
Controller Compilation and Compression for
Resource Constrained Applications
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Abstract. Recent advances in planning techniques for partially observ-
able Markov decision processes have focused on online search techniques
and offline point-based value iteration. While these techniques allow
practitioners to obtain policies for fairly large problems, they assume
that a non-negligible amount of computation can be done between each
decision point. In contrast, the recent proliferation of mobile and embed-
ded devices has lead to a surge of applications that could benefit from
state of the art planning techniques if they can operate under severe
constraints on computational resources. To that effect, we describe two
techniques to compile policies into controllers that can be executed by
a mere table lookup at each decision point. The first approach compiles
policies induced by a set of alpha vectors (such as those obtained by
point-based techniques) into approximately equivalent controllers, while
the second approach performs a simulation to compile arbitrary poli-
cies into approximately equivalent controllers. We also describe an ap-
proach to compress controllers by removing redundant and dominated
nodes, often yielding smaller and yet better controllers. The compilation
and compression techniques are demonstrated on benchmark problems
as well as a mobile application to help Alzheimer patients to way-find.

Keywords: Energy-efficiency, Finite-state Controllers, Knowledge com-
pilation, Markov decision processes, Mobile Applications, POMDPs

1 Introduction

Partially observable Markov decision processes (POMDPs) provide a natural
framework for sequential decision making in partially observable domains. Tremen-
dous progress has been made in recent years to develop scalable planning tech-
niques for POMDPs. Point-based value iteration methods for factored and con-
tinuous domains can compute good value policies for a wide range of real-world
problems [1, 2]. In addition, online resources can be used to perform a search at
run time to directly select the next action or refine a precomputed policy [3, 4].

In this work, we are motivated by an emerging class of applications that pose
new challenges for POMDP solvers. We consider monitoring and assistive ap-
plications that run on smart-phones, wearable systems or other mobile devices.



While computational resources are rapidly increasing, energy consumption re-
mains an important bottleneck due to limited battery life. This is especially
important in monitoring and assistive applications that need to be continuously
running, but should be as power efficient as possible. For such applications, on-
line planning is not an option due to the high computational costs. Computed
policies that require online belief monitoring at execution time also consume
too much energy. While it is sometimes possible to offload computation through
cloud solutions, this requires a data connection, which may not always be avail-
able or stable, and which has a high battery consumption.

An effective solution can be found by noting that a POMDP policy can be
represented very simply using a finite state controller (FSC) [5], which only re-
quires simple table look-ups during execution. However, controller optimization
is notoriously difficult. The non-convex nature of the optimization makes it dif-
ficult for many approaches (e.g., gradient ascent [6], quadratically constrained
optimization [7], bounded policy iteration [8], expectation maximization [9]) to
reliably find the global optimum. An exhaustive search of the space of controllers
can avoid local optima, but is clearly intractable [10, 11].

In this paper, we describe two novel techniques for compiling an existing
POMDP policy (as generated by a point-based method, for example) into a
finite state controller (Sec. 3). The first method requires a policy specified as
a set of α-vectors and witness belief points and constructs a FSC directly that
approximates the given policy. The second method needs only a simulation of
the policy, and builds a controller incrementally by building a policy tree and
then detecting equivalent conditional plans. We also describe a novel method for
compressing a FSC into an equivalent, but smaller, FSC by removing redundant
nodes (Sec. 4). We demonstrate our techniques on a set of large benchmark
POMDP problems (Sec. 5), and we use policies generated by two state-of-the-art
point-based techniques, namely GapMin [12] and SARSOP [13]. We show how
we can construct very compact controllers that are equivalent, and sometimes
better, than the policies they are derived from. We also demonstrate our methods
on a set of POMDPs that are used to provide mobile assistance for persons with
Alzheimer’s disease for way-finding.

2 Background

A partially observable Markov decision process (POMDP) is formally defined
by a tuple 〈S,A,O, T, Z,R, b0, γ〉 which includes a set S of states s, a set A of
actions a, a set O of observations o, a transition function T (s′, s, a) = Pr(s′|s, a),
an observation function Z(o, a, s′) = Pr(o|s′, a), a reward function R(s, a) ∈ <,
an initial belief b0(s) = Pr(s) and a discount factor 0 ≤ γ ≤ 1. We assume
that the planning horizon is infinite, although the proposed algorithms can be
modified easily for finite horizon problems. The goal is to find an optimal policy
that maximizes the discounted sum of rewards. A policy π : Ht → At can be
defined as a mapping from histories Ht ≡ A0 × O1 × ... × At−1 × Ot of past
actions and observations to actions At, however this definition is problematic for



an infinite horizon since histories may be arbitrarily long. Two approaches are
often used to circumvent this issue: i) replace histories by finite length sufficient
statistics such as beliefs or ii) represent policies as finite state controllers, which
are mappings from cyclic histories to actions.

A belief b(s) is a distribution over states reflecting the decision maker’s belief
that the process may be in each state s. We can update a belief b after executing
a and observing o according to Bayes’ theorem:

bao(s′) ∝
∑
s

b(s) Pr(s′|s, a) Pr(o|s′, a) ∀s′ (1)

Given the initial belief b0 and a history ht = 〈a0, o1, ..., at−1, ot〉, we can compute
the belief bt at time step t by repeatedly applying the above equation for each
action-observation pair in the history. Hence, we can equivalently define policies
as mappings π : B → A from beliefs to actions. The value V π(b0) of policy
π when starting in b0 is the discounted sum of expected rewards V π(b0) =∑∞
t=0 γ

tR(bt, π(bt)) where R(b, a) =
∑
s b(s)R(s, a).

We can also consider policies represented by a finite state controller π =
〈N,φ, ψ〉, which is defined by a setN of nodes n, a mapping φ : N → A indicating
which action a to execute in each node n and a mapping ψ : N × O → N
indicating that the edge rooted at n and labeled by o should point to n′. A
controller is executed by alternating between executing the action φ(n) of the
current node n and moving to the next node ψ(n, o) by following the edge rooted
at n that is labeled with the current observation o. The value αn of the controller
when starting in n is an |S|-dimensional vector computed as follows:

αn(s) = R(s, φ(n)) + γ
∑
s′,o

Pr(s′|s, a) Pr(o|s′, a)αψ(n,o)(s
′) ∀n, s (2)

Policy optimization algorithms can be classified in two broad categories:
i) offline techniques that pre-compute a policy before the start of the execu-
tion [14–16] and ii) online techniques that perform all their computation at run
time by searching for the best action to execute after receiving each observa-
tion [3]. Online techniques can take advantage of the history so far to focus their
computation only on the current belief. When computational resources are not
constrained and there is sufficient time between decisions to search for the next
action to execute, online techniques can perform very well and can scale to very
large problems. In contrast, offline techniques do not scale as well, but permit
the deployment of POMDP policies on mobile and/or embedded devices with
severe resource constraints due to energy, memory or CPU limitations.

Among the offline techniques, we can further classify algorithms based on
the type of policies (belief mapping or finite state controller) that they produce.
Algorithms that produce belief mappings often exploit the fact that the value
V ∗ of an optimal policy satisfies Bellman’s equation:

V ∗(b) = max
a

∑
s

b(s)
[
R(s, a) + γ

∑
s′,o

Pr(s′|s, a) Pr(o|s′, a)V ∗(bao)
]
∀b (3)



The continuous nature of the belief space prevents us from performing value it-
eration at all beliefs and therefore the important class of point-based techniques
performs point-based Bellman backups only at a finite set of beliefs [15]. An
approximation of the value function at all beliefs is obtained by computing the
gradient in addition to the value at each belief. This allows the formation of a set
of linear value functions that are often represented by α-vectors, similar to the
value functions of controller nodes. While the details of point-based value itera-
tion are not important for the rest of this paper (see [17] for more information),
what is important to know is that they produce a set Γ of 〈αi, bi, ai〉-tuples that
associate each αi with an action ai and a witness belief bi (i.e., belief for which
αi yields the highest value: αi(bi) ≥ αj(bi) ∀j where α(b) =

∑
s b(s)α(s)). The

policy π induced by Γ is obtained by computing

π(b) = abest where best = arg max
i

αi(b) (4)

Although point-based value iteration techniques compute the set Γ offline,
they still require a certain amount of computation at each decision point. The
belief must be updated after each action and observation according to Eq. 1
(complexity O(|S|2)) and the best α-vector must be identified according to Eq. 4
(complexity O(|S||Γ |)). This amount of computation may still be prohibitive
when S and Γ are large and there isn’t enough memory, time or energy.

Alternatively, the other group of offline techniques produces policies repre-
sented as finite state controllers [10]. Since the execution of a controller merely
consists of a table lookup, they are the most convenient type of policies for de-
ployment in resource constrained applications. Unfortunately, they do not scale
as well as point-based techniques and they often lack robustness due to local
optima issues. Instead of directly optimizing a finite state controller, in this pa-
per we propose two techniques to compile policies into approximately equivalent
controllers. This has the benefit that we can use existing scalable algorithms
such as point-based value iteration to quickly obtain a good policy. In addition,
the controller compilation allows those policies to be executed on devices that
are much more constrained.

3 Controller Compilation

Kaelbling et al. [5] observed that an optimal controller can be extracted from
an optimal value function. Unfortunately, the best value functions found by
state of the algorithms are approximate/suboptimal for most problems. Hansen
wrote “it is unclear how to construct suboptimal controllers from [such value
functions]” [18]. Hence, for the past 15 years, research has focused on directly
optimizing controllers. We propose two approaches to compile suboptimal poli-
cies into approximately equivalent controllers. The first approach is limited to
policies implicitly represented by sets of α-vectors as produced by point-based
value iteration techniques. The second approach works with arbitrary policies.



3.1 Compiling Controllers from Alpha Vectors

As explained in Sec. 2, point-based value iteration techniques produce a set
Γ of 〈αi, bi, ai〉-tuples from which a belief mapping policy is extracted. Alg. 1
shows how to compile Γ into an approximately equivalent controller 〈N,φ, ψ〉.
We create a node ni for each vector αi (Line 4). Each node ni is labeled with
the action φ(ni) = ai associated with αi (Line 5). To determine where the
edge rooted at ni and labeled with o should point to, we update the witness
bi of belief according to Eq. 1 based on action ai and observation o. Let the
resulting belief be bai,oi . We then find which α-vector has the highest value at
bai,oi (Line 9) and assign the corresponding node to ψ(ni, o) (Line 10). The
complexity of this compilation technique is O(|Γ |2|O||S|2), however in practice
the dependence on |O| and |S| can often be reduced by exploiting sparsity. The
overall running time is typically a fraction of the time taken by point-based
value iteration to obtain Γ . The quality of the resulting controller varies. The
compilation technique ensures that the actions selected at the first two time steps
are identical to that of the policy induced by Γ . This can be observed by noting
that the action associated with the best α-vector is selected at the first two time
steps which correspond exactly to what would be done in a policy induced by
Γ . If the set of α-vectors in Γ corresponds to the optimal value function, then
the resulting controller will also be optimal. However, when the set of α-vectors
is suboptimal, which is the case most of the time, then actions selected after
the second time step may be different than those selected by the policy induced
by Γ , leading to a controller that may be better or worse. In the next section
we describe an approach that ensures that the resulting controller is at least as
good as the original policy in the limit.

Algorithm 1: Compilation of α-
vectors into an approximately equiv-
alent controller 〈N,φ, ψ〉
alpha2fsc(Γ )

1: Let Γ be a set of 〈αi, bi, ai〉-tuples
2: N ← ∅
3: for i = 1 to |Γ | do
4: N ← N ∪ {ni}
5: φ(ni)← ai
6: for i = 1 to |Γ | do
7: for all o ∈ O do
8: if Pr(o|bi, ai) > 0 then
9: best← arg maxj αj(b

ai,o
i )

10: ψ(ni, o)← nbest
11: else
12: ψ(ni, o)← ni
13: return 〈N,φ, ψ〉

Algorithm 2: Policy Tree Generation

policyTree(π, b, depth)

1: N ← ∅
2: j ← 1
3: queue← {〈b, 0, j〉}
4: while ¬isEmpty(queue) do
5: 〈b, d, i〉 ← removeF irst(queue)
6: N ← N ∪ {ni}
7: φ(ni)← π(b)
8: if d = depth then
9: ψ(ni, o)← ∗ ∀o ∈ O

10: else
11: for all o ∈ O do
12: j ← j + 1
13: addLast(queue, 〈bφ(ni)o, d+ 1, j〉)
14: ψ(ni, o)← nj
15: return 〈N,φ, ψ〉



3.2 Compiling Controllers from Arbitrary Policies by Simulation

We describe an approach to compile arbitrary policies into approximately equiv-
alent controllers. The approach simulates the policy up to a certain depth and
ensures that the controller will execute the same actions up to that depth. In the
limit, with an infinite depth, we obtain a controller that matches the policy ex-
actly. Although, as we show in the experiments, we can often obtain a controller
that is at least as good by simulating up to a reasonable depth.

The approach works in two steps: i) first we generate a policy tree up to a
certain depth, then ii) we compress the policy tree into a controller by detecting
matching subtrees. Alg. 2 shows how to generate a policy tree up to a certain
depth by simulating the policy. Since simulation does not require the policy to
be in any format, the approach works with arbitrary policies. We just need to
generate the next action given the current observation at each time step, which
is always possible since this is how all policies are executed in practice. To be
concrete, Alg. 2 shows how to generate a policy tree for policies that are belief
mappings, but we could easily modify the algorithm to work with policies that
are represented as history mappings or any other type of mapping. The algorithm
generates a policy tree in breadth first order, which will become handy in the
compression step. Since leaves do not have edges, we set ψ(n, o) to ∗ for all edges
rooted at a leaf n (Line 9).

Fig. 1 shows the policy tree generated by Alg. 2 up to a depth of 5 for the
classic tiger problem [19]. In this problem there are three actions (listen, open-
right and open-left), two observations (tiger-right, tiger-left). Nodes are labeled
with actions and edges are labeled with observations. Nodes are also numbered
according to the breadth-first order in which they were generated.

In the second step, the policy tree is compressed into a controller by identi-
fying matching conditional plans. Each node of the policy tree is the root of a
conditional plan. Conditional plans rooted at each node are compared to con-
ditional plans rooted at previous nodes in the breadth-first order. When two
conditional plans match, we replace the node with highest breadth-first index
by the node with the lowest breadth-first index. Two conditional plans are said
to match when they select the same actions in each path up until a leaf is en-
countered. Hence, conditional plans with different depths can still match since
we stop the verification as soon as a leaf is encountered in a path. Alg. 3 shows
how to verify whether two conditional plans match. Alg. 4 uses this verification
procedure to prune nodes whose conditional plans match the conditional plan of
an earlier node in the breadth-first order. This process gives rise to a controller
that is often much smaller than the original policy tree and yet ensures that the
same actions are executed up to the depth of the original policy tree.

Fig. 2 shows again the policy tree for the tiger problem with additional
dashed edges indicating that the parent node is replaced by the child node due
to matching conditional plans. For instance, node 4 will be replaced by node 0
since their conditional plans match. Fig. 3 shows the resulting reduced controller
once all node substitutions indicated by dashed edges in Fig. 2 are performed.
Since leaf nodes have a trivial one-step conditional plan and they are last in the
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Algorithm 3: Equivalent Condi-
tional Plans

equivalentCP(n1, n2, φ, ψ)

1: if φ(n1) 6= φ(n2) then
2: return false
3: for all o ∈ O do
4: if ψ(n1, o) 6= ∗ and ¬equiva-

lentCP(ψ(n1, o), ψ(n2, o), φ, ψ)
then

5: return false
6: return true

Algorithm 4: Compilation of arbitrary π
into approx. equivalent controller 〈N,φ, ψ〉
policy2fsc(π, b, depth)

1: 〈N,φ, ψ〉 ← policyTree(π, b, depth)
2: for all ni ∈ N in increasing index i do
3: for all nj ∈ N such that j < i do
4: if equivalentCP(ni, nj , φ, ψ) then
5: N ← N \ {ni, descendents(ni)}
6: for all n ∈ N, o ∈ O do
7: if ψ(n, o) = ni then
8: ψ(n, o)← nj
9: return 〈N,φ, ψ〉

breadth-first order, they will be replaced by interior nodes as long as there is
an interior node with the same action. Since actions eventually repeat in a large
enough tree, the compilation procedure generally produces controllers without
leaves (i.e., all nodes have a full set of edges). The breadth-first order also ensures
that Alg. 3 terminates since in each pair of conditional plans that we compare,
the one rooted at the node with the highest index is necessarily a tree of finite
depth (i.e., no loop). In addition, when we replace the node with the highest
index we can delete the entire subtree below it since there is no way to reach
that subtree other than through the node that is being replaced. This pruning
greatly improves the running time. Finally, the breadth first order also helps to
produce a small controller since nodes are always replaced by nodes with a lower
index and therefore earlier in the tree.

The complexity of Alg. 4 is quadratic in the size of the policy tree. However,
due to the pruning of subtrees each time a node is replaced, we can show that
the complexity is really linear in the size of the policy tree times the size of the
reduced controller. The experiments show that the reduced controller is often
significantly smaller than the policy tree, yielding a substantial speed up. That
being said, the linear dependence on the size of the policy tree is still significant
since the size of policy trees is exponential in the depth (i.e., O(|O|depth)). We can
often reduce the base |O| of the exponential by exploiting sparsity or considering
only observations with a probability greater than some threshold.

4 Controller Compression

Once a policy is compiled to a controller, it often contains redundant or dom-
inated nodes. Redundant nodes often occur when some observations have zero
probability, leading to multiple conditional plans with the same value. Domi-
nated nodes often occur when the original policy is suboptimal and the compi-
lation process generates suboptimal conditional plans. We describe a technique
to compress a controller while ensuring that its value does not decrease and in
some cases it increases. The idea is to prune all nodes with α-vectors that are
dominated in value by other α-vectors. This approach was first used by Hansen
in his policy iteration algorithm [14]. Below, Algorithm 5 describes how to re-
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Algorithm 5: FSC Compression

fscCompression(N,φ, ψ)

1: repeat
2: Eval controller by solving (2)
3: for each n1 ∈ N do
4: for each n2 ∈ N \ {n1} do
5: if αn1(s) ≤ αn2(s) ∀s then
6: N ← N \ {n1}
7: for all n ∈ N, o ∈ O do
8: if ψ(n, o) = n1 then
9: ψ(n, o)← n2

10: break
11: if αn1(s) ≥ αn2(s) ∀s then
12: N ← N \ {n2}
13: for all n ∈ N, o ∈ O do
14: if ψ(n, o) = n2 then
15: ψ(n, o)← n1

16: until N doesn’t change
17: return 〈N,φ, ψ〉

listen
(0)

listen
(1)

tiger-left

listen
(2)

tiger-righttiger-right

open-right
(3)

tiger-left

tiger-left

open-left
(4)

tiger-right

tiger-lefttiger-right tiger-left tiger-right

Fig. 3: Controller obtained by reducing a
5-step policy tree according to Alg. 4 for
the classic tiger problem.

peatedly compress a controller until there are no dominated nodes. The approach
alternates between policy evaluation and node substitution. The evaluation step
computes the α-vector of each node by solving a system of linear equations.
Then the α-vector of each node is compared to the α-vectors of the other nodes.
When α1(s) ≤ α2(s) ∀s then n1 can be replaced by n2. Since the value of n2 is
at least as good as that of n1 in all states, then pruning n1 and replacing it by
n2 does not lower the value of the controller. The value will go up if there is an s
such that α2(s) > α1(s). The complexity of the policy evaluation step in Alg. 5
is O(|N |3|S|3|O|), however sparsity often allows to reduce the dependence on |S|
and |O|. The complexity of the pruning step is O(|N |2|S|). Overall, compression
time is a small fraction of compilation time.

5 Experiments

We evaluate our methods using policies computed by two state-of-the-art point-
based POMDP algorithms: GapMin [12] and SARSOP [13]. GapMin returns
〈αi, bi, ai〉-tuples and therefore we can compile its policies into finite-state con-
trollers using both of our methods. SARSOP was used to compute policies for
the largest POMDP benchmarks, however it returns only α-vectors, which is
sufficient to apply policy2fsc, but not alpha2fsc (witness beliefs are also needed,
but SARSOP’s interface does not expose them). The experiments are conducted
with some benchmark problems and a real-world POMDP for smart phones.
The running time of compilation algorithms—reported in the column ‘time’—
corresponds to the time of actual compilation. The time to compute initial poli-
cies before compilation can be found in the columns ’GapMin’ or ’SARSOP’
depending on which solver was used. High time limits were selected in order to
compute policies of high quality. Thus, this time could be considerably shorter if



POMDP GapMin method depth tree size nodes value time c
4x5x2.95 GM-lb=2.08 alpha2fsc 47(58) 2.08(2.08) 0.29 2
|S|=39, |A|=4 GM-ub=2.08 GM-LB 8 287 10(17) 2.08(1.85) 0.30 1
|O|=4, γ = 0.95 time=4.96s GM-UB 8 287 10(17) 2.08(1.85) 0.29 1

|lb|=58 B&B 5 2.02 639.9
|ub|=243 EM 10 2.01 ± 0.02 66.8

QCLP 10 1.74 ± 0.11 7.7
BPI 8 0.71 ± 0.09 0.72

aloha.10 GM-lb=533.4 alpha2fsc 137(158) 533.2(533.2) 11.5 1
|S|=30, |A|=9 GM-ub=544.1 GM-LB 11 29525 390(1116) 537.6(537.5) 83.6 2
|O|=3, γ = 0.999 time=5223s GM-UB 11 29525 402(1148) 537.6(537.6) 94.5 1

|lb|=158 B&B 10 529.0∗ 24h
|ub|=406 EM 40 534.8 ± 0.25 2739

QCLP 25 534.37 ± 0.52 99.2
BPI 5 112.4 ± 1.59 0.69

chainOfChains3 GM-lb=157 alpha2fsc 10 10 10(10) 157(157) 0.26 0
|S|=10, |A|=4 GM-ub=157 GM-LB 11 11 10(10) 157(157) 0.42 0
|O|=1, γ = 0.95 time=0.86s GM-UB 11 11 10(10) 157(157) 0.26 0

|lb|=10 B&B 10 157 1.69
|ub|=1 EM 10 0.17 ± 0.06 6.9

QCLP 10 0 ± 0 0.16
BPI 10 25.7 ± 0.77 4.25

cheese-taxi GM-lb=2.481 alpha2fsc 17(22) 2.476(2.476) 0.29 1
|S|=34, |A|=7 GM-ub=2.481 GM-LB 15 167 17(24) 2.476(2.476) 0.56 1
|O|=10, γ = 0.95 time=1.88s GM-UB 15 167 17(24) 2.476(2.476) 0.55 1

|lb|=22 B&B 10 -19.9∗ 24h
|ub|=13 EM 17 -12.16 ± 2.08 337.9

QCLP 17 -18.22 ± 1.77 227.4
BPI 16 -18.1 ± 0.39 7.18

lacasa2a GM-lb=6714.6 alpha2fsc 5(5) 6714.0(6714.0) 5.15 0
|S|=320, |A|=4 GM-ub=6717.6 GM-LB 5 22621 106(421) 6715.0(6715.0) 933.9 1
|O|=12, γ = 0.95 time=54s GM-UB 5 22621 100(517) 6714.1(6714.1) 256.4 1

|lb|=5 B&B 3 6710.0 493.8
|ub|=14 EM 11 6710 ± 0.11 6485

QCLP 2 6699.9 ± 5.5 181
BPI 26 6709.3 ± 0.2 121.5

lacasa3.batt GM-lb=293.4 alpha2fsc 25(26) 292.4(292.4) 399.7 1
|S|=1920, |A|=6 GM-ub=294.7 GM-LB 4 12601 47(60) 293.1(292.7) 1451 2
|O|=36, γ = 0.95 time=5386s GM-UB 4 12697 41(48) 293.2(293.1) 1030 2

|lb|=26 B&B 5 287.0∗ 24h
|ub|=48 EM 5 293.2 ± 0.03 13331

BPI 9 293.2 ± 0.12 2102
lacasa4.batt GM-lb=291.1 alpha2fsc 10(10) 285.5(285.5) 302 0
|S|=2880, |A|=6 GM-ub=292.6 GM-LB 3 745 19(22) 287.3(287.1) 3652 1
|O|=72, γ = 0.95 time=8454s GM-UB 4 23209 87(94) 290.8(290.8) 3681 1

|lb|=10 B&B 10 285.0∗ 24h
|ub|=23 EM 3 290.2 ± 0.0 19920

BPI 6 290.6 ± 0.2 4124
hhepis6obs woNoise GM-lb=8.64 alpha2fsc 14(18) 8.64(8.64) 0.49 1
|S|=20, |A|=4 GM-ub=8.64 GM-LB 12 21 14(18) 8.64(8.64) 0.89 1
|O|=6, γ = 0.99 time=2.6s GM-UB 12 21 14(18) 8.64(8.64) 0.74 1

|lb|=18 B&B 8 8.64 4.48
|ub|=7 EM 14 0.0 ± 0.0 49.2

QCLP 14 0.16 ± 0.10 26
BPI 13 0.0 ± 0.0 1.68

machine GM-lb=62.38 alpha2fsc 5(39) 54.61(54.09) 5.53 1
|S|=256, |A|=4 GM-ub=66.32 GM-LB 9 376 26(41) 62.92(62.84) 18.5 1
|O|=16, γ = 0.99 time=3784s GM-UB 12 2864 11(159) 63.02(60.29) 86.8 2

|lb|=39 B&B 6 62.6 52100
|ub|=243 EM 11 62.93 ± 0.03 1757

QCLP 11 62.45 ± 0.22 4636
BPI 10 35.7 ± 0.52 2.14

Table 1: Compilation of GapMin policies using: (1) alpha2fsc applied to Gap-
Min lower bound alpha vectors. (2) policy2fsc applied to GapMin lower bound
policy (GM-LB) and (3) policy2fsc applied to GapMin upper bound policy (GM-
UB).



one stops the planning algorithms as soon as a policy of sufficient quality is ob-
tained. This could lead to a substantial reduction of the planning/initialization
time since longer planning times (e.g., 104 seconds instead of 103 seconds in the
case of SARSOP [13]) do not usually lead to dramatically improved policies.

5.1 LaCasa Domain

We tested our approaches on three instantiations of the LaCasa domain [20, 11],
which is a real-world planning task where a smart phone estimates the risk of
wandering by a dementia patient and when necessary assists the patient with
wayfinding or calls a caregiver. In this domain, it is particularly important to
minimize energy consumption since the smart phone won’t be able to assist the
patient once the battery runs out. Offloading computation to a cloud service is
not desired either since it requires a data connection (which may not always be
available or reliable) and wireless communication uses a non-negligible amount
of energy. A controller offers the best solution since computation consists of
negligible table lookups and no data connection is required.

5.2 Results

Tables 1 and 2 compare the results obtained by compiling policies produced
by GapMin and SARSOP respectively to four techniques that directly optimize
controllers: bounded policy iteration (BPI) with escape [8], quadratically con-
strained linear programming (QCLP) [7], expectation maximization (EM) with
forward search [21] and branch&bound (B&B) with isomorph pruning [11]. Pol-
icy2fsc was used in an iterative deepening fashion, starting from depth 2, up to
a depth where the resulting controller was at least as good as the original policy
or a time limit was exceeded. Hence, the time reported for policy2fsc is the cu-
mulative time (seconds) to process all compilations from depth 2 up to the depth
reported in column depth. Tree size is the size of the policy tree for that depth
(note that edges with zero probability reduce the size of the policy tree consider-
ably). Column ’nodes’ displays the number of nodes in the final controller after
compression (before compression in the parentheses). Column ’value’ shows the
value of controllers after compression (analogously, before compression in the
parentheses). Column ’c’ indicates the number of iterations of the compression
until there is no compression possible. The absence of any result for QCLP, EM
and BPI for some problems indicates that 3Gb of memory was not sufficient. A
* besides the value of B&B indicates that B&B did not complete its search in
24h and that the value reported is for the best controller found in 24h.

Table 1 compares our two compilation methods for policies computed by
GapMin. Method GM-LB stands for policy2fsc applied to the GapMin lower
bound policy whereas GM-UB to the upper bound policy. Results confirm that
our methods are successful in compiling POMDP policies into finite-state con-
trollers of approximately equivalent quality. The highest value found for each
problem is bolded. Alpha2fsc compiles |lb| α-vectors into controllers with similar
value, though sometimes the value is significantly worse (e.g., lacasa4.batt and



POMDP SARSOP method depth tree size nodes value time c
baseball time 122.7s policy2fsc 7 175985 10(47) 0.641(0.641) 78.22 1
|S|=7681, |A|=6 |α| =1415 B&B 5 0.636∗ 24h
|O|=9, γ = 0.999 UB=0.642 EM 2 0.636 ± 0.0 48656

LB=0.641 BPI 9 0.636 ± 0.0 445
elevators inst pomdp 1 time 11,228s policy2fsc 11 419 20(24) -44.41(-44.41) 1357 1
|S|=8192, |A|=5 |α| =78035 B&B 10 -149.0∗ 24h
|O|=32, γ = 0.99 UB=-44.31

LB=-44.32
tagAvoid time 10,073s policy2fsc 28 7678 91(712) -6.04(-6.04) 582.2 1
|S|=870, |A|=5 |α| =20326 B&B 10 -19.9∗ 24h
|O|=30, γ = 0.95 UB=-3.42 EM 9 -6.81 ± 0.12 19295

LB=-6.09 QCLP 2 -19.99 ± 0.0 12.9
BPI 88 -12.42 ± 0.13 1808

underwaterNav time 10,222s policy2fsc 51 1242 52(146) 745.3(745.3) 5308 1
|S|=2653, |A|=6 |α| =26331 B&B 10 747.0∗ 24h
|O|=103, γ = 0.95 UB=753.8 EM 5 749.9 ± 0.02 31611

LB=742.7 BPI 49 748.6 ± 0.24 14758
rockSample-7 8 time 10,629s policy2fsc 31 2237 204(224) 21.58(21.58) 1291 1
|S|=12545, |A|=13 |α| =12561 B&B 10 11.9∗ 24h
|O|=2, γ = 0.95 UB=24.22 BPI 5 7.35 ± 0.0 78.8

LB=21.50

Table 2: Compilation and compression of SARSOP policies.

machine). In contrast, policy2fsc finds better controllers by simulating the input
policy to a larger depth, but this takes more time. It was stopped as soon as
the value of the controller matches GapMin’s lower bound or 1h was reached.
In many cases, the number of nodes is still less than or equal to the size of the
input policy (e.g., 4x5x2.95, cheese-taxi, lacasa2, machine). The direct optimiza-
tion techniques (B&B, QCLP, EM, BPI) generally take much longer and/or do
not consistently produce good controllers.

Table 2 summarizes the results for some problems that are among the largest
available benchmarks for point-based value iteration techniques that do not ex-
ploit factored representations. In this case, SARSOP was used to obtain a lower
bound policy that is then compiled by policy2fsc. Even though SARSOP re-
turned value functions with thousands of α-vectors, we compiled those policies
into considerably smaller controllers (up to 3 orders of magnitude reduction) of
the same or better quality (e.g., underwaterNav) demonstrating that our method
scales to large problems. Policy2fsc produced the best value for all problems ex-
cept underwaterNav where the direct optimization techniques produced better
controllers. This simply indicates that the policy compiled from SARSOP was
not the best as opposed to any weakness in policy2fsc.

6 Conclusion

We have presented two novel methods for compiling policies for partially ob-
servable Markov decision processes (POMDPs) into approximately equivalent
finite state controllers (FSCs). Our motivation is that these FSC representa-
tions are very useful in resource-constrained applications such as on mobile or
wearable devices. Methods that can create FSC policies open up new possibilities
for using POMDP controllers on these devices, where battery, computation and
memory resources are at a premium. We showed how we can get very compact,



yet equivalent representations for POMDP policies as those generated by two
state-of-the-art offline planners.
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