
Learning Potential for Reward Shaping in Reinforcement
Learning with Tile Coding

Marek Grzes, Daniel Kudenko
Department of Computer Science

University of York
York, YO10 5DD, UK

{grzes,kudenko}@cs.york.ac.uk

ABSTRACT
Potential-based reward shaping has been shown to be a pow-
erful and flexible method to incorporate background knowl-
edge into reinforcement learning agents. However, the ques-
tion remains how to compute the potential which is used
to shape the reward. In this paper we propose a way to
solve this problem in reinforcement learning with tile cod-
ing. Where the Q-function is represented with low-level tile
coding, a V-function with coarser tile coding can be learned
in parallel and used to approximate the potential for ground
states. The novel algorithm is presented and experimentally
evaluated.

1. INTRODUCTION
Reinforcement learning (RL) is a popular method to design
autonomous agents that learn from interactions with the
environment. In contrast to supervised learning, RL meth-
ods do not rely on instructive feedback, i.e., the agent is
not informed what the best action in a given situation is.
Instead, the agent is guided by the immediate numerical re-
ward which defines the optimal behaviour for solving the
task. This leads to two kinds of problems: 1) the temporal
credit assignment problem, i.e., the problem of determining
which part of the behaviour deserves the reward; 2) slower
convergence: conventional RL algorithms employ a delayed
approach propagating the final goal reward in a discounted
way or assigning a cost to non-goal states. However the
back-propagation of the reward over the state space is time
consuming.

To speed up the learning process, and to tackle the temporal
credit assignment problem, the concept of shaping reward
has been considered in the field [10, 11]. The idea of reward
shaping is to give additional (numerical) feedback to the
agent in order to improve its convergence rate.

Even though reward shaping has been powerful in many
experiments it quickly turned out that, used improperly, it
can be also misleading [11]. To deal with such problems

potential-based reward shaping F (s, s′) was proposed [10]
as the difference of some potential function Φ defined over
a source s and a destination state s′:

F (s, s′) = γΦ(s)− Φ(s′), (1)

where γ is a discount factor. Ng et al. [10] proved that re-
ward shaping defined in this way is necessary and sufficient
to learn a policy which is equivalent to the one learned with-
out reward shaping.

One problem with reward shaping is that often detailed
knowledge of the potential of states is not available, or very
difficult to represent directly in the form of a shaped reward.

In this paper we propose an approach to learn the shap-
ing reward online and use it to enhance basic reinforcement
learning when tile coding [7] is used for function approxima-
tion. The algorithm starts without any prior knowledge and
learns a policy and a shaping reward at the same time. At
each step the current approximation of the shaped reward is
used to guide the learning process at the ground level. The
algorithm applies two levels of tile coding: the first one to
learn the value function for ground RL, and the coarse-coded
second one to approximate the shaping reward.

When relating our approach to automating shaping [8], the
contribution of this paper is two-fold: 1) our algorithm learns
reward shaping online through off-model reinforcement learn-
ing which is commonly used with function approximation; 2)
we present the application of this approach to RL with tile
coding and show that this kind of function approximation is
particularly suited for automatic learning of reward shaping.
A review of related research is collected in the latter part of
the paper.

We also explicitly address and experimentally evaluate do-
main properties and the design of RL solutions under which
the proposed enhancement to RL algorithms is most effi-
cient and its application may be particularly beneficial. The
principal advantage of our approach is a better convergence
rate. Furthermore, overhead computational cost is low, the
solution is of general applicability, and knowledge is easily
acquired and incorporated. Knowledge which is necessary
to design tile coding for ground RL is sufficient to apply our
extension.

2. MARKOV DECISION PROCESSES AND
REINFORCEMENT LEARNING

A Markov Decision Process (MDP) is a tuple (S, A, T, R),
where S is the state space, A is the action space, T (s, a, s′)
is the probability that action a when executed in state s
will lead to state s′, R(s, a, s′) is the immediate reward re-
ceived when action a taken in state s results in a transition
to state s′. The problem of solving an MDP is to find a pol-
icy (i.e., mapping from states to actions) which maximises
the accumulated reward. When the environment dynamics
(transition probabilities and a reward function) are avail-
able, this task becomes a planning problem which can be
solved using iterative approaches like policy and value iter-
ation [15]. Value iteration applies the following update rule:

Vk+1(s) = max
a

∑

s′
P a

ss′ [R
a
ss′ + γVk(s′)]. (2)

The value of state s is updated according to the best action
after one sweep of policy evaluation.

MDPs represent a modelling framework for RL agents whose
goal is to learn an optimal policy when the environment dy-
namics are not available. Thus value iteration in the form
presented in Equation 2 can not be used. However the con-
cept of an iterative approach in itself is the backbone of
the majority of RL algorithms. These algorithms apply so
called temporal difference updates to propagate information
about values of states (V (s)) or state-action (Q(s, s)) pairs.
These updates are based on the difference of the two tempo-
rally different estimates of a particular state or state-action
value. Model-free SARSA is such a method [15]. It updates
state-action values by the formula:

Q(s, a) ← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (3)

It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, moved to a new state s′, and action a′ was chosen in state
s′.

Immediate reward r which is in the update rule given by
Equation 3 represents the feedback from the environment.
The idea of reward shaping is to provide an additional re-
ward which will improve the performance of the agent. This
concept can be represented by the following formula for the
SARSA algorithm:

Q(s, a) ← Q(s, a) + α[r + F (s, a, s′) + γQ(s′, a′)−Q(s, a)],

where F (s, a, s′) is the general form of the shaping reward
which in our analysis is a function F : S × S → R, with
F (s, s′). The main focus of this paper is how to approximate
this value online in the particular case when it is defined as
the difference of potentials of consecutive states s and s′ (see
Equation 1). This reduces to the problem of how to learn
the potential Φ(s).

3. VALUE FUNCTION APPROXIMATION
WITH TILE CODING

To deal with huge or infinite state spaces (e.g., due to con-
tinuous variables), value function approximation has been
successfully used [14]. It is a supervised learning approach
which aims at approximating the value function across the
entire state space. It takes advantage of the fact that states

a) b)

Figure 1: Tile coding examples with a different res-
olution. Three tilings with tiles of three units in a)
and six units in b).

with similar values of state features have in most cases a
similar value of the V-function. The idea is to represent the
value function V as a vector of parameters θ with the size of
this vector smaller than the number of states. In this way
the update of the value function according to one state is
generalised across ”similar” states.

Function approximation should be fast and allow for online
learning. Linear functions with updates based on gradient-
descent methods meet this requirement. The linear approx-
imation of the value function can be expressed in the follow-
ing form:

V (s) =

N∑
i=0

θiφi(s). (4)

The gradient-descent update rule for this approximation takes
the form:

θt+1 = θt + αδtφ(s), (5)

where δt is the temporal difference:

δt = rt+1 + γV (st+1)− V (st). (6)

Tile coding [14] is a particular method to define basis func-
tion φi(s) for states or state-action pairs. This method par-
titions the input space into several displaced layers (tilings)
of overlapping tiles. Each state can be allocated to exactly
one tile in each tiling. Thus φ(s) takes value 1 for tiles it is
allocated in and 0 otherwise. Figure 1 shows how it can be
computed in a 2D space. Tiles allow for generalisation to
neighbouring positions. For example, an update of the value
function in position x has an impact on the value function in
position y which may not be visited during the entire period
of learning. One of the key motivations to propose the algo-
rithm introduced in the next section is the fact that coarser
generalisation (see Figure 1b) allows for a more rapid prop-
agation of the value function. This coarser generalisation
can be used to guide the learning of the more detailed value
function.

4. LEARNING POTENTIAL FOR REWARD
SHAPING

We propose a RL architecture with two levels of tile coding.
The first one learns an approximation of the Q-function at
the ground RL level. The second, coarser one learns an

abstract V-function which is used as the potential to cal-
culate the shaping reward (see Equation 1) for the lower
level. The algorithm which is proposed here builds on two
techniques existing in the field: 1) multigrid discretisation
used with MDPs [2], and 2) automatic shaping which was
recently proposed [8].

The multigrid discretisation in the MDP setting [2] was used
to solve an MDP in a coarse-to-fine manner. While this
technique is well suited to dynamic programming methods
(a coarse problem at a high level can be solved and used at a
more detailed level), there was no easy way to merge layers
with a different resolution when applied to RL algorithms.
First such attempts were made by [1] and this problem was
evident there. The need for knowledge of the topology of
the state space is necessary in their solution to define how
multiple levels are related, but this fact made this approach
infeasible for RL tasks. It used muligrid as a way of obtain-
ing knowledge, but the mechanism to use this knowledge at
a ground RL level was missing. We propose potential-based
reward shaping as a solution to these problems. The ground
RL algorithm does not have to be modified and knowledge
can be given in a transparent way via an additional shaping
reward.

In the automatic shaping approach [8] an abstract MDP is
formulated and solved. In the initial phase of learning the
model of an abstract MDP is built and after a defined num-
ber of episodes an abstract MDP is solved exactly and its
value function used as the value of the potential for ground
states. In this paper, we propose an algorithm which applies
a multigrid strategy when tile coding is used for function
approximation. Instead of defining an abstract task as dy-
namic programming for solving an abstract MDP, we use RL
to solve the high level task online. RL with representation
based on tile coding results in a natural translation between
ground and abstract levels. Tile coding in itself can be eas-
ily applied in a multigrid fashion and because it has been
mostly used with off-model RL and SARSA in particular1,
it is sensible to apply RL for solving an abstract level prob-
lem. Because such an abstract RL does not need to learn
the model, a shaping reward can be provided right from the
start of learning. Additionally our method with tile coding
does not require any more knowledge about the environment
as to define tile coding at the ground level. We do not need
methods to translate abstract to ground states or approx-
imating environment dynamics (transition probabilities) at
an abstract level.

Algorithm 1 summarises our approach. It follows the struc-
ture of SARSA(λ) with tile coding used in [13]. In our case
learning at the ground level is the same as in the base-line ex-
cept we explicitly show the fact that eligibility traces are op-
timised. The solution motivated by truncated temporal dif-
ferences [3] is applied. Queue E (experience buffer) stores the
trace, i.e., tiles for all state positions of the trace. The size
N of this queue is limited by the condition (γλ)N ≥ 10−9.
When new states are placed at the front of the queue, vec-
tor e can be computed according to Algorithm 2. The sec-

1Empirical results in the literature [13] show that SARSA
is generally better than Q-learning when tile coding is used.
The explanation is justified in the literature by the fact that
SARSA is an on-policy method.

ond modification which is crucial for our discussion is the
point where the base-line algorithm is given shaping reward
F (s, s′) in line 20 of Algorithm 1 where temporal difference
is computed. The way in which F (s, s′) is evaluated defines
our extension.

The shaping reward F (s, s′) is computed in line 11 as the
difference of the value function of current and previous states
visited by the agent. Thus Φ(s) = V (s) where V is the
value function of the abstract RL task. All parameters of
this task have subscript v and it is learned using temporal
difference updates (lines 14 and 28) with tile coding. The
mapping from state s to the set of tiles G used at the abstract
level is done in a straightforward way without any special
knowledge. Basically, the lower resolution of tiles can be
applied. However with optional, additional knowledge about
the problem such a mapping can remove some state variables
and appropriately focus the high level learning.

High level RL is treated as a Semi-MDP since due to coarse
tile coding an agent can be several time steps within one high
level position. For this reason time t is used when temporal
difference in line 13 is evaluated.

The generic function rewardv(r) shows that high level learn-
ing can receive an internally modified reward. According to
our empirical evaluations r

10
gives good results on differ-

ent domains where both the positive and negative reward is
given. The division by factor 10 guarantees that the shaping
reward extracted from an abstract V-function has smaller
impact than the environment reward.

4.1 Properties of the Algorithm
Algorithm 1 was designed to learn online an admissible heuris-
tic assessment of the distance to the goal (represented in the
algorithm by the high level V-function) which is the back-
bone of the best-first search. This type of knowledge deter-
mines some properties of our algorithm.

Even though the shaping reward is learned with a separate
tile coding and separate vector of parameters, its perfor-
mance is strictly correlated with relations between the Q-
and V-function in general and the design of both levels of
tiles. The following factors can thus have influence on the
performance of the algorithm proposed in the paper.

• V(s) values learned at the high level are a function
of only states whereas ground RL learns Q(s,a) values
in order to deal with unknown environment dynam-
ics. This difference suggests that the positive influ-
ence of the potential extracted from V(s) should be
bigger with a bigger number of actions a ∈ A(s) be-
cause V(s) learns only values of states whereas Q(s,a)
additionally distinguishes actions (there are more val-
ues to converge). Thus V(s) can converge faster and
give positive guidance for learning Q(s,a) at the ground
level.

• There can exist structural dependencies between fea-
tures in the state space. Such structural dependen-
cies can be used to define a reduced representation at
an abstract level. For example, a reduced number of
features can provide a high level guidance (e.g., goal

Algorithm 1 SARSA(λ)-RS: Gradient-descent
SARSA(λ) with tile coding, eligibility traces and potential-
based reward shaping from temporal difference learning of
an abstract level value function.
1: RLstartEpisode:
2: θ = 0, θv = 0, t = 0 and c, cv ← numbers of tilings
3: G ← set of tiles for current state s
4: V =

∑
i∈G θv(i)

5: a ← random action in state s
6: Fa ← set of tiles for a and current state s

7: E pushfront←−−−−−−− Fa; Qa =
∑

i∈Fa
θ(i)

8: RLstep:
9: G′ ← set of tiles for current state s′

10: V ′ =
∑

i∈G′ θv(i); t = t + 1

11: F (s, s′) = γvV ′ − V ; rv = rewardv(r)
12: if rv 6= 0 or G 6= G′ then
13: δv = rv + γt

vV ′ − V ; t = 0
14: e = trace(G); θv ← θv + αv

cv
δve

15: end if
16: G = G′; V = V ′
17: a ← best action in state s′
18: with probability ε: a ← random action in state s′
19: Fa ← set of tiles for a and current state s′
20: Q′a =

∑
i∈Fa

θ(i); δ = r + F (s, s′) + γQ′a −Qa

21: e = trace(E); θ ← θ + α
c
δe

22: E pushfront←−−−−−−− Fa; Qa = Q′a
23: RLendEpisode:
24: G′ ← set of tiles for current state s′
25: rv = rewardv(r); t = t + 1
26: if rv 6= 0 or G 6= G′ then
27: δv = rv + γt

vV ′ − V ;
28: e = trace(G); θv ← θv + αv

cv
δve

29: end if
30: δ = r −Qa

31: e = trace(E); θ ← θ + α
c
δe

homing). Detailed encoding at the ground level en-
ables the algorithm to take into account other factors
and world properties. Abstract learning with properly
selected factors can result in a rapidly converging V-
function which may improve slower converging ground
learning.

• When the RL agent needs to learn on a problem with a
wider range of values of state features with the same re-
quired granularity of function approximation (because
of for example domain details which require this gran-
ularity), the impact of learned reward shaping can be
more significant. When high level tile coding applies a
lower resolution, it reflects the situation given in Fig-
ure 1. A high level V-function can faster propagate
information about highly rewarded areas.

Algorithm 2 Extracting an eligibility trace.

function trace(E)
e = 0
for all Fa in E do

i = 0
for all f in Fa do

e(f) = (γλ)i

end for
i = i + 1

end for
return e

Further sections evaluate Algorithm 1 and test some of the
aforementioned hypotheses on a range of RL tasks.

5. EXPERIMENTAL DESIGN
A number of experiments have been performed to evaluate
Algorithm 1. The following values of common RL parame-
ters were used: α = 0.1, αv = 0.1, λ = 0.7, γ = 0.99 and
γv = 0.99. For given values of parameters a maximum size of
queue |E| is N = 56. In all experiments ε-greedy exploration
strategy was used with ε decreasing linearly from 0.3 in the
first episode to 0.01 in the last episode. All runs on all tasks
were repeated 30 times and average results are presented in
graphs. Following the evaluation process from recent RL
competitions, the accumulated reward over all episodes was
used as a measure to compare results in a readable way. Er-
ror bars of the standard error of the mean (SEM) are also
presented.

6. EXPERIMENTAL DOMAINS
The following set of popular RL tasks were used as test
domains in our experiments.

6.1 Mountain Car
The first experiments were performed on the Mountain Car
task according to the description in [15]. The agent received
a reward of 1 upon reaching the goal state on the right hill
and -1 on the left hill. An experiment was terminated and
the agent placed in a random position after reaching any of
the two goal positions or after 103 episodes. Following [15]
10 tilings with 9x9 tiles were used for the Q-function and
6x6 for the V-function.

6.2 Car Parking
The Car Parking task was implemented according to [4]2.
The two runs are reported for two configurations of the task.
The first one is with all parameters specified in [4], i.e., there
were 6 tilings over one group of three state variable with
5x5x5 tiles per tiling. The same tilings were used also for
the V-value. In the second run the size of the active area
was doubled with x1 = 16.5 and y1 = 25. Because of the
bigger size, the number of intervals was also doubled giving
10x10x10 tiles per tiling for the Q-function. Tiles for the
V-function were not changed yielding higher generalisation.

6.3 Boat
The problem is to learn how to navigate a boat from the left
bank to the quay on the right bank of the river. There is a
strong non-linear current in the river. Our implementation
follows the description in [5] with narrower quay (Zs width
0.2) and random starting positions used recently in [6] where
it was shown to be challenging for classical RL algorithms.
To deal with non-linear current, continuous or finely discre-
tised actions are required [6]. This domain is used to check
the influence of the number of actions on the performance
of proposed reward shaping.

7. RESULTS
7.1 Mountain Car
2For all interested in implementing this domain it is worth
noting that in [4], Appendix A, condition r 6= 0 and equation
(c) the second sin should be cos.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

Number of Episodes

SARSA
SARSA-RS

Figure 2: The Mountain Car problem without eligi-
bility traces.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

Number of Episodes

SARSA(λ)
SARSA(λ)-RS

Figure 3: The Mountain Car problem with eligibility
traces.

This experiment aimed at investigating the performance of
our algorithm with (Figure 3) and without (Figure 2) eli-
gibility traces. It is important to emphasise that according
to Algorithm 1 eligibility traces are used only at the ground
level, i.e, there are no eligibility traces for updates of the
high level V-function. The obtained results show that the
proposed method to learn reward shaping leads to better re-
sults in both the presence and absence of eligibility traces.
Shown errors bars indicate that learning with reward shap-
ing is more stable across many runs.

Because eligibility traces are more challenging for our al-
gorithm, further experiments compare it with SARSA(λ).
Furthermore, the length of eligibility traces was in its high-
est value according to the condition (λγ)N ≥ 10−9 making
it more difficult for reward shaping to bring additional im-
provement. In comparisons without eligibility traces (i.e.,
when both compared algorithms were without eligibility tra-
ces) our reward shaping performed better in all cases like in
the Mountain Car problem presented here.

7.2 Car Parking
In the Car Parking problem with the bigger size of the work-
ing area the type of knowledge which is learned at the high
level starts playing more significant role. Figure 4 shows
base-line results for the original task. Except giving more
stable results, the reward shaping does not bring improve-

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

Number of Episodes

SARSA(λ)
SARSA(λ)-RS

Figure 4: The Car Parking problem with original
settings.

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

Number of Episodes

SARSA(λ)
SARSA(λ)-RS

Figure 5: The Car Parking problem with the dou-
bled size of the working area.

ment in this setting. The picture of this configuration [3]
shows relatively small distance to the goal from the fixed
position of the car. In the second configuration in which the
distance to the goal is bigger, goal-homing knowledge be-
comes more important. This is reflected in Figure 5. Over-
all, the advantage of our algorithm becomes more important
on bigger instances of problems.

7.3 Boat
The agent controls the boat by the desired direction in the
range [-90◦, 90◦]. Two experiments with discretisation into 5
and 40 values are reported. The same number of 5 tilings in
both cases were used with 10x10x10 tiles for Q- and 8x8x8
tiles for the V-function. The ranges of positions x and y
were scaled by factor 1.95 for tiles in the V-function rep-
resentation yielding higher generalisation and more distinct
separation of tiles between much different states.

Results for SARSA(λ) in Figures 6 and 7 show that the
reward shaping has higher positive influence (statistically
significant in all cases) when there are more actions avail-
able in each state. The V-function converges proportionally
faster and provides positive feedback for learning Q-values.
SARSA(λ)-RS with 40 actions converges faster in the ini-
tial phase of learning at a pace similar to SARSA(λ) with
only 5 actions but obtains better results in the long run.
The problem of slow convergence of SARSA(λ) with 40 ac-

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

Number of Episodes

SARSA(λ)
SARSA(λ)-RS

Figure 6: The Boat problem with 5 actions.

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

Number of Episodes

SARSA(λ)
SARSA(λ)-RS

Figure 7: The Boat problem with 40 actions.

tions (i.e., the number of actions desired for this domain)
which was pointed out in [6] can thus be mitigated by our
algorithm. Additional experiments with 20 actions yielded
results where reward shaping performed better than with 5
actions and worse than with 40 actions showing coherence
with our hypothesis.

8. RELATED WORK
The motivating literature [2, 1, 8] for our approach is dis-
cussed and referred in the description of our algorithm in
Section 4.

Some work related to our method was presented in [17]
where double CMAC was also applied. In this case Q- in-
stead of the V-function is used at an abstract level. The
high level Q-values are used to guide the exploration in the
initial learning phase. This approach lacks the reference to
the potential-based reward shaping as results in [17] do not
indicate a clear advantage of that method. Without the
robust mechanism of potential-based reward shaping the Q-
function needed to be used at an abstract level. The usage
of the V-function would require for example approximating
transition probabilities. In our case it is enough to learn
only the V-function which can converge sufficiently faster to
be useful for potential-based reward shaping.

The variable resolution discretisation/abstraction has been
considered in the field [9]. The idea is to split some cells
(states) and bring a higher resolution to same areas of the

state space in order to represent a better policy. Our ap-
proach can be seen as orthogonal to this technique. We learn
the shaping reward which can be used to guide ground learn-
ing with also a variable resolution discretisation. The inter-
esting question arises whether a variable resolution would
not improve the process of learning a potential function
when applied at an abstract level and focused on fast prop-
agation of guidance. When applied at the ground level it is
intended to play the opposite role, i.e., to provide a higher
resolution where it is necessary [9].

The relationship of the number of tilings and the interval size
was studied in [12]. Their results show that a smaller num-
ber of tilings with wider intervals speeds up learning in initial
episodes but hurts convergence at later stages. In contrast,
narrower intervals (with preferably one tiling) slow down
initial learning. Choosing in our algorithm a fine grained
encoding with a small number of tilings at the ground level
and coarse generalisation for reward learning can be seen as
an easy way to have fast convergence at the beginning and
good convergence at the end of learning.

9. CONCLUSION AND FUTURE WORK
We propose an algorithm to learn the potential function
online at an abstract level, and experimentally evaluate it.
The approach with tile coding function approximation shows
that simultaneous learning at two levels can converge to a
stable solution. The algorithm is based on the SARSA al-
gorithm (on-policy temporal difference learning) which in
contrast to Q-learning is considered to be better suited for
function approximation [13]. The V-function at an abstract
level is updated according to the same trajectories as ground
learning.

Conditions and task properties which determine when the
algorithm works better are discussed and evaluated exper-
imentally. The application of this algorithm is especially
beneficial when: 1) there are many actions in each state
(e.g., the infinite number of continues actions); 2) a high
resolution of the policy is required (due to details in the en-
vironment) with a wide range of values of state variables,
i.e., on the bigger instance of the domain; 3) high level guid-
ance can be distinguished from a subset of state variables;
4) the final reward is given only upon reaching goal states.

The strong points of the algorithm: 1) improved conver-
gence speed in most domains, especially those that have the
properties outlined in the previous paragraph; 2) without
eligibility traces comparable convergence can be achieved
at lower cost, because there is at most one backup of the
V-function for each SARSA backup; eligibility traces re-
quire significantly more updates; 3) in contrast to eligibility
traces, separate and external representation of knowledge is
obtained; this high level knowledge may be useful for knowl-
edge transfer [16]; 4) no need for explicit domain knowledge;
in the basic form the high level learning can be defined using
the same knowledge which is used to design tile coding at
the ground level.

Reward shaping results in the biggest speedup during the
initial phase of learning. The algorithm can be extended by
conditions which determine when reward shaping or at least
high level learning should be stopped. This could lead to

better results in domains such as the Boat task, as can be
seen in Figures 6 and 7 where both curves get closer in the
latter period of learning.

Acknowledgment
This research was sponsored by the United Kingdom Min-
istry of Defence Research Programme.

10. REFERENCES
[1] C. Anderson and S. Crawford-Hines. Multigrid

Q-learning. Technical Report CS-94-121, Colorado
State University, 1994.

[2] C. S. Chow and J. N. Tsitsiklis. An optimal one-way
multigrid algorithm for discrete-time stochastic
control. IEEE Transactions on Automatic Control,
36(8):898–914, 1991.

[3] P. Cichosz. Truncating temporal differences: On the
efficient implementation of TD(λ) for reinforcement
learning. Journal of Artificial Intelligence Research,
2:287–318, 1995.

[4] P. Cichosz. Truncated temporal differences with
function approximation: Successful examples using
CMAC. In Proceedings of the Thirteenth European
Symposium on Cybernetics and Systems Research,
1996.

[5] L. Jouffe. Fuzzy inference system learning by
reinforcement methods. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 28(3):338–355, 1998.

[6] A. Lazaric, M. Restelli, and A. Bonarini.
Reinforcement learning in continuous action spaces
through sequential monte carlo methods. In Proceeding
of Neural Information Processing Systems, 2007.

[7] C.-S. Lin and H. Kim. Cmac-based adaptive critic
self-learning control. IEEE Transactions on Neural
Networks, 2:530–533, 1991.

[8] B. Marthi. Automatic shaping and decomposition of
reward functions. In Proceedings of the 24th
International Conference on Machine Learning, pages
601–608, 2007.

[9] R. Munos and A. Moore. Variable resolution
discretization in optimal control. Machine Learning,
49(2-3):291–323, 2002.

[10] A. Y. Ng, D. Harada, and S. J. Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the
16th International Conference on Machine Learning,
pages 278–287, 1999.

[11] J. Randlov and P. Alstrom. Learning to drive a bicycle
using reinforcement learning and shaping. In
Proceedings of the 15th International Conference on
Machine Learning, pages 463–471, 1998.

[12] A. A. Sherstov and P. Stone. Function approximation
via tile coding: Automating parameter choice. In J.-D.
Zucker and I. Saitta, editors, Symposium on
Abstraction, Reformulation, and Approximation
SARA’05, volume 3607 of Lecture Notes in Artificial
Intelligence, pages 194–205, Berlin, 2005. Springer
Verlag.

[13] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[14] R. S. Sutton. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. In
Advances in Neural Information Processing Systems,
volume 8, pages 1038–1044, 1996.

[15] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, March
1998.

[16] M. E. Taylor and P. Stone. Behavior transfer for
value-function-based reinforcement learning. In
Proceedings of the 4th International Joint Conference
on Autonomous Agents and Multiagent Systems, pages
53–59, 2005.

[17] Y. Zheng, S. Luo, and Z. Lv. Control double inverted
pendulum by reinforcement learning with double cmac
network. In The 18th International Conference on
Pattern Recognition, pages 639–642. IEEE Computer
Society, 2006.

