Isomorph-free Branch and Bound Search for Finite State Controllers

Marek Grześ, Pascal Poupart and Jesse Hoey

David Cheriton School of Computer Science, University of Waterloo, Canada

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

IJCAI-13

Motivation

- Execution of POMDP policies on phones, or other portable or wearable devices is resource demanding
- Finite-state controllers are least resource intensive POMDP policies

Significance: Example Battery Consumption on Nexus Phones

A small experiment on a mobile phone to substantiate our claim using a POMDP model with 2880 states, 6 actions and 72 observations.

	Battery dropping rate (percentage/min)				average cost/query (sec)	
	Time interval between two queries (sec)					
Experiments	10	2	1	0.125		
oaseline (OS only)	0.1507	0.1507	0.1507	0.1507	Ν	
paseline with wifi on	0.1518	0.1518	0.1518	0.1518	N	
observation generator	0.1619	0.1647	0.1675	0.1635	< 0.001	
null policy	0.1620	0.1677	0.1743	0.1772	< 0.001	
symbolic Perseus	0.1841	0.2311	0.2542	not possible	0.669	
	1		1	1		

Minimal Finite-state Controllers: Redundant Nodes

Figure: An example controller for the tiger.95 problem where nodes N_0 and N_3 have the same conditional plans—the minimal equivalent controller requires 5 nodes.

policy in the cloud	0.1692	0.1724	0.1854	not possible	0.898	
FSC	0.1615	0.1678	0.1721	0.1776	< 0.001	
flat policy	0.1884	0.2181	0.2649	not possible	0.472	

The cloud has slow response and requires network coverage, factored and flat polices executed on the phone are also slow and battery consuming.

Goals

Improving exact algorithms for finding the optimal controllers of a given size

Finite-state Controllers (FSCs)

Figure: An optimal FSC of size 5 for the tiger.95 problem

Branch-and-Bound Search for FSCs

BRANCHANDBOUND (π, LB)

Isomorph-free Finite-state Controllers: Permutation of Nodes

Theorem

There is exactly one minimal controller in each equivalence class that satisfies the conditions: $\psi(\text{edge}_1) \leq 2$ and $\psi(\text{edge}_i) \leq \max_{j < i} \psi(\text{edge}_j) + 1$

Figure: Dashed lines are potential assignments to the edge "tiger-left" in the node N_1. The value N_5 is rejected.

Experimental Results

problem (# of nodes)	algorithm	V(b ₀)	SEM	time [s]	# of evaluations	# of edges	LB-init
chainOfChains3 (10)	Meuleau's B&B	-		-	-		
$ {\sf S} = 10$	improved B&B	157	± 0	2.86	236		
A = 4, O = 1	improved B&B with pruning	157	± 0	1.67	81		
Upper bound = 157	QCLP	0	± 0	0.16			
	BPI	25.7	\pm 0.77	4.25			
	EM	62.6	± 9.46	21.18			
hhepisobs_woNoise (8)	Meuleau's B&B	-		-	-		8.6
S = 20	improved B&B	8.64	± 0	6.78	505		8.6
A = 4, O = 6	improved B&B with pruning	8.64	± 0	4.48	405		8.6
Upper bound $= 8.64$	QCLP	0	± 0	5.20			
	BPI	0	± 0	0.41			
	EM	0	± 0	0.79			
LaCasa (1) (6)	Meuleau's B&B	294.0	± 0	209204.47	3096207114		
$ \mathbf{S} = 10$	Improved B&B	294.0	± 0	1121.17	4156430		
A = 2, O = 3	improved B&B with pruning	294.0	± 0	39.57	143943		
Upper bound $= 294.3$	QCLP	293.8	± 0.1	1.76			
	BPI	290.8	± 0.15	0.30			
		293.5	± 0	0.24			
LaCasa (3) (3)	Meuleau s B&B	-			-	C	
5 = 040		292.0	± 0	514.44	1580	0	
A = 5, U = 12	Improved B&B with pruning	292.0	± 0	347.88	788	0	
Opper bound = 294.9		*		*	*		
		200.2	± 0.57	20.30			
$1 \circ (2 \circ 2) \circ (2)$	Livi Mouloou's R&R	290.5 202 0	⊥ 0.02 ⊥ 0	40.71	19162 1/		
S = 1020	improved B&B	292.0	± 0	2225 27	5058 62	6	
S = 1920 $ \Lambda = 5 \Omega = 3$	improved B&B with pruning	291.0	± 0	1364.03	2064 52	6	
A = 3, O = 3		291.0	<u>т</u> 0	1304.03	2904.32	0	
opper bound – 295.0	BPI	^ 283.8	+ 0 30	^ 	*		
	EM	203.0	± 0.50 ± 0	261.15			
machine (6)	Meuleau's B&B	-	<u> </u>				62.2
S = 256	improved B&B	_		_	_	10	62.2
$ \mathbf{A} = 4$ $ \mathbf{O} = 16$	improved B&R with pruning	62.6	+ 0	52100	338486	10	62.2
Upper bound = 63.8	QCLP	62.47	± 0.16	2640			~~.~
	BPI	26.6	± 0.77	0.74			
	EM	62.43	± 0.07	101.1			
tiger.95 (5)	Meuleau's B&B	19.3	± 0	15.07	911940		
$ \mathbf{S} = 2$	improved B&B	19.3	± 0	15.49	83359		
A = 3, O = 2	improved B&B with pruning	19.3	± 0	1.42	4418		
Upper bound = 19.3	QCLP	-6.3	± 3.79	0.70			
	BPI	-20.2	± 0.12	0.06			
	EM	6.91	\pm 2.48	0.15			
4x5x2.95 (5)	Meuleau's B&B	-		-	-		
S = 39	improved B&B	2.02	± 0	1738.92	409980	10	
A = 4, O = 4	improved B&B with pruning	2.02	± 0	639.99	206317	10	
Upper bound = 2.08	QCLP	1.43	\pm 0.07	0.75			
	BPI	0.55	\pm 0.09	0.22			
1			$\perp 0.01$	1 1 2			

Improved Search

Better upper bounds using fast-informed bound:

 $\bar{V}(s,n) = \max_{a}\bar{Q}(s,n,a)$ where $\bar{\mathbf{Q}}(\mathbf{s},\mathbf{n},\mathbf{a}) = \mathsf{R}(\mathbf{s},\mathbf{a}) + \gamma \sum_{\mathbf{n}',\mathbf{a}'} \max_{\mathbf{n}',\mathbf{a}'} \sum_{\mathbf{n}'} \mathsf{Pr}(\mathbf{o},\mathbf{s}'|\mathbf{s},\mathbf{a}) \bar{\mathbf{Q}}(\mathbf{s}',\mathbf{n}',\mathbf{a}') \quad \forall \mathbf{s},\mathbf{n},\mathbf{a}$

and augmented POMDPs

Ordering variables/values in branch-and-bound using occupancy frequency Controllers with bounded number of edges (clustering of observations)

Symmetric Finite-state Controllers: Permutation of Actions

Figure: Existing methods for FSC optimisation can prune only these symmetries. Assuming that actions are numbered from 1 to $|\mathbf{A}|$, controllers whose nodes are not assigned actions in increasing order are rejected. The above controller would be rejected assuming that, e.g., "open-left" is 2 and "open-right" is 1.

Relevant and Future Work

Controller Compilation and Compression for Resource Constrained Applications. Proceedings of Algorithmic Decision Theory, 2013.

Acknowledgements

This work was supported by the Ontario Ministry of Research and Innovation, NSERC, Toronto Rehabilitation Institute and the Alzheimer's Association grant ETAC-10-173237. We thank Xiao Yang for his help with running our battery consumption verification on the Nexus phone.

www: http://www.cs.uwaterloo.ca/~mgrzes