we take a closer look at various errors in the
STRIPS-plans, that may be caused by incomplete or imprecise
knowledge. Due to space restrictions, we do not show graphs
for all experiments, but rather summarise the results in the
text.

1) Plan Too Long: Incomplete knowledge about the envi-
ronment can lead to the situation when the planner computes
a longer plan than necessary. In the actual environment direct
transitions from state zi to state zi+k where k > 1 may be
possible, even though the planning knowledge did not include
this fact.

In our experiments we created an additional transition from
room E to room B, that has not been taken into account in the
computation of the STRIPS-plan. After collecting two flags in
room E the agent wants to collect flag B in room B. According
to the plan it has to go through room C and hall B.

Empirical tests show that this kind of plan deficiency does
not seem to cause problems for the RL agent (Figure 8 shows
the results for SARSA). The transition from E to B when
discovered is well rewarded because it has a higher difference

in potential (6 in room E and 9 in room B).
The results for the other RL algorithms are similar and show

the same trend.
2) Plan Assumes Impossible Transition: Incorrect knowl-

edge can cause also the opposite effect: connections between
two states that are assumed by the plan knowledge may not
exist in the actual environment. In our experiments we created
such a situation where the plan was computed assuming a con-
nection between rooms E and B. The lack of this connection
during learning is destructive for SARSA. However, model-
based DynaQ finds a solution that is close to optimum and
plan-based shaping performs better than no-shaping and flag-
based shaping.

3) Missing Goal Conditions: This experiment evaluates the
RL approaches when the plan was computed with a missing
goal condition, thus potentially missing required actions, or
including actions that are undoing part of the goal.

In our experiments we assumed that the information about
flag B has not been given to the planner. The question is
whether the learning agent is able to find the missing element
through exploration. This is principally possible because the
proposed schema to assign potential to non-plan states does
not penalise moving away from the plan. The evaluation
results show that the only configuration in our experiments that
was able to perform better than the given (sub-optimal) plan
was DynaQ with STRIPS-based shaping. Simulated backups
led to the required propagation of the information about the
discovered flag B.

4) Wrong Sequence: Even when high level knowledge
about the domain is complete and the problem is specified
correctly there is one more factor which may lead to sub-
optimal policy at the low RL level. The main goal of classical
planning algorithms is to find a plan which can transform
the system from the start to the goal state. This achievement
of the plan is usually satisfactory and the cost of actions is
not taken into account in most STRIPS-based planners. In
introduced in this paper application of classical planning this
may lead to sub-optimal plans when high level actions can
have different cost when implemented by low level primitive
actions. To test our algorithm with these deficiency of plan,
the experimental domain was modified in the following way.
Halls A and B were merged into one hall and the high level
plan was modified so flags were collected in the following
order: B, A, C, E, F, D. This plan is clearly sub-optimal.
Even though all flags are in the plan there is another plan
that results in a shorter travelled distance. This setting was
also difficult to tackle by most RL approaches. In this case,
only model-based DynaQ with composed reward shaping was
able to do better than the sub-optimal plan.

In summary, our results show that even when plans are
not optimal or contain errors, RL algorithms are performing
best when STRIPS-based reward shaping is used, but are not
always able to converge to the optimum. Nevertheless, this can
be satisfactory because the goal is often not to find the optimal
solution but an acceptable policy in a reasonable amount of
time.

10-28

VIII. CONCLUSION AND FUTURE WORK

In this paper we show a new method to define the potential
function for potential-based reward shaping, using abstract
plan knowledge represented in the form of STRIPS operators.
We empirically compared the performance of our proposed
approach to RL without any reward shaping, RL with a
manually shaped reward, as well as a related automatic shaping
approach based on abstract MDPs [5]. The results of the ex-
periments demonstrate that the STRIPS-based reward shaping
improves both the quality of the learned policy, and the speed
of convergence over the alternative techniques.

Overall, the results can be summarised as follows:

1) RL problems that are difficult in terms of exploration can
be successfully tackled with model-free methods with
plan-based reward shaping.

2) Model-based methods can find solutions to these prob-
lems without reward shaping in some cases, but reward
shaping always speeds up learning.

3) STRIPS-based shaping showed better results than the
MDP-based approach, because the agent was strongly
influenced by the plan that guides it towards a good
policy. Thus, this observation suggests one potential
improvement to MDP-based reward shaping. Instead of
using the value function of the entire state space as
potential the best path which corresponds to the STRIPS
plan can be extracted and used with our algorithm to
define the potential.

Additionally STRIPS-based approaches can deal with much
bigger state spaces at an abstract level because states are not
explicitly enumerated. Symbolic planners can solve large prob-
lems (with huge state spaces) through their compact and highly
abstract representations of states. Such planning together with
model-free RL (with which STRIPS-based planning works
well) can therefore be used with large state spaces and with
function approximation in particular. It is worth noting that
function approximation has been up to now used mainly with
model-free RL algorithms and SARSA in particular [13].

STRIPS-based reward shaping is easier to scale up than,
e.g., MDP-based reward shaping. For MDP-based abstract
planning the state space has to be enumerated, which may
require stronger abstraction or function approximation when
applied to RL domains with very large state spaces. However,
a positive feature of MDP-based planning is that it can deal
in a natural way with different costs of high level actions
(something that is more difficult to achieve with STRIPS).

Overall, STRIPS-based reward shaping can be seen as an
alternative to MDP-based reward shaping with the proposed
extension as both these techniques are planning methods. It is
up to the domain expert which method to choose, depending
on the form of available knowledge.

In future research we intend to investigate the ability of
RL to explicitly correct errors in high-level plan knowledge
and revise it based on the learning experience. Another future
challenge is to apply plan-based reward shaping to multi-agent
learning, using techniques from multi-agent planning [10].

REFERENCES

[1] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,” in
Proceedings of the 16th International Conference on Machine Learning,
1999, pp. 278–287.

[2] J. Randlov and P. Alstrom, “Learning to drive a bicycle using reinforce-
ment learning and shaping,” in Proceedings of the 15th International
Conference on Machine Learning, 1998, pp. 463–471.

[3] M. Grounds and D. Kudenko, “Combining reinforcement learning with
symbolic planning.” in Fifth European Workshop on Adaptive Agents
and Multi-Agent Systems, 2005.

[4] M. R. K. Ryan, “Using abstract models of behaviours to automatically
generate reinforcement learning hierarchies,” in Proceedings of the 19th
International Conference on Machine Learning, 2002, pp. 522–529.

[5] B. Marthi, “Automatic shaping and decomposition of reward functions,”
in Proceedings of the 24th International Conference on Machine Learn-
ing, 2007, pp. 601–608.

[6] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning:
Structural assumptions and computational leverage,” Journal of Artificial
Intelligence Research, vol. 11, pp. 1–94, 1999.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, March 1998.

[8] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and Semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[9] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, vol. 90, pp. 281–300, 1997.

[10] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, December 2002.

[11] R. Dearden, N. Friedman, and S. J. Russell, “Bayesian Q-learning,” in
Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence. AAAI, 1998, pp. 761–768.

[12] M. J. A. Strens, “A bayesian framework for reinforcement learning.” in
Proceedings of the 17th International Conference on Machine Learning,
2000, pp. 943–950.

[13] P. Stone, R. S. Sutton, and G. Kuhlmann, “Reinforcement learning for
RoboCup-soccer keepaway,” Adaptive Behavior, vol. 13, no. 3, pp. 165–
188, 2005.

10-29

