
Analysis of Methods for solving MDPs

(Extended Abstract)
Marek Grześ and Jesse Hoey

David R. Cheriton School of Computer Science, University of Waterloo, Canada
{mgrzes, jhoey}@cs.uwaterloo.ca

ABSTRACT
New proofs for two extensions to value iteration are derived when
the type of initialisation of the value function is considered. Theo-
retical requirements that guarantee the convergence of backward
value iteration and weaker requirements for the convergence of
backups based on best actions only are identified. Experimental re-
sults show that standard value iteration performs significantly faster
with simple extensions that are investigated in this work.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial Intellig-
ence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Theory

Keywords
Policy Iteration, Markov Decision Process, Value Iteration

1 INTRODUCTION
We consider the problem of finding an optimal policy in discrete
time, finite state and action, discounted (by factor γ < 1) as well as
undiscounted (γ = 1) Markov Decision Processes (MDPs) [6]. A
standard MDP notation is used from [3]. The following definitions
are considered:

DEFINITION 1. Q is pessimistic if Q(x, a) ≤ Q∗(x, a) and
optimistic if Q(x, a) ≥ Q∗(x, a).

DEFINITION 2. Q is monotone pessimistic ifQ(x, a) ≤ Rx(a)
+γ

∑
x′ Tx,a(x

′)V (x′) and is monotone optimistic if Q(x, a) ≥
Rx(a) + γ

∑
x′ Tx,a(x

′)V (x′) for all x and a, where V (x) =
maxaQ(x, a).

2 ANALYSIS
In our recent work [3], a new backup of the value function was pro-
posed that exploits the idea of updating best actions only (BAO).
The approach was shown to be very successful in PAC-MDP rein-
forcement learning that requires frequent replanning of a changing
MDP. The current work investigates how this idea can help in gen-
eral MDP planning where every MDP is solved once. We also show
a new theorem which allows applying the BAO operator in a more
general scenario:

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

THEOREM 1. Planning based on backups that, in every state,
keep updating all best actions until the Bellman error of best ac-
tions is smaller than ε (BAO) converges to the optimal value func-
tion when the initial value function is optimistic.

Our recent work [3] has identified specific problems with the
convergence of backward value iteration (BVI) [2]. Here, we show
new, formal theoretical requirements that guarantee that backward
value iteration will converge.

THEOREM 2. In the backward value iteration algorithm spec-
ified in [2], the policy induced by the current value function is
proper (i.e., every state reaches the goal state with probability 1
[1]) after every iteration when:

1. the initial value function is monotone pessimistic, i.e., the
conditions of Definition 2 are satisfied

2. the initial policy is proper, i.e., at least one goal state is in
the policy graph of each state

When the policy induced by the current value function of the BVI
algorithm is proper after every iteration, the algorithm will update
all states in every iteration and upon termination the Bellman error
satisfies the termination condition on all states.

3 RESULTS
In order to test BAO in general MDPs, the following algorithms
are evaluated: (1) VI: standard Gauss-Seidel value iteration [1], (2)
MPI(k): modified policy iteration [7] where k is the constant num-
ber of iterations in policy evaluation, (3) PI: policy iteration [4], and
(4) PS: prioritised sweeping with priority based on the Bellman er-
ror [5]. If BAO is applicable, it is used as one of the options and
added to the name of the algorithm in the results. Also, a simplified
version of BAO is used, named BAOnce, that updates best actions
only once during every visit to the state. V (i), Vmax, Vmin, V +,
and V − mean that the value function of a particular algorithm was
initialised with i, Rmax/(1 − γ), Rmin/(1 − γ), and upper and
lower bounds on V ∗ correspondingly. Every domain was evaluated
10 times, for every randomly generated domain 10 instances were
generated, the precision ε was 10−5, and the standard error of the
mean is shown in the results which display the planing time and the
number of performed backups (the best results are in boldface).

VI, by default, cannot beat PI/MPI on domains with a high num-
ber of actions. For this reason, the first set of domains is generated
according to [6] and has a high number of actions: the number of
states and actions in every state is 100, and an action can lead to
three randomly selected states with a probability sampled from a
truncated Gaussian distribution with mean 20 and standard devia-
tion 5 or from a uniform distribution on [1-100].



Nr Time [ms] Backups Algorithm
1 3869.5 ± 159.0 7970000.0 ± 332699 VI-V(0)
2 3780.1 ± 172.2 7662000.0 ± 367979 VI-Vmax
3 2546.5 ± 127.2 5158000.0 ± 251183 VI-V+
4 840.4 ± 61.2 641943.6 ± 41327 VI-Vmax-BAO
5 104.1 ± 3.9 114576.1 ± 4805 VI-V+-BAO
6 91.3 ± 2.8 73694.2 ± 2044 VI-V+-BAOnce
7 5569.2 ± 143.0 6421040.0 ± 177804 PS-V+
8 1907.7 ± 78.3 94820.0 ± 3445 MPI(2)-V(0)
9 441.5 ± 20.6 99680.0 ± 4283 MPI(10)-V(0)
10 238.9 ± 10.8 97060.0 ± 4028 MPI(20)-V(0)
11 122.9 ± 4.3 255330.0 ± 10614 MPI(500)-V(0)
12 136.5 ± 5.4 309910.0 ± 14962 PI-V(0)
13 1079.2 ± 58.3 57700.0 ± 2579 MPI(2)-V+
14 133.6 ± 6.6 303910.0 ± 16916 PI-V+

Table 1: Results on non-terminating MDPs, Gaussian rewards
and γ = 0.99

Nr Time [ms] Backups Algorithm
1 3545.9 ± 147.0 7526000.0 ± 310506 VI-V(0)
2 3024.4 ± 127.4 6305000.0 ± 255679 VI-Vmax
3 170.9 ± 4.6 172349.5 ± 5251 VI-Vmax-BAO
4 169.3 ± 3.0 127090.0 ± 2314 VI-Vmax-BAOnce
5 6958.2 ± 142.7 7819750.0 ± 155515 PS-Vmax
6 1963.9 ± 72.2 96840.0 ± 3460 MPI(2)-V(0)
7 431.8 ± 14.2 98630.0 ± 3279 MPI(10)-V(0)
8 250.6 ± 6.8 102980.0 ± 2862 MPI(20)-V(0)
9 101.1 ± 4.8 209310.0 ± 10885 MPI(500)-V(0)
10 111.4 ± 5.4 251550.0 ± 12444 PI-V(0)

Table 2: Results on non-terminating MDPs, uniformly dis-
tributed rewards and γ = 0.99

The first experiment evaluates domains with Gaussian reward
(see Table 1). MPI improves its performance and gets closer to
the performance of PI when k grows. All rewards are positive (and
similar due to Gaussian distribution) here, and evaluation of every
policy makes progress towards an optimal solution, and for that rea-
son it makes sense to advance evaluation of every policy (high k)
and do fewer policy updates - the situation where VI is poor. BAO
with Vmax is better than standard VI, but loses against MPI. Only a
more informative initialisation, V +, allowed BAO to be both faster
and to reduce the number of backups beyond what was achieved
by the best MPI settings. Certainly, one could argue that V + is
usually not known exactly in the real situation, however sometimes
(see the car replacement example below) a bound, far better than
Vmax, can be determined and the discussed experiment shows that
such a bound would be very convenient for the BAO update.

Since BAO continuously adapts its evaluated policy, our guess
was that it may waste time on evaluating all actions which are sim-
ilar due to a low variance in the Gaussian rewards. Therefore, the
same set of domains was generated with a uniform reward distribu-
tion. Results in Table 2 show the evidence that higher variance in
values of rewards made BAO perform better even with uninforma-
tive Vmax initialisation. Here, there are actions which are proved
to be non-optimal initially and BAO can help.

Car replacement from [4] was evaluated as a realistic domain
with many actions: there are 41 states and 41 actions. Results are
in Table 3. γ = 0.97 since in [4], it is justified as having a real
meaning of around 12% annual interest rate. Rewards have high
variance, but this time there is another property that strongly in-
fluences the performance of evaluated algorithms. Specifically, a
short horizon policy is very sub-optimal when compared with a
long horizon policy. Actions that yield high instantaneous reward
are sub-optimal in the long term (selling a good car now and buying
a cheap one may result in getting money now but incurs losses in
the long term). Hence, BAO first learns actions which seem promis-
ing in short term and then unlearns them. The same applies to MPI.
Small k makes MPI slower. With sufficiently large k, policies are

Nr Time [ms] Backups Algorithm
1 206.5 ± 8.0 591880.1 ± 24543 VI-Vmax
2 144.6 ± 6.6 429999.8 ± 21736 VI-V+
3 169.6 ± 5.3 494214.0 ± 15791 VI-V(0)
4 123.5 ± 8.0 378729.3 ± 21790 VI-V-
5 160.2 ± 5.6 498248.4 ± 18250 VI-Vmin
6 126.8 ± 0.8 176371.1 ± 592 VI-Vmax-BAO
7 30.7 ± 2.0 46615.6 ± 882 VI-V+-BAO
8 55.9 ± 1.1 81765.3 ± 1350 VI-V(0)-BAO
9 124.5 ± 3.0 159412.1 ± 494 VI-Vmax-BAOnce
10 25.8 ± 0.4 36149.7 ± 498 VI-V+-BAOnce
11 48.8 ± 0.8 64849.7 ± 281 VI-V(0)-BAOnce
12 397.1 ± 3.1 734117.3 ± 3216 PS-Vmax
13 279.6 ± 1.1 540306.2 ± 2237 PS-V+
14 314.4 ± 1.4 596263.0 ± 3923 PS-V(0)
15 226.8 ± 1.8 447260.8 ± 2255 PS-V-
16 277.7 ± 1.6 537243.5 ± 1959 PS-Vmin
17 16.1 ± 0.6 18158.9 ± 487 MPI(20)-Vmax
18 13 ± 0.2 14559.1 ± 292 MPI(20)-V+
19 13.1 ± 0.2 14883 ± 251 MPI(20)-V(0)
20 13.7 ± 0.4 15293 ± 360 MPI(20)-V-
21 15.8 ± 0.5 17535.7 ± 562 MPI(20)-Vmin
22 26.3 ± 0.7 80097.6 ± 2332 PI-Vmax
23 25.2 ± 0.5 76264.1 ± 1598 PI-V+
24 26.6 ± 0.8 81413.7 ± 2403 PI-V(0)
25 25.8 ± 0.9 77067.7 ± 3203 PI-V-
26 27.8 ± 0.4 84660.9 ± 1870 PI-Vmin

Table 3: Results on car replacement

evaluated ‘almost exactly’, and this helps avoiding short horizon
policies. This also explains why MPI with lowest k is even slower
than BAO because MPI applies full backups during policy improve-
ment. V (0) could be used to initialise the value function in BAO
because in this domain there is never a positive long term reward
(the possession of a car always incurs costs). With this knowledge,
BAO can be competitive even on this challenging domain. If the
bound can be improved, BAO gains further speed-up. Thus, V (0),
Vmax, and V + yields optimistic initialisation required by BAO,
and Vmin and V − pessimistic which was originally required by
the theory of MPI [7], however the recent literature shows that this
requirement can be avoided [1].

4 CONCLUSION
Our experiments have shown that, thanks to BAO updates, the gap
between MPI and VI is significantly reduced on challenging do-
mains with many actions. Unpublished comparisons with BVI on
stochastic shortest path problems showed that standard VI can also
outperform prioritised approaches when BAO is used.

Acknowledgement This research was sponsored by American Alz-
heimer’s Association through the Everyday Technologies for Alz-
heimer’s Care (ETAC) program. The first author was supported by
a fellowship from the Ontario Ministry of Research and Innovation.

5 REFERENCES
[1] D. P. Bertsekas. Dynamic Programming and Optimal Control (2 Vol

Set). Athena Scientific, 3rd ed., 2007.
[2] P. Dai and E. A. Hansen. Prioritizing Bellman backups without a

priority queue. In Proc. of ICAPS, 2007.
[3] M. Grześ and J. Hoey. Efficient planning in R-max. In Proc. of

AAMAS, 2011.
[4] R. A. Howard. Dynamic Programming and Markov Processes.

MIT Press, Cambridge, 1960.
[5] A. W. Moore and C. G. Atkenson. Prioritized sweeping:

Reinforcement learning with less data and less time. Machine
Learning, 13:103–130, 1993.

[6] M. L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., 1994.

[7] M. L. Puterman and M. C. Shin. Modified policy iteration algorithms
for discounted Markov decision problems. Management Science,
24:1127–1137, 1978.


