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ABSTRACT

A crucial trade-off is involved in the design process when function approximation is used in reinforce-
ment learning. Ideally the chosen representation should allow representing as closely as possible an
approximation of the value function. However, the more expressive the representation the more training
data is needed because the space of candidate hypotheses is larger. A less expressive representation
has a smaller hypotheses space and a good candidate can be found faster. The core idea of this chapter
is the use of a mixed resolution function approximation, that is, the use of a less expressive function
approximation to provide useful guidance during learning, and the use of a more expressive function
approximation to obtain a final result of high quality. A major question is how to combine the two rep-
resentations. Two approaches are proposed and evaluated empirically: the use of two resolutions in one
Jfunction approximation, and a more sophisticated algorithm with the application of reward shaping.

INTRODUCTION

In contrast to supervised learning, RL agents are
not given instructive feedback on what the best
decision in a particular situation is. This leads
to the temporal credit assignment problem, that
is, the problem of determining which part of the
behaviour deserves the reward (Sutton, 1984). To
address this issue, the iterative approach to RL
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applies backpropagation of the value function in
the state space. Because this isa delayed, iterative
technique, it usually leads to a slow convergence,
especially when the state space is huge. In fact,
the state space grows exponentially with each
variable added to the encoding of the environment
when the Markov property needs to be preserved
(Sutton & Barto, 1998).

When the state space is huge, the tabular rep-
resentation of the value function with a separate
entry for each state or state-action pair becomes
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infeasible for two reasons. Firstly, memory re-
quirements become prohibitive. Secondly, there
is no knowledge transfer between similar states
and a vast number of states need to be updated
many times. The concept of value function ap-
proximation (FA) has been successfully used in
reinforcement learning (Sutton, 1996) to deal with
huge or infinite (e.g., due to continuous variables)
state spaces. It is a supervised learning approach
which aims at approximating the value function
across the entire state space. It maps values of
state variables to the value function of the cor-
responding state.

A crucial trade-off is involved in the design
process when function approximation is used.
Ideally the chosen representation should allow
representing as closely as possible an approxi-
mation of the value function. However, the more
expressive the representation the more training
data is needed because the space of candidate hy-
potheses is larger (Mitchell, 1997). A less expres-
siverepresentation has asmaller hypotheses space
and a good candidate can be found faster. Even
though such a solution may not be particularly
effective in terms of the asymptotic performance,
the fact that it converges faster makes it useful
when applied to approximating the value function
in RL. Specifically, a less expressive function
approximation results in a broader generalisation
and more distant states will be treated as similar
and the value function in this representation can
be propagated faster. The core idea of this chapter
is the use of a mixed resolution function approxi-
mation, that is, the use of less expressive FA to
provide useful guidance during learning and the
use of more expressive FAto obtain a final result of
high quality. A major question is how to combine
the two representations. The most straightforward
way is to use two resolutions in one function ap-
proximation. A more sophisticated algorithm can
be obtained with the application of reward shap-
ing. The shaping reward can be extracted from a
less expressive (abstract) layer and used to guide
more expressive (ground) learning.
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To sum up: in this chapter we propose com-
bining more and less expressive function ap-
proximation, and three potential configurations
are proposed and evaluated:

. the combination of less and more expres-
sive representations in one approximation
of the value function,

. the use of less expressive function approxi-
mation to learn the potential function for
reward shaping which is used to shape the
reward of learning with desired resolution
at the ground level,

. the synergy of the previous two, that is,
learning the potential function from less
expressive approximation and using it to
guide learning which combines less and
more expressive resolution in one FA at the
ground level.

Ouranalysis ofthese ideas is based on tile cod-
ing (Lin & Kim, 1991) which is commonly used
for FA in RL. The proposed extensions to RL are
however of general applicability and can be used
with different methods of function approximation,
especially those which use basis functions with
local support (Bishop, 1996).

The rest of this chapter is organised as follows.
In the next section, function approximation with
tile coding is introduced. Learning with mixed
resolution tile coding and the algorithm which
learns the potential function for reward shaping
are discussed in two subsequent sections. Then,
the experimental validation of the proposed ex-
tensions to RL is presented, and the last section
summarises this chapter.

BACKGROUND

Tile coding is introduced in this section. In par-
ticular, the dependency of the resolution and the
generalisation power of tile coding is highlighted
and shown as a motivation for this work.
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Function Approximation

The most straightforward approach to the repre-
sentation of the value function is the state space
enumeration with a separate value function entry
associated with each state. There are several
reasons why this approach may not be sufficient.

1. When the state space is huge, memory
requirements may be prohibitive to store
values for all enumerated states.

2. Neighbouring states usually have similar
values of the value function. When learning
with enumerated and represented individu-
ally states, only one particular state is updated
during one Bellman backup. With this. in
mind it would be desirable if the update of
the value function of one state could influ-
ence also values of neighbouring states.

Some global regularity in the feature space

of the state representation may allow for

broad generalisations in the representation
ofthe value function (e.g., using multi-layer
perceptron or more generally regression
methods which use global basis functions
Bishop, 1996).

(98]

Value function approximation methods take
advantage of the fact that states with similar val-
ues of state features have in most cases a similar
value of the value function, or that the global
generalisation can be achieved. The idea is to
represent the value function, V(s), as a vector of
parameters, 6 € R, with d smaller than the
number of states. In this way, the update of the
value function according to one state is generalised
across similar states (Sutton, 1996). The general
form of this approach to the SARSA algorithm
yields the following update rule:

6'=0+a6,(Q,)V Q (s.2) (1)

When linear function approximation is used,
that is, when @, = 6" where ¢ : S x A — R
defines basis functions then V Q,(s,a) = ¢(s,a).
Linear function approximation iscommonly used
in practice, however little is known about its
convergence properties. The only known theo-
retical results are due to Melo et al. (2008) who
prove convergence under rather restrictive condi-
tions (Szepesvari, 2009).

An interesting issue is how different regres-
sion methods address requirements listed at the
beginning of this section. Forexample, the second
issue can be addressed with function approxima-
tion based on local basis functions (e.g., radial
basis functions Bishop, 1996) or linear averagers
(Szepesvari, 2009; Gordon, 1995). Basis functions
of this type are robust in preserving initialisation
of the approximation and are also required by
specific techniques which have tight requirements
on used approximation. For example, proofs of
convergence of fitted value iteration in (Gordon,
1995) require functions which are contraction
mappings and linear averagers meet this require-
ment. The problem with these methods however
is the fact that they do not address well the issue
of the exponential state space explosion which is
due to the Markov property. Approximation with
global basis functions (which addresses the third
issue from the list at the beginning of this sec-
tion) is much more robust against the state space
explosion due to global generalisation. The learn-
ing process is, however, more problematic in this
case. The update of one state usually changes the
value function ofthe whole state space (e.g., when
linear regression or the multi-layer perceptron is
used). This leads to problems with initialisation
and exploration, because the current policy may be
changingradically during learning. Forthis reason,
methods like neural fitted Q iteration need to store
<s,a,s > triples and re-use them during training
of the neural network (Riedmiller, 2005), i.e. a
type of experience replay is applied (Lin, 1992).
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Figure 1. Tile coding examples with a different resolution. Three tilings with tiles of three units in a)

and six units in b)

Value Function Approximation
with Tile Coding

Value function approximation takes advantage
of the fact that states with similar values of state
features have in most cases a similar value of the
value function. The idea is to represent the value
function, V, as a vector of parameters, ¢, with the
size, N, of this vector smaller than the number of
states. In this way the update of the value func-
tion according to one state is generalised across
similar states (Sutton, 1996).

Function approximation should be fast and
allow for online learning. Linear functions with
updates based on gradient-descent methods meet
this requirement. The linear approximation of the
value function for action a can be expressed in
the following form:

Vis) =Y 60 (s), @)

=0

where  (s)is a basis function. The gradient-
descent update rule for this approximation takes
the form:

0 =60 + ab,p(s), 3)
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(b

where « is the learning rate and ¢, is the tem-
poral difference:

6 =r+Vi(s)=V'(s). 4)

The immediate reward is represented by r, y
is the discount factor, and s and s are two con-
secutive states.

Tile coding (Sutton, 1996) is a particular
method to define a basis function, ¢ (s ), for
states or state-action pairs. This method partitions
the input space into several displaced layers (til-
ings) of overlapping tiles. Each state can be al-
located to exactly one tile in each tiling. Thus,
¢ (s) takes value 1 for tiles it is allocated in and
0 otherwise. Figure 1 shows how it can be deter-
mined ina2D space. Tilesallow for generalisation
to neighbouring positions. Forexample, an update
of the value function in position x has an impact
on the value function in position y which may not
be visited during the entire period of learning.
One of the key motivations to propose the algo-
rithms introduced in next two sections is the fact
that coarser generalisation (see Figure 1b) allows
foramorerapid propagation of the value function.
This coarser generalisation means that the result-
ing representation is less expressive, but it can be
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used to guide learning of the value function with
a more detailed representation.

Reward Shaping

When the agent is learning from simulation, the
immediate reward, », which is in the update rule
of the SARSA algorithm given by equation:

Q(s,a) — Q(s,a) + ofr +vQ(s',a") — Q(s,a)].
)

represents the (only) feedback from the environ-
ment. The idea of reward shaping is to provide
an additional reward which will improve the
performance of the agent. This improvement can
mean either faster learning or a better quality of
the final solution, especially in the case of large
domains. The shaping reward does not come from
the environment. It represents extra information
which is incorporated by the designer of the sys-
tem and estimated on the basis of knowledge of
the problem. The concept of reward shaping can
be represented by the following formula for the
SARSA algorithm:

Qs,a) — Qs,a) + alr + F(s,a,5") +7Q(s",a") — Q(s,a)],

(6)

where F(s,a,s') is the general form of the shaping
reward which in our analysis is a function
F:SxS — R.Anatural example of the poten-
tial function in navigation domains is the straight-
line distance to the goal at the maximum speed.
The shaping reward, F(s,s’), is then positive if,
according to such a potential function, state s’ is
closer to the goal than state s.

Depending on the quality of the shaping
reward, it can decrease the time the algorithm
spends attempting suboptimal actions, thus it can
improve exploration. This decrease is the main
aim of applying reward shaping. Ng et al. (1999)
defined formal requirements on the shaping re-

ward. In particular, the optimal behaviour of the
(model-free) agent is left unchanged if and only
if the shaping reward is defined as a difference of
some potential function @ of a source state s and
a destination state s’ (see Equation 7).

Fls,s) = 7®(s") — 2(s) Y

This can be further clarified in the following
way. When one has certain knowledge about the
environment (knowledge which may help decrease
the number of suboptimal actions the agent will
attempt during learning), this knowledge can be
used in different ways. In some cases the Q-table
can be simply initialised based on this knowledge.
The theoretical work of Ng et al. (1999) proved
that if instead of initialising the Q-table, the same
knowledge is used as a shaping reward, the final
solution of the agent will not be changed. One of
the most important implications of this fact is that
it allows for a straightforward use of background
knowledge in RL with function approximation. Itis
notan obvioustask ofhow to use existing heuristics
to initialise the Q-table which is represented, for
example, asamulti-layer neural network (see Sec-
tion2.1 which introduces function approximation).
The fact that reward shaping can be equivalent
allows for a straightforward use of background
knowledge in such cases. Heuristic knowledge can
be easily given viareward shaping even when the
function approximation with multi-layer neural
networks is used. In the case of neural networks
with global basis functions (Bishop, 1996) the use
of reward shaping instead of Q-table initialisation
(assuming that such an initialisation could be
done easily) would have additional advantages.
The consistent reward shaping would be given
all the time during the learning process, whereas
initialised values would change rapidly during
temporal-difference learning.

The motivation for the need for potential-based
shaping comes substantially from the work of
Randlev (2001) who showed a domain in which
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a wrongly defined reward shaping changed the
objective of learning. In the domain which in-
volves learning to ride a bicycle towards a goal
which is determined by the environment reward,
the agent with the shaping reward was learning to
ride in cycles without moving towards the goal,
i.e. it was converging to a different policy than
the one specified by the environment reward. In
order to act optimally according to the environ-
ment reward, the agent has to navigate directly to
the goal state while avoiding falling down. This
example indicated deficiencies of reward shaping
and lead to the theoretically grounded work of Ng
et al. (1999) and Wiewiora (2003).

One problem associated with potential-based
reward shaping is that often detailed knowledge
of the potential function of states is not available
orisvery difficultto represent directly in the form
of a shaped reward. When the shaping reward is
computed as in Equation 7, the application of
reward shaping reduces to the problem of how
to learn the potential function, @(s), and in this
chapter amethod to address this issue is proposed.
We suggest learning the potential function online
as the value function of a coarse, abstract tile cod-
ing. At this time it is worth reconsidering that a
particularly convenient potential function would
bethe one which is equal to the value function, that
is, O(s) = V(s), which helps justify why roughly
approximating the value function is a promising
approach for reward shaping. The algorithm is
introduced in the fourth section of this chapter.

Mixed Resolution Tile Coding

In this section we introduce a RL architecture that
treats both the fine and coarse tilings as parts of
the same function approximator. This straightfor-
ward idea can be easily found in Figure 1. Basi-
cally, two tilings with different resolution are used.
The less expressive one with a coarse resolution
is intended to allow for broader generalisation
early and the more expressive with a fine resolu-
tion to yield refinement later on. Now, the value
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function can be represented as two vectors of
parameters 0 and @’ for coarse and fine tilings
correspondingly. To these tilings correspond also
two basis functions ¢ and ¢’ . In this setting the
value function is computed as:

N'—1 N -1

Vis)=Y @ (s)+ Y, 0/¢/(s), (8)

i=0 =0

where N = '(9‘ ‘ and N/ = ‘E)f‘. For the value

function computed in this way, the temporal dif-
ference can be evaluated in a standard way ac-
cording to Equation 4 and vectors 6 and ¢’
updated according to the gradient descent rule in
Equation 3.

This method allows for a natural coexistence
of two resolutions in one function approximator.
It can be seen as a method of obtaining and using
high level knowledge to guide early learning.

The next section shows how to use this knowl-
edge in a different way. Reward shaping is pro-
posed as another way of using knowledge which
is provided by the coarse resolution to speed up
learning with a more detailed resolution

LEARNING THE POTENTIAL
FUNCTION FOR REWARD SHAPING

We propose a RLarchitecture with two levels of tile
coding. The first one learns an approximation of
the Q-functionatthe ground RL level. The second,
coarser one learns an abstract V-function which
is used as the potential function to calculate the
shaping reward (see Equation 7) for the ground
level. The algorithm which is proposed here
builds on two techniques existing in the field: 1)
multigrid discretization used with MDPs (Chow &
Tsitsiklis, 1991), and 2) automatic shaping which
was recently proposed (Marthi, 2007).
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Related Work

The multigrid discretization in the MDP setting
(Chow & Tsitsiklis, 1991) was used to solve
an MDP in a coarse-to-fine manner. While this
technique is well suited to dynamic programming
methods (a coarse problem at a high, abstract
level can be solved and used at a more detailed,
ground level), there was no easy way of merging
layers with a different resolution when applied
to RL algorithms. First such attempts were made
by Anderson & Crawford-Hines (1994) and this
problem was evident in their work. The need for
knowledge of the topology of the state space is
necessary in their solution to define how multiple
levels are related, and this fact made the approach
infeasible for RL tasks. It used a multigrid as a
way of obtaining knowledge, but the mechanism
to use this knowledge at a ground RL level was
missing. We propose potential-based reward shap-
ing as a solution to these problems. The ground
RL algorithm does not have to be modified and
knowledge can be given in a transparent way via
an additional shaping reward. In this work, the
idea of multigrid discretization is reflected in two
different resolutions in tile coding.

In the automatic shaping approach (Marthi,
2007) an abstract MDP is formulated and solved.
In the initial phase of learning, the model of an
abstract MDP is built and after a defined number
of episodes an abstract MDP is solved and its
value function used as the value of the potential
function for ground states. We propose an algo-
rithm which applies tile coding with different
resolutions to create ground and abstract levels.
Instead of defining an abstract task as dynamic
programming for solving an abstract MDP, we
use RL to solve the abstract task online. RL with
representation based on tile coding results in a
natural translation between ground and abstract
levels. Tile coding in itself can be easily applied
in a multigrid fashion and because it has been
mostly used with model-free RL and SARSA
in particular (empirical results in the literature

(Stoneetal.,2005) show that SARSA is generally
better than Q-learning when tile coding is used;
the explanation is justified in the literature by the
fact that SARSA is an on-policy method), it is
sensible to apply RL for solving an abstract level
problem. Tile coding is an important and popular
function approximation method for model-free
learning, and our approach meets requirements
of model-free RL with tile coding. Our aim is
to have more robust model-free learning with
tile coding, while still enjoying all properties of
model-free learning. Additionally, knowledge
about the environment which is used to define tile
coding at the ground level is sufficient to deploy
our method in its basic form.

Work on tile coding which is related to this
chapter was presented in (Zheng et al., 2006)
where two function approximations with tile
coding were also applied. In this case, Q- instead
of the V-function is used at an abstract level. The
high level, abstract Q-values are used to guide the
exploration in the initial learning phase. This ap-
proach lacks the reference to the potential-based
reward shaping as results in (Zheng et al., 2006)
do not indicate a clear advantage of that method.
Without the robust mechanism of potential-based
reward shaping, the Q-function needed to be used
at an abstract level. The usage of the V-function
would require for example approximating tran-
sition probabilities. In our case, it is enough to
learn only the V-function which can converge
sufficiently faster to be useful for potential-based
reward shaping.

The variable resolution discretization has been
studied in the field (Munos & Moore, 2002). The
ideaistosplitsomecells (states) and bring a higher
resolution to some areas of the state space in order
to represent a better policy. Our approach can
be seen as orthogonal to this technique because
they could be combined together and bring their
distinct merits to the overall solution. We learn
the shaping reward which can be used to guide
ground learning with a variable resolution discreti-
zation. The interesting question arises, whether a

101




Reward Shaping and Mixed Resolution Function Approximation

variable resolution could improve the process of
learning a potential function when applied at an
abstract level and focused on fast propagation of
guidance. When applied at the ground level it is
intended to play the opposite role, i.e. to provide
a higher resolution where it is necessary (Munos
& Moore, 2002).

The relationship of the number of tilings and
the interval size was studied by Sherstov & Stone
(2005). Their results show that a smaller number
of tilings with wider intervals speeds up learn-
ing in initial episodes but hurts convergence at
later stages. In contrast, narrower intervals (with
preferably one tiling) slow down initial learning
but lead to a higher quality of the final solution.
Choosing inouralgorithm a fine grained encoding
with a small number of tilings at the ground level
and coarse generalisation for reward learning can
be seen as an easy way to have fast convergence
at the beginning and good convergence at the end
of learning.

Because in our algorithm learning takes place
attwo levels of abstraction, it is worth relating this
approach to the general concept of hierarchical
machine learning. Stone & Veloso (2000) proposed
the universal idea of layered learning where the
search space of hypotheses can be reduced by a
bottom-up, hierarchical task decomposition into
independent subtasks. Each local task is solved
separately, and tasks are solved in a bottom-up
order. The distinguishing feature of this paradigm
is that the learning processes at different layers do
not interact with each other and different machine
learning algorithms can be used at different lay-
ers. In particular, RL was applied to learn in this
architecture (Stone & Veloso, 2000), i.e. to learn
at a particular layer. Because tasks are solved in-
dependently using results from learning at lower
layers, the algorithm proposed in this chapter can
be seen as a potential choice for selected subtasks.

When relating our algorithm to hierarchical
reinforcement learning it is worth noting how the
hierarchy interacts with reinforcement learning in
suchalgorithms. Regardless ofthe type of abstrac-

102

tion used to create hierarchy (e.g. state abstrac-
tion, hierarchical distance to the goal Kaelbling,
1993; Moore et al., 1999, feudal reinforcement
learning Dayan & Hinton, 1993, temporal abstrac-
tion Parr & Russell, 1997; Sutton et al., 1999, or
both state and temporal abstractions Dietterich,
2000) the hierarchy exists in the final representa-
tion of the solution, i.e. the policy is defined on
this hierarchy, and learning may take place at all
levels of the hierarchy simultaneously. The value
function is a function of not only the ground states
and actions but also some elements determined
by the hierarchy (e.g., in Parr & Russell, 1997
HAMQ-learning maintains an extended Q-table
Q([s,m],a) indexed by a pair of states which in-
cludes state s and machine state m, and an action
a at a choice point). In our algorithm the actual
RL is not modified and the abstract level learning
provides feedback which is given in a transparent
way via reward shaping. There is also no need for
knowledge aboutthe hierarchical task decomposi-
tion, as in the basic case the knowledge which is
used to design the state representation is sufficient
to deploy this algorithm. In particular it can be
applied to problems without a clear hierarchy.

A Novel Algorithm

Algorithm 1 summarises our approach, show-
ing the key extensions to the standard version
of SARSA(A) with tile coding (Sutton & Barto,
1998). In our case learning at the ground level is
the same as in standard SARSA(L). The modifica-
tion which is crucial for our discussion is the point
where the SARSA(L) algorithm is given shaping
reward, F(s,s'), in Line 14 of Algorithm 1 where
the temporal difference is computed. The way in
which F(s,s') is evaluated defines our extension.

The shaping reward, F(s,s), is computed in
Line 4 as the difference of the value function of
current and previous states visited by the agent.
Thus, @(s)= V(s) where Visthe currentestimate of
the value function of the abstract RL task. This task
is learned using temporal difference updates with
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tile coding (Lines 8 and 9) and symbols related to
this learning process have subscriptvin Algorithm
1. The mapping from state s to the set of tiles used
at the abstract level is done in a straightforward
way without any special knowledge. Basically, a
lower resolution of tiles can be applied. However
with optional, additional knowledge about the
problem such a mapping can remove some state
variables and appropriately focus abstract learning.
Itmeansthatthe less expressive representation can
apply not only lower resolution but also remove
some of the state variables.

RL at the abstract level is treated as a Semi-
MDP (Semi-MDPs are extensions to MDPs in
which the time between one decision and the next
decision istaken into considerationasareal-valued
or an integer-valued random variable (Hu & Yue,
2007)) since due to coarse tile coding an agent
can be several time steps within the same position
at the abstract level. The resolution of tile coding

at the ground level should avoid such situations.
For this reason time # is used when temporal dif-
ference in Line 8 is evaluated.

The generic function reward (r) shows that
abstract learning can receive an internally modi-
fied reward. According to our empirical evalua-
tions 10~'r gives good results on different do-
mains where both the positive and negative reward
is given. The division by factor 10 guarantees that
the shaping reward extracted from an abstract
V-function has smaller impact than the environ-
ment reward.

Use of Tilings

The algorithm has been shown as a generic ap-
proachtousetwo levels oftile coding. We combine
this algorithm with the idea of mixed resolution
function approximation which was introduced in

Algorithm 1. SARSA(7)-RS: Gradient-descent SARSA(2) with potential-based reward shaping from
temporal difference learning of an abstract level value function.

1: repeat {for each step of episode}

23 V « the abstract level v-function for state s

3% V '~ the abstract level v-function for state s’; 0 if s’ is a goal state
4: F(s,s') =y VvV "=V

53 r, = reward (r)

6: ifr # 0 or tiles for s # tiles for s' at the abstract level then

7z t « the number of time steps since the last update

8: 6, =r, + yvV'-V

9: Update approximation V(s) according to temporal difference o,

10: end if

11: QO < the ground level state-action value for pair (s,a)

12: Q'~ the ground level state-action value for pair (s',a')

13: ifs' is not a goal state then

14: & =r + F(s,s') + yO'- 0
15: else
16: 6 =r -0

17: end if

18: Update approximation of Q(s,a) according to temporal difference &

19: untils'’ is terminal
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the third section of this chapter. This leads to two
versions of Algorithm 1:

I. ground learning (Q-function) with only high
resolution (fine tilings) and abstract learn ing
(V-function) with low resolution (coarse
tilings),

2. ground learning with both low and high
resolution (according to the description in
the third section of the chapter) and abstract
learning with low resolution like in the first
version.

Properties of the Algorithm

Even though the shaping reward is learned with
a separate tile coding and separate vector of
parameters, its performance is strictly correlated
with relations between the Q- and V-function, in
general, and the design of both levels of tiles. The
following factors can thus have influence on the
performance of Algorithm 1.

. V(s) values learned at the abstract level are
a function of only states whereas ground
RL learns Q(s,a) values in order to deal
with unknown environment dynamics.
This difference suggests that the positive
influence of the potential function extract-
ed from V(s) should be higher with a larger
number of actions a € A(s) because V(s)
learns only values of states whereas Q(s.,a)
additionally distinguishes actions (there
are more values to converge). Thus, V(s)
can converge faster than Q(s,a) in the ini-
tial period of learning and can give positive
guidance for learning Q(s,a) at the ground
level.

. There can exist structural dependencies
between features in the state space. Such
structural dependencies can be used to de-
fine a reduced representation at an abstract
level. For example, a reduced number of
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features can provide a high level guidance
(e.g., goal homing). Detailed encoding at
the ground level enables the algorithm to
take into account other factors and world
properties. Abstract learning with properly
selected factors can result in a rapidly con-
verging V-function which may improve
slower converging ground learning.

. When the RL agent needs to learn on a
problem with a wider range of values of
state features with the same required gran-
ularity of function approximation (when
the value function is very diverse and high
granularity is necessary), the impact of
learned reward shaping can be more sig-
nificant. When tile coding at the abstract
level applies a lower resolution, it reflects
the situation given in Figure 1. Particularly
in the initial period of learning, an abstract
V-function can faster propagate informa-
tion about highly rewarded areas than ab-
stract Q-function.

Further sections test some of the aforemen-
tioned hypotheses on a range of RL tasks.

EXPERIMENTAL DESIGN

A number of experiments have been performed
to evaluate extensions to RL proposed in two
previous sections. The following configurations
are tested. Their acronyms are defined here for
the reference in the remainder of this chapter.

1. SARSA(ML): the standard version of the
algorithm (Sutton & Barto, 1998).

2. Coarse: the standard version of SARSA(})
with coarse tile coding.

3. Mixed: the standard version of SARSA(})

with mixed resolution, that is, two tilings
in one function approximator (according to
Section 3).
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4.  RS: the algorithm introduced in Section 4
with coarse resolution at the abstract level
and only fine resolution at the ground level.

5. Mixed-RS:like the previous version but with
a mixed resolution for ground learning.

The following values of common RL param-
eters were used: A= 0.7 (used at both levels), and
A =0 (also at both levels) in the second series of
experiments without eligibility traces, y = 0.99,
y,=0.99,0=0.1 and a = 0.1 (in both abstract
and ground learning, the learning rate was being
linearly decreased with each episode reaching
0.01 in the last episode). Values a = 0.1 and A =
0.7 were also used in the famous practical applica-
tion oftemporal difference learning: TD-gammon
(Tesauro, 1992). In all experiments e-greedy
exploration strategy was used with € decreasing
linearly from 0.3 in the first episode to 0.01 in
the last episode. Values of these parameters were
chosen arbitrarily and the selection was guided
by the most common settings from the relevant
literature (Sutton & Barto, 1998; Tesauro, 1992).
This value of ¢ is high enough to provide explor-
ative behaviour, but small enough to ensure that
the policy still drives exploration. All runs on all
tasks were repeated 30 times and average results
are presented in graphs. Following the evalua-
tion process from recent RL competitions, the
accumulated reward over all episodes was used
as a measure to compare results in a readable
way. It is worth noting that also the asymptotic
performance can be explained using this type of
graphs. Specifically, when two curves are parallel
within a given number of episodes, it means that
the asymptotic performance oftwo corresponding
algorithms is the same. If one of these curves is
steeper, it means that the asymptotic performance
of the corresponding algorithm is better in the
period under consideration. Error bars illustrat-
ing the standard error of the mean (SEM) are also
presented. Statistical significance was checked
with a paired sample Z test by setting the level
of significance at P <0.05.

The eligibility traces (A > 0) are implemented
in an efficient way (Sutton & Barto, 1998;
Cichosz, 1995) at both levels. They are truncated
when the eligibility becomes negligible. Specifi-
cally, the trace of N most recently visited states
or state-action pairs is stored where (Ay)Y > 107.
The value of eligibility is evaluated as:
e(p.(s,a)) = (Xy)" where tis the number of time
steps since ¢, has been added to the trace. In this
way, for all o, of the most recent pair (s,a), t=0
and it makes e(y,(s,a)) = 1 forall ¢ ofthis pair.
It means that replacing eligibility traces are used
(Singh & Sutton, 1996). For given values of pa-

rameters, (Ay)"> 10, amaximum size of the trace
is N=56.

EXPERIMENTAL DOMAINS

The following set of popular RL tasks were used
as test domains in our experiments.

Mountain Car

The first experiments were performed on the
mountain car task according to the description
of Sutton & Barto (1998). This is one of the
most famous RL benchmark problems. The car
is situated in a steep-sided valley and its goal is
to get out of this valley and ride to one of the
hills (see Figure 2). Because the car’s engine is
not powerful enough, the car has to go certain
distance up towards the opposite hill to get some
momentum, and then accelerate towards the hill
which corresponds to its goal.

The state space in this domain is described by
the position p and velocity v of the car. There are
three actions: backward, coastand forward. These
actions correspond to car’s acceleration a, which
has values -1, 0 and 1 correspondingly. The state
is updated at each time step according to the fol-
lowing simplified physical model:
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Figure 2. The mountain car task (Sutton & Barto,
1998)
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where g=0.0025 is gravity. The range of state
variables is bounded: —1.2<p  <0.5 and

—0.07 <w, , <0.07. The goal state is reached
when p, | > 0.5 for the main goal on the right
hilland p, < —1.2 for the negative goal on the

left hill. In both cases, the episode ends and the
new episode starts with the agent placed in a
random position. An episode was also terminated,
and the agent placed in a random position, after
10° steps without reaching any of the goal states.
In our comparisons all tested algorithms were
always evaluated on the same sequence of starting
random positions for a fair comparison. It means
that the random sequence of starting positions
was selected before the experiment and all algo-
rithms were tested on the same set of starting
states. The agent received a reward of 1 upon
reaching the goal state on the right hill and -1 on
the left hill. This type of the reward functions was
motivated by experiments of Munos & Moore
(2002), as it makes the shape of the V-function
more diverse (the car has to learn that it cannot
go too much to the left). The goal of learning is
to get to the right hill minimising the number of
steps. Following Sutton & Barto (1998), 10tilings
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Figure 3. The car parking task (Cichosz, 1995).
The domain state is described by <xt,yt,0t>
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with 9x9 tiles were used for fine tilings and 6x6
for coarse tilings.

Car Parking

The car parking task comes from the existing RL
literature (Cichosz, 1995, 1996). This is a simu-
lated car parking problem (illustrated in Figure 3),
where the goal of learning is to navigate the car
to the garage so that the car is entirely inside of
the garage. The car is represented as a rectangle
in Figure 3 and cannot move outside of the driv-
ing area which is bounded by the solid line. This
is an episodic task where the episode ends either
when the car is successfully parked in the garage
or when the car hits the wall of the bounded area.
Each episode starts with the car placed in the same
starting location (see below for exactcoordinates).
Areward of 100 was given upon entering the goal
state. At all other time steps, the reward is 0.
The state space in this domain is described by
three continuous variables: coordinates of the
centre of the car, x and y, and the angle, 0, be-
tween the car’s axis and the X axis of the coordi-
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nate system. There are three actions in the system:
drive left, drive straight on, and drive right. These
actions correspond to values of -5, 0, and 5 of the
turn radius a_which is used in equations below.
These equations specify how state variables are
updated after each time step 7.

1. if r = Othen
a. 0. =6 +1v/a

t+
b. =z, ==z —a sin(@)+a sin0, )
& Yrr =Y ta, COS(@t) — COS(Q
2. if r =0 then

a. 0. =0

t+

t+7')

b. =z, ==z, +7vcos(d,)

c. Yy, =y, +7usin,)

Velocity v was constant and set to 1 [m/s].
The time step 7=0.5[s] was used. The initial
location of the car is: x=6.15[m], y=10.47[m],
and 6=3.7[rad].

Two different configurations of the task were
analysed in our experiments. The first one is with
all geometrical parameters specified by Cichosz
(1996). The dimensions are as follows: w=2 [m],
[=4 [m], x,=-1.5 [m], x,=1.5 [m], x,=8.5 [m],
y,=-3 [m], y,=3 [m], and y,=13 [m]. For this
configuration, there were 6 tilings over one group
of three state variables with 5x5x5 tiles per tiling.
The state space is defined in the same way as in
(Cichosz, 1996). As this version of the problem
is relatively small, the same tilings were used
also for the V-value at the abstract level. In the
second configuration, the size of the driving area
was tripled with x = 24.5 and y, = 37. Because
of the larger size, the number of intervals was
also tripled yielding 15x15x15 tiles per tiling for
fine tilings and 10x10x10 for coarse tilings. The
initial location of the car in this larger version of
the domain was: x =22.15 [m],y =24.47 [m], and
0 =3.7 [rad].

Figure 4. The boat task (Jouffe, 1998)
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Boat

The problem is to learn how to navigate a boat
from the left bank of the river to the quay on
the right bank (see Figure 4). There is a strong
non-linear current in the river. The boat starts in
one of the ten possible starting positions on left
bank and navigates to a narrow quay on the right
bank (the sequence of random starting positions
is the same within compared algorithms for a
fair evaluation). The fact that there is strong non-
linear current in the river requires precise use of
continuous actions in this domain or at least a
fine grained discretisation (Lazaric et al., 2007).
Our implementation of this domain follows the
description of Jouffe (1998) except for anarrower
quay with its width set to Z =0.2 and the random
starting positions used recently by Lazaric et al.
(2007) where this task was shown to be challeng-
ing for classical RL algorithms. This domain was
used in our experiments to check the influence
of the number of actions on the performance of
our methods, because discretisation into a larger
number of actions leads to better final results in
this domain but also yields more time consuming
learning.

The state of the environment is described by
coordinates of the boat’s bow, x and y in the range
[0,200], and the angle & between the boat’s axis
and the X axis of the coordinate system. The boat
iscontrolled by setting the desired direction which
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is in the range [-90°,90°]. The boat’s bow coordj-
nates are updated using the following equations:

.1 = min(200, max(0, Z, +s,,,c08(6,,)))
Yy = min(200, max (0, Y= sin(, ) — E(z, )

where £ stands for the effect of the current and

T x

is expressed as: F(z) — f(——(——

p (@)= 15 - (=

J.=1.25 is the force of the current. The angle, o,
and speed, S, are updated according to:

)) where

dn =6,4+19,

1

qu = Q/ ¥ (<wh—l - Qr)(srﬂ /SJ/A,\';)

Q.,.=0+ ((wm - Qr)(SH /5,1/_4.\')1

t+1 t
si—u = 31 + <5,/ - Sr )]

W, = 111111(111&1)((1)((@47J . (S‘f)_—45“)_45~“)

where /=0, is the system inertia, o the rudder
angle, s, =25 the maximum allowed speed of
the boat, s,=1.75 is the desired speed of the boat,
and p=0.9 s the proportional coefficient required
to compute the rudder angle according to a gjven
value of the desired direction U.

The reward function is defined as follows. If
the agent crosses left, top, or bottom boundary
of the working area, the reward of -10 s given.
If the quay is reached within its boundaries, that
is, within the distance Z/2 from the centre of it
(the success zone) where Z.=0.2, the reward of 1 ¢
is always given, There is an additiona] viability
zone defined around the quay. The width Z of
this zone is 20. If the boat reaches the right bank
within this zone (outside the success zone) the
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reward function is decreasing linearly from 10 to
-10relative to the distance from the success zone.
Reaching the right bank outside of the viability
zone yields the reward of -1(.

RESULTS

Experimental results arediscussed foreach domain
separately as they were designed to test different
properties of the methods proposed in this chapter.

Mountain Car

The obtained results witheligibility traces (Figure
5) show that reward shaping with mixed function
approximation (Mixed-RS) has the most rapid
improvement. Mixed function approximation
(Mixed) obtains the second best performance,
though the cumulatjve reward is worse than in
Mixed-RS with statistica] significance after 2050
episodes. Mixed is better than SARSA(A) with
statistical significance after230 episodes, than RS
after 390 episodes, and better than Coarse after
940 episodes. When comparing other configura-
tions, Coarse speeds up learning at the beginning,
but asymptotically loses with a more detailed
representation (refer to Section 5 to check how to
read the asymptotic performance). The need of a
more expressive representation becomes evident
here. Learning with reward shaping (RS) offers
good asymptotic properties, but its improvement
is smaller than with mixed versions (Mixed and
Mixed-RS). An interesting observation is that
mixed representations, both with (Mixed-RS)
and without (Mixed) reward shaping, improve
learning right from early episodes and gain the
bestasymptotic performance. These resy Its show,
that RL can be boosted in a straightforward way
Jjustby combinin gtworepresentations with differ-
ent expressiveness in one function approximator
(Mixed) and additiona] use of reward shaping
(Mixed-RS) can lead to further improvement.
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Figure 5. Results on the mountain car problem (A=

0.7). The top graph shows the first 25 <102 episodes,

and the bottom graph shows the remaining 25 %102 episodes
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Another experiment on the mountain car task
is reported in Figure 6 where 4=0 is used. In this
case the advantage of Mixed and Mixed-RS is
moreevident. Mixed-RS is better than Mixed with
statistical significance after 28 episodes. Mixed
is better than Coarse after 2900 episodes and bet-
ter than RS after 420 episodes. Also in this case,
Coarse loses asymptotically with other methods.
The overall observation from this experiment is
that when learning without eligibility traces, our
extensions lead to better absolute improvement.

Car Parking

In the car parking problem with the larger size of
the working area, the type of knowledge which is
learned from coarse tilings starts playing a more
significant role. Figure 7 shows results for the
original task. The task is relatively small here
with a short distance to the goal (see the picture of
this configuration in Figure 3) and our extensions
do not bring improvement in this setting. But,
the encouraging observation is that asymptotic
convergence is not violated when our methods are
used. There is no statistical significance between
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Figure 6. Results on the mountain car problem
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Figure 8. The car parking problemwith the tripled
size of the working area (2=0.7)
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any two methods in this experiment. In the second
configuration, where the distance to the goal is
bigger, goal-homing knowledge becomes more
important. Thisisreflected in Figure 8. In this case
twotypes of reward shaping yielded the best initial
improvement with mixed resolution after them.
However, Mixed obtains better final convergence
than RS. Statistical tests are more informative here.
There is no statistical significance between Mixed
and RS, and also between Mixed-RS and Mixed.
When comparing Mixed-RS and RS, the difference
is statistically significant between episodes 600
and4800. Mixed-RS isbetterthan SARSA (L) after
580 episodes and there is no statistical difference
between Mixed and SARSA(L). Even though the
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Figure 7. The car parking problem with original

settings (1=0.7)
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differences are less significant here, Mixed-RS
gains the best performance. It can be noted here
that the advantage of our extensions becomes
more important on larger instances of problems.
We can also try to find an explanation for the fact
that reward shaping worked the best here, and RS
in the initial period of learning in particular when
compared to Mixed. We conjecture that the reason
for this is that in order to reach the goal state the
car needs to be in a very specific range of posi-
tions (it is easy to hit the wall) and learning with
only mixed resolution was not able to lead to such
an initial improvement because of the strict posi-
tion to enter the goal. This seems to be a rational
explanation when the experiment presented in
Figure 10 is taken into consideration. In this case,
when L =0, methods which use reward shaping,
that is, Mixed-RS and RS, work better than all
other methods. There is however no statistical
difference between Mixed-RS and RS. In Figure
9, the experiment on the original task and L =0
is also presented. In contrast to results in Figure
7, eligibility traces are not used here and this
time the basic version of SARSA() gains better
asymptotic performance (no statistical difference
between SARSA(L) and Mixed). This observation
shows thaton small problems the standard version
of the algorithm may be sufficient.
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Figure 9. The car parking problem with original

settings (A=0)
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Figure 11. The boat problemwith 5 actions (2=0.7)
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Boat

The agent controls the boat by the desired direc-
tion in the range [-90°,90°]. Experiments with
discretization into 5, 20 and 40 values (actions)
are reported. The same number of 5 tilings was
used with 10x10x10 tiles for fine tilings and
8x8x8 tiles for coarse tilings.

Firstly results with eligibility traces are dis-
cussed. Figure 11 presents results with 5 actions.
Differences, even though small, are statistically
significant, particularly for Mixed and Mixed-RS
when they are compared to other methods. Mixed-
RS has better (with statistical significance) cu-
mulative reward after 350 episodes than Mixed.
And, Mixed is better than RS after 2000 episodes

Figure 10. The car parking problem with the
tripled size of the working area (1=0)
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and better than SARSA(L) after 300 episodes.
Learning in this version of the task progresses
relatively well and, in effect, the coarse learning
loses from early episodes. When 40 actions were
used (Figure 13), the best performance was also
due to reward shaping with mixed function ap-
proximation at the ground level (Mixed-RS)
followed by learning with only mixed function
approximation (Mixed). The difference between
Mixed-RS and Mixed is statistically significant
after 440 episodes and the absolute improvement
is higher here than when 5 actions were used.
Mixed is also better than RS after 6800 episodes.
Additional experiments with 20 actions (see
Figure 12) yielded results where reward shaping
led to higher improvement than with 5 actions
and lower than with 40 actions showing coherence
with our hypothesis that our extensions are of
particular interest when there are many actions
a € A(s). The results of RS are between Mixed
and pure SARSA(A) in a similar way as in moun-
tain car. RS with 40 actions converges faster in
the initial phase of learning, at a pace similar to
SARSA()L) with only 5 actions, and obtains better
resultsinthe long run. The asymptotic performance
of our algorithms is also very good. The problem
of slow convergence of pure SARSA(A) with 40
actions (i.e. the number of actions desired for this
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Figure 12. The boat problem with 20 actions
(2=0.7)
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domain) which was pointed out by Lazaric et al.
(2007) can thus be mitigated by our approaches.

The boat domain was also evaluated without
eligibility traces, that is, with A=0. Results of this
experimentation are in Figures 14, 15 and 16 for
5, 20 and 40 actions respectively. In this case
observations are different than in the previous
study. Firstly, differences between algorithms are
higher in terms of absolute difference in perfor-
mance, the distances between curves are bigger
with a similar size of intervals for the standard
error of the mean. In all cases Mixed-RS performs
better with statistical significance than other
methods. Another important issue in this case is
that the basic version of the SARSA(L) algorithm
performed very well in terms of asymptotic con-

Figure 14. The boat problem with 5 actions (2.=0)
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Figure 13. The boat problem with 40 actions
(4=0.7)
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vergence. When learning with eligibility traces,
the improvement which our methods bring was
smaller in terms of the absolute difference, but
the asymptotic performance was also very good.

SUMMARY AND DISCUSSION

In this chapter, we propose using two hypotheses
spaces, that is, function approximation with differ-
entlevelsofexpressivenessin RL. Two approaches
to obtain learning with mixed resolution are in-
troduced and empirically evaluated when applied
to tile coding. The results show that simuitaneous
learning at two levels and learning with mixed
resolution FA can converge to a stable solution.

Figure 15. The boat problemwith 20 actions (2.=0)
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Figure 16. The boat problemwith 40 actions (A=0)
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We conjecture that this is due to the fact that our
experiments are based on the SARSA algorithm
(on-policy temporal difference learning) which has
been shown in the literature (Stone et al., 2005)
to work better with function approximation than
Q-learning.

Results on tasks selected according to differ-
ent properties show that the application of our
extensions to RL are especially beneficial when:
1) there are many actions in each state; 2) a high
resolution of the policy is required (due to details
in the environment) with a wide range of values
of state variables, i.e. on the larger instance of the
domain; 3) a high level guidance can be extracted
from a subset of state variables.

Reward shaping with mixed FA at the ground
level was the best in all runs on large instances.
Actually, only in the car parking task with original
size and A=0 our approaches were not the best,
and even then it was not statistically significant.
Learning with only mixed FA was the second-
best on two domains but reward shaping without
mixed resolution was better on one domain, that
is, when the path to the goal led via states with
very constrained values of state variables (enter-
ing the parking space in the car parking task).
Overall, the results show thatreward shaping with
mixed resolution FA at the ground level was the
most successful.

The contribution of the algorithm is the im-
proved convergence rate, especially in domains
satisfying the properties outlined above.

The comparison between learning with A>0
and A=0 showed that our algorithms generally
lead to better absolute improvement when A=0,
but good asymptotic properties were preserved in
both cases in mostexperiments. Additionally, even
withA=0, our algorithms withouteligibility traces
faster gained a similar performance to SARSA(A)
with eligibility traces, that is, with A>0. Eligibility
traces, even when using a more efficient version
(truncating is used in our experiments), yield
certain computational overhead. With A=0, only
one backup is performed after each step and with
2=0.7 (and other relevant parameters according to
our experimental design) the number of backups is
N=56. The computational complexity is significant
and was empirically observed during experimental
evaluation. This observation indicates that with
our methods applied without eligibility traces, a
comparable convergence can be achieved at lower
cost, because there is at most one backup of the
V-function for each SARSA backup. Eligibil-
ity traces require significantly more updates. In
contrast to eligibility traces, separate and external
representation of knowledge is obtained in our
method with reward shaping.

It is important to note that ideas proposed in
this chapter do not require any explicit domain
knowledge. In its basic form abstract learning
can be defined using the same knowledge which
is used to design tile coding at the ground level.
The most straightforward approach is the use of
wider intervals of high level tiles.
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