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Goals

I (1) Establish requirements that guarantee convergence of backward value
iteration

I (2) Improve performance of value iteration on domains with many actions
where policy iteration has advantages

I (3) Show simple ways of improving standard value iteration

Significance

I Backward value iteration needs correct initialisation that we identified
I In contrast to policy iteration, value iteration is easy to parallelise and we

show how to make value iteration work better in those cases where policy
iteration is traditionally faster

I Basic value iteration can be improved without any sophisticated methods
and we show empirical evidence that such simple improvements could be
considered in the field

Introduction

I The problem of planning in Markov Decision Processes is considered
I Gauss-Seidel Value Iteration is investigated, i.e. the value of the updated

state is available immediately
I Standard Bellman backup

Vi+1(s) = maxa

{
Qi+1(s, a) = R(s, a) + γ

∑
s′ P(s, a, s′)Vi(s′)

}
I Definition 1: Q is pessimistic if

Q(x, a) ≤ Q∗(x, a) and optimistic if Q(x, a) ≥ Q∗(x, a).
I Definition 2: Q is monotone pessimistic if

Q(x, a) ≤ Rx(a) +γ
∑

x′ Tx,a(x′)V(x′) and is monotone optimistic if
Q(x, a) ≥ Rx(a) + γ

∑
x′ Tx,a(x′)V(x′) for all x and a, where

V(x) = maxa Q(x, a).

Backward Value Iteration: the Algorithm

Repeat:
I Start backward breath-first search from the goal state
I Visit states once in every iteration
I When a new state is visited, backup occurs, and only its policy predecessors

are added to the open list

Huge savings because the order is good to propagate values from the goal
state, and traversal in reduced to policy predecessors only. Introduced in: P.
Dai and E. A. Hansen. Prioritizing Bellman backups without a priority queue.
In Proc. of ICAPS, 2007.

Backward Value Iteration: Policy Loops

Figure: Example situation when BVI is caught in a policy loop

(1) Backward Value Iteration: Required Initialisation

Theorem: In the backward value iteration algorithm, the policy induced by
the current value function is proper (i.e., every state reaches the goal state
with probability 1) after every iteration when:
I the initial value function is monotone pessimistic, i.e., the conditions of

Definition 2 are satisfied
I the initial policy is proper, i.e., at least one goal state is in the policy graph

of each state

When the policy induced by the current value function of the BVI algorithm
is proper after every iteration, the algorithm will update all states in every
iteration and upon termination the Bellman error satisfies the termination
condition on all states.

Best Actions Only (BAO) Backup

old val← V(s)
repeat
best actions = all a in A(s) st. |Q(s, a)−maxi Q(s, i)| < ε
δ = 0
for each a in best actions do
old q = Q(s, a)
Q(s, a) = R(s, a) + γ

∑
s′ T(s, a, s′) maxa′ Q(s′, a′)

if |old q− Q(s, a)| > δ then
δ = |old q− Q(s, a)|

end if
end for

until δ < ε
return |old val− V(s)|

Introduced in: M. Grześ and J. Hoey. Efficient planning in R-MAX. In Proc.
of AAMAS, 2011.

(2) Best Actions Only (BAO) Backup: Requirements

Theorem 2: Planning based on backups that, in every state, keep updating all
best actions until the Bellman error of best actions is smaller than ε (BAO)
converges to the optimal value function when the initial value function is
optimistic.

Results

Nr Time [ms] Backups Algorithm

1 3545.9 ± 147.0 7526000.0 ± 310506 VI-V(0)

2 3024.4 ± 127.4 6305000.0 ± 255679 VI-Vmax

3 170.9 ± 4.6 172349.5 ± 5251 VI-Vmax-BAO
4 169.3 ± 3.0 127090.0 ± 2314 VI-Vmax-BAOnce
5 6958.2 ± 142.7 7819750.0 ± 155515 PS-Vmax

6 1963.9 ± 72.2 96840.0 ± 3460 MPI(2)-V(0)

7 431.8 ± 14.2 98630.0 ± 3279 MPI(10)-V(0)

8 250.6 ± 6.8 102980.0 ± 2862 MPI(20)-V(0)

9 101.1 ± 4.8 209310.0 ± 10885 MPI(500)-V(0)
10 111.4 ± 5.4 251550.0 ± 12444 PI-V(0)

Table: Results on non-terminating MDPs, uniformly distributed rewards and γ = 0.99

I BAO yields considerable improvements

(3) Improved Default Order

Nr Time [ms] Backups Algorithm

1 889.8 ± 2.1 1186660.8 ± 2254 VI-V(0)-random

2 862.6 ± 1.8 1183280.0 ± 0 VI-V(0)-BFS

3 648.9 ± 3.9 867175.2 ± 3608 VI-V(Eucl)-random

4 323.8 ± 3.8 422600.0 ± 0 VI-V(Eucl)-BFS

5 163.1 ± 1.2 202274.0 ± 0 VI-V(Eucl)-BAO-BFS
6 295.1 ± 0.5 345545.0 ± 0 VI-V(Eucl)-BAOnce

7 1493.6 ± 4.0 1529072.0 ± 0 PS-V(-100)

8 211.6 ± 0.5 69729.0 ± 0 MPI(2)-V(Eucl)-BFS

9 200.5 ± 0.5 107763.0 ± 0 MPI(5)-V(Eucl)-BFS

10 228.5 ± 0.3 175379.0 ± 0 MPI(10)-V(Eucl)-BFS

11 405.9 ± 0.8 464437.4 ± 282 MPI(100)-V(Eucl)-BFS

12 869.2 ± 1.4 1289352.6 ± 1035 MPI(500)-V(Eucl)-BFS

13 565.0 ± 1.1 456200.0 ± 0 BVI-V(-100)-SS

14 611.5 ± 0.9 544074.0 ± 0 BVI-V(DS-MPI)

15 819.4 ± 1.4 680856.0 ± 0 BVIPC-V(-100)

16 528.3 ± 2.1 422408.0 ± 0 LBVI-V(Eucl)

17 366.8 ± 2.0 202122.0 ± 0 LBVI-V(Eucl)-BAO

Table: Results on the navigation maze

I Default breath-first ordering outperforms more sophisticated dynamic
ordering

Conclusion

I (1) We identified the loop invariant of the main loop of the BVI algorithm
and derived the proof and the initial conditions which guarantee that the
BVI algorithm will converge

I (2) We proved that updates of only best actions can be applied when
initialisation is optimistic

I (3) The default order of states is important and it can be easily improved
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