
POMDP Planning and Execution in an Augmented Space

Marek Grześ and Pascal Poupart
Cheriton School of Computer Science, University of Waterloo

200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
{mgrzes, ppoupart}@cs.uwaterloo.ca

ABSTRACT
In planning with partially observable Markov decision processes,
pre-compiled policies are often represented as finite state controllers
or sets of alpha-vectors, which provide a lower bound on the value
of the optimal policy. Some algorithms (e.g., HSVI2, SARSOP,
GapMin) also compute an upper bound to guide the search and to
offer performance guarantees, but they do not derive a policy from
this upper bound due to computational reasons. The execution of a
policy derived from an upper bound requires a one step lookahead
simulation to determine the next best action and the evaluation of
the upper bound at the reachable beliefs is complicated and costly
(i.e., linear programming or sawtoooth approximation). The first
aim of this paper is to show principled and computationally cheap
ways of executing upper bound policies which can be even faster
than executing lower bound policies based on alpha vectors. The
second complementary contribution is a new method to find better
upper bound policies that outperforms those obtained by existing
algorithms, such as HSVI2, SARSOP, or GapMin, on a suite of
benchmarks. Our approach is based on a novel synthesis of aug-
mented and deterministic POMDPs and it facilitates efficient opti-
mization of upper bound policies.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

Keywords
Planning under uncertainty; POMDP; Point-based value iteration

1. INTRODUCTION
Research on efficient POMDP algorithms has advanced signif-

icantly in the past decade. The most widely known and esteemed
approaches are based on point-based value iteration [13, 19], refine-
ment of lower and upper bounds on the optimal value function [18,
9, 16], and online planning [17] among others. Beyond scalability,
there is growing interest in performance guarantees to estimate how
far from optimal a policy may be. This has lead to some advances
in the computation of upper bounds on the optimal value function
since they provide an estimate of the gap between the value of a
policy and the value of an optimal policy [16]. Upper bounds can

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

also be used to guide the search in both offline point-based tech-
niques [18, 9, 16] and online search techniques [17]. In addition,
they may be used to directly derive a policy, which we will refer to
as an upper bound policy, however this is not done in practice due
to computational reasons.

In the current state of knowledge, the execution of upper bound
policies is expensive (often prohibitive) because of the need to eval-
uate the upper bound value of new beliefs by linear programming or
a sawtooth approximation [7], and because of the need to do a look-
ahead simulation in order to determine the next best action. Look-
ahead requires the evaluation of the upper bound value at every be-
lief reachable in one step. The first contribution of this paper is an
efficient method to execute upper bound POMDP policies without
the need to do any lookahead simulation. The second contribution
is an analytical justification for improved/optimal methods to select
belief points that refine the upper bound, which leads to a powerful
algorithm that outperforms HSVI2, SARSOP and GapMin when
compared on the most challenging POMDP benchmarks for this
class of algorithms [16]. Surprisingly, and contrary to the current
perception that the joint use of lower and upper bounds is the main
factor for efficient search, our method does not require any lower
bound. The entire planning is based on the computation of an up-
per bound that is tighter than existing upper bounds for the majority
of the benchmarks. Our approach is justified by a novel synthesis
of augmented [7, 16] and deterministic POMDPs [10, 2], which is
introduced in this paper.

2. BACKGROUND
We first introduce key concepts and define the notation used

throughout the paper.

2.1 Partially Observable Markov Decision
Processes

A partially observable Markov decision process (POMDP) is for-
mally defined by a tuple 〈S,A,O, T, Z,R, b0, γ〉 which includes a
set S of states s, a set A of actions a, a set O of observations o, a
transition function T (s′, s, a) = Pr(s′|s, a), an observation func-
tion Z(o, a, s′) = Pr(o|s′, a), a reward function R(s, a) ∈ <, an
initial belief b0(s) = Pr(s), and a discount factor 0 ≤ γ ≤ 1. We
allow the planning horizon to be either finite or infinite. The goal
is to find an optimal policy that maximizes the (discounted) sum
of rewards. A policy π : Ht → At can be defined as a mapping
from histories Ht ≡ A0 × O1 × ... × At−1 × Ot of past actions
and observations to actions At, however this definition is problem-
atic for an infinite horizon since histories may be arbitrarily long.
The most common approach used to circumvent this issue is to re-
place histories by finite length sufficient statistics such as beliefs.
A belief b is a conditional probability distribution over states, i.e.,

b(s) = Pr(s|a0, o1, . . . , at−1, ot)∀s ∈ S. Since states correspond
to corners of the belief simplex, we will sometimes call them cor-
ner beliefs, and all the other beliefs will be called interior beliefs,
while the word belief alone will refer to both corner and interior
beliefs. Therefore, a policy becomes a mapping from beliefs to
actions: π : bt → At.

The transition and observation functions T , Z are often com-
bined into TZ(s′, s, o, a) = T (s′, s, a)Z(o, s′, a) = Pr(s′, o|s, a).
We will often denote this combined function by Tao(s′, s) to em-
phasize the fact that it defines the state transition induced by an
action-observation pair. We will also represent Ta,o by a square
matrix of size |S|2 for each a, o pair.

When beliefs are used as sufficient statistics, a belief update is
required in order to compute a new belief ba,o after executing action
a in the current belief and observing o. The Bayesian belief update
can be computed based on Ta,o as follows:

ba,o(s′)←
∑
s

{
b(s)Ta,o(s, s′)

}
/
∑
s,s′′

{
b(s)Ta,o(s, s′′)

}
. (1)

Algorithms that use belief mappings often exploit the fact that
the value V ∗ of an optimal policy satisfies Bellman’s equation:

V ∗(b) = max
a∈A

{
R(b, a) + γ

∑
o

P (o|b, a)V ∗(ba,o)
}

(2)

where

R(b, a) =
∑
s∈S

b(s)R(s, a) and Pr(o|b, a) =
∑

s,s′∈S
b(s)Ta,o(s, s′).

However, the continuous nature of the belief space prevents us
from performing value iteration at all beliefs and therefore the im-
portant class of point-based techniques performs point-based Bell-
man backups only at a finite set of beliefs [13]. An approximation
of the value function at all beliefs is obtained by computing the
gradient in addition to the value at each belief. This allows the for-
mation of a set of linear value functions that are often represented
by α-vectors. The policy π induced by the set of alpha vectors is
obtained by computing

π(b) = abest where best = arg max
i

αi · b (3)

An important fact is that such a policy is a lower bound policy and
better policies may exist. Upper bounds can confirm whether a
policy is near optimal or not, and provides information about areas
of the belief space that should be explored further because they may
yield higher rewards [18, 9, 16].

2.2 Upper Bounds
The easiest way to compute an upper bound on a POMDP’s op-

timal policy is to use an MDP value function or a value function of
a relaxation of the original POMDP that assumes that more infor-
mation is available, i.e., that the process under consideration is less
partially observable. With more information, better decision can
be made and values computed for such relaxations are, therefore,
upper bounds. The simplest relaxation is the QMDP update rule:

Q(s, a) = Ra(s)+γ
∑
o

∑
s′

Ta,o(s, s′) max
a′

Q(s′, a′) ∀s, a (4)

which computes Q-values of the underlying MDP, assuming that
states are completely observable. We can select actions based on
such Q-values and determine an upper bound V̄ as follows:

V̄ (b) = max
a

∑
s

b(s)Q(s, a). (5)

A tighter upper bound called the fast informed bound (FIB) [7] can
be obtained with the following recursion:

Q(s, a) = R(s, a) + γ
∑
o

max
a′

∑
s′
Ta,o(s, s′)Q(s′, a′)∀s, a (6)

Unlike QMDP, which assumes that the current state is observable,
FIB only assumes that the previous state is observable. It uses less
information than QMDP but more information than the original
POMDP which is why it yields a tighter upper bound on the op-
timal value of the POMDP. Overall, QMDP and FIB maintain ex-
plicit upper bounds on the values of the states (corner beliefs) and
values of interior beliefs can be approximated with Eq. 5.

Further improvement to the quality of upper bounds can be gained
by explicitly storing better values at some interior beliefs (better
values can be obtained by lookahead). We will call anchor beliefs
the corner and interior beliefs for which we store explicit values
since they "anchor" the upper bound and allow us to bound the
value at other beliefs. Let G = {〈b1, v(b1)〉, . . . , 〈bn, v(bn)〉} be
the set of all anchor beliefs, bi, and their upper bound, vi. We
can compute an upper bound V̄ G(b) at any belief b outside of the
anchor set by linear programming [7]. The linear program inter-
polates V̄ G(b) by finding a convex combination c of the anchor
beliefs (i.e., distribution c(bi) = Pr(bi) over the anchor beliefs)
such that

∑
i c(bi)bi(s) = b(s)∀s and

∑
i c(bi)v(bi) = V̄ G(b)

is minimal. Alternatively, one can approximate the linear program
with the so-called sawtooth approximation [7] by computing con-
vex combination of the corner belief and a single interior anchor
belief. An upper bound policy πG can be derived from V̄ G by per-
forming a one step lookahead and evaluating V̄ G at |A||O| reach-
able beliefs:

πG(b) = arg max
a

{∑
s

b(s)R(s, a)+γ
∑
o∈O

P (o|b, a)V̄ G(ba,o)
}

(7)
Past research [7] has shown that the quality of upper bounds can

be improved when value iteration is applied to the entire set of
anchor beliefs in G. Such an iterative process would require re-
computing—in every iteration—convex combinations of all beliefs
reachable in one step from any anchor belief in G. One idea men-
tioned in [7] is that those convex combinations can be cached and
applied in several or even all iterations. Caching of convex combi-
nations leads to the formulation of augmented POMDPs.

2.3 Augmented POMDPs
When value iteration is applied to the set G and caching is used,

this process can be viewed as computing the QMDP or FIB bounds
for an equivalent POMDP called the augmented POMDP. The states
of the augmented POMDP are the anchor beliefs, which consist of
the original states (corner beliefs) augmented with some interior be-
liefs. An explicit formulation 〈S′, A′, O′, TZ′, R′,Pr0(b), γ′〉 of
augmented POMDPs was considered in [16] where S′ = {b|(b, v) ∈
G}, A′ = A, O′ = O, γ′ = γ and R′(b, a) =

∑
s b(s)R(s, a).

The initial distribution Pr0(b) = c(b) corresponds to the interpo-
lation of b0 obtained by the convex combination c of anchor beliefs
that corresponds to b0. Similarly, TZ′(b, b′, o, a) = c(b′)Pr(o|b, a)
corresponds to the interpolation of ba,o obtained by a convex com-
bination c of the anchor beliefs times the probability of the obser-
vation o. While the augmented POMDP has more states (|G| of
them), the states become more observable, which allows QMDP
and FIB to produce tighter bounds. In the limit, when all reachable
beliefs are treated as anchor beliefs and therefore added to the state
space of the augmented POMDP, the augmented POMDP becomes
a fully observable belief MDP for which QMDP and FIB compute
the exact optimal value function.

Q(a s)0 0

Q(a s)01

Q(a b)1
Q(a b)11

Q(a b)0 1

a) b)

Figure 1: The sawtooth upper bound

3. DIRECT POLICY APPROXIMATION
In this section we explain how upper bound policies can be di-

rectly executed without any lookahead simulation, which reduces
the online time to select actions. This is particularly important in
real-time applications where actions must be selected in milisec-
onds and resource constrained applications where a reduction in
online computation increases battery life [3]. When upper bounds
are considered, and the Q-function is available, the bound on the
value of a non-anchor belief can be computed using Eq. 5 where
the maximization over actions tells us which action is best for the
belief b. As a result, the policy can be executed without lookahead.
In existing algorithms such as HSVI2, SARSOP and GapMin, the
upper bound is not based on a Q-function, but instead it corresponds
to V̄ G for a set of anchor beliefs. In order to select actions based
on this sort of upper bound, Eq. 7 is used to perform a one-step
lookahead simulation.

In what follows, we show how to obtain Q-values usingG, which
will allow us to execute upper bound policies without lookahead.
We illustrate the approach with the sawtooth approximation of the
linear program normally used to interpolate upper bound values at
non-anchor beliefs. Note that the approach applies to the linear
program too.

The classic sawtooth upper bound interpolation is illustrated in
Fig. 1a and shows how the value of an arbitrary belief b /∈ G can be
interpolated by using values of beliefs inG [7, 16]. In our example,
the upper bound V̄ G(b) = V 1(b) where V 1(b) is the value of b on
the hyperplane defined by V (s0) and V (b1). V 1(b) is preferred to
V 2(b) because it yields a tighter, i.e., lower, upper bound. Since the
upper bound values at anchor beliefs are not with respect to actions
like in Q-functions, there is no information about the quality of
actions in b.

Our example in Fig. 1b shows an extended version of Fig. 1a
where Q-values instead of V-values are shown for points s0 and
b1. This is possible, because Q-values for every anchor belief point
are computed using QMDP or FIB. This suggests that we can po-
tentially tighten upper bounds by using Q-values of beliefs in G,
but more importantly, to produce upper bounds that depend on
a. Specifically, when V-values are used, the value of b is upper
bounded by V 1(b) which is higher than Q(a1, b). Furthermore,
Q(a1, b) is based on one particular action, hence ranking of actions
in b is provided. The improvement is facilitated by the fact that
bounds based on Q-values require the same actions for all states
that define the bounding hyperplane whereas standard sawtooth al-
ways selects V-values which may be obtained by different actions
for different states. Overall, this is a graphical justification of the
idea for the execution of upper bound policies without lookahead
at the cost of |A| interpolations (one for each action).

The number of interpolations can be reduced to one by observ-
ing that it is sufficient to compute a single convex combination c of
the current belief, b, with respect to the anchor beliefs. This con-

vex combination corresponds to the embedding of the current belief
into the belief space of the augmented POMDP. Once our current
belief is with respect to the augmented state space, we can perform
all necessary computations in the augmented space and the upper
bound policy can be computed as follows:

c← convex combination of b with respect to G (8)

πG(c) = arg maxa

∑
{bg|(bg,v)∈G} c(bg)Q(bg, a). (9)

In this section, we showed how the upper bound policy can be ex-
ecuted without lookahead where only one interpolation of the cur-
rent belief is computed. In the next section, we introduce another
approach, which in addition to being elegant and well-motivated
algebraically, does not require any interpolation.

4. POLICY EXECUTION IN AUGMENTED
SPACE

In the previous section, we developed an approach that embeds
the current belief into the augmented space. Once we are in the
augmented space, the selection of an action can be done cheaply
by avoiding any lookahead, but at every time step we must com-
pute a convex combination by interpolation to embed the current
belief. This embedding is expensive because the interpolation must
be done by linear programming (or the sawtooth approximation)
in order to obtain a convex combination of anchor beliefs that is
equivalent to the current belief. In this section, we go one step fur-
ther, and we observe that the augmented POMDP can be simulated
directly and the entire execution of a policy can be transferred to
the augmented space.

Before we explain the validity of the above approach, we show
the algebraic relationship between the original and augmented be-
lief spaces. Beliefs, c, in the augmented space are essentially con-
vex combinations of anchor beliefs that constitute corner beliefs
in the augmented space. Hence, having any vector c, the corre-
sponding belief, b, in the original space can be computed using the
matrix D =

[
b1, . . . , bn

]
, of size |S||G|, in which anchor beliefs,

bi, are arranged column-wise. The following equation b = Dc
would project the augmented belief, c, onto the original space. The
inverse of this operation consists of embedding an original belief in
the augmented space by linear programming as described in [7].

THEOREM 1. Given the same sequence of observations, the sim-
ulation of original and augmented POMDPs under the same upper
bound policy, and the same initial beliefs generates the same se-
quence of convex combinations (beliefs in the augmented space)
whether inference is performed in the original space and each be-
lief is embeded in the augmented space, or we directly perform
inference in the augmented space.

PROOF. This follows from the fact that the original and aug-
mented POMDPs are equivalent and therefore inference in either
space willl yield the same results.

When a policy is executed in the augmented space, the aug-
mented belief c is updated at every time step and an optimal action
can be computed directly by maximizing over |A| dot products,
c · Qa, because Q-values are available for every action and every
anchor belief.

The complexity of executing various types of POMDP policies
is in Tab. 1. The augmented space has a more expensive belief up-
date, however the next two sections will show that matrices, Ta,o,
become sparser when the set G grows, which mitigates the depen-
dence on |G|. The cost of querying a lower bound policy depends
on the number of α vectors which is often large (|α| � |A|). The

policy belief update action selection
lower bound O(|S|2) O(|α||S|)
original UB O(|S|2) O(|A||O|(|S|2 + |G|3.5L))
orig UB w/ embedding O(|S|2) O(|A||G|+ |G|3.5L)
augmented UB O(|S||G|) O(|A||G|)

Table 1: Complexity of POMDP policy execution. Original UB
and augmented UB refer to the execution of the upper bound
policy in the original and augmented space respectively. Orig
UB w/ embedding refers to the execution of an upper bound
policy in the original space where we embed the current belief
at each time step.

cost of selecting an action while working in the original space or
embedding the current belief in the augmented space is dominated
by the cost of solving a linear program O(|G|3.5L) where L is the
number of bits to describe the LP. The above complexity results
show that the execution time of a particular policy is problem de-
pendent. Nonetheless, taking into account sparsity of augmented
POMDPs, we expect significant gains for the approaches that we
introduce in this paper. Furthermore, we will show that executing
an upper bound policy in the augmented space is not more time
consuming than the execution of lower bound policies.

It is interesting to note that the Q-vectors in the augmented space
bare some similarities with α-vectors in lower bound policies [14]
and finite state controllers [5]. In both cases, they allow an action
to be selected by computing some dot products, however they dif-
fer in the sense that Q-vectors do not guarantee any value for the
resulting policy while alpha-vectors constitute a lower bound that
guarantees a minimum value. In the next section, we explain how
to grow the set of anchor beliefs in order to tighten the resulting up-
per bound until it matches the optimal value function. We will first
introduce a generalized notion of deterministic POMDPs since the
addition of anchor beliefs tends to make the augmented POMDP
more deterministic.

5. DETERMINISTIC POMDPS
Deterministic POMDPs were first considered in Littman’s the-

sis [10] who defined deterministic POMDPs as those that have de-
terministic transitions and deterministic observations, i.e., all en-
tries in T and Z matrices are either zero or one. Littman showed
that deterministic POMDPs can be mapped to MDPs with an ex-
ponential number of states. Bonet indicated recently in [2] that the
LAO* [6] algorithm can be used to reduce the reachable state space
when the initial belief state is provided. An important property of
deterministic POMDPs that was exploited in these approaches is
that the MDP solution of the original POMDP provides an opti-
mal POMDP solution whenever the initial belief state is a corner
belief in the POMDP. When this is not the case, then additional
planning is required in order to optimize the actions for interior be-
liefs that are reachable from the initial belief. Quasi-deterministic
POMDPs were also considered in [1] where a POMDP is quasi-
deterministic when its actions are deterministic, but its observations
can be stochastic. In this paper we introduce a more general notion
of deterministic POMDPs called AO-deterministic POMDPs.

DEFINITION 1. A POMDP is AO-deterministic when all Ta,o

matrices have at most one non-zero entry in every row.

Deterministic POMDPs are necessarily AO-deterministic because
the product of deterministic transition and observation distributions
yields deterministic Ta,o matrices with at most one non-zero entry
per row. Similarly, quasi-deterministic POMDPs are necessarily

AO-deterministic since a deterministic transition distribution guar-
antees that there will be at most one non-zero entry per row in each
Ta,o. In contrast, there exist some AO-deterministic POMDPs that
are not deterministic or quasi-deterministic. Consider a POMDP
with a stochastic transition distribution. As a result, it is not de-
terministic nor quasi-deterministic. If the observation distribution
assigns a non-zero probability to a single distinct observation for
each state, then each Ta,o will have at most one non-zero entry
per row. It is also possible to construct transition and observation
distributions that are both stochastic, but the resulting Ta,o matri-
ces have a single non-zero entry per row. Hence, the class of AO-
deterministic POMDPs is a superset of the deterministic and quasi-
deterministic POMDPs. The baseball problem1 is an example of
a common POMDP benchmark that is AO-deterministic, but not
deterministic nor quasi-deterministic.

Similar to previous definitions, AO-deterministic POMDPs can
be shown to have the property that policies that are optimal for their
underlying MDPs are also optimal at the corner beliefs. This means
that policies derived from QMDP and FIB upper bounds are opti-
mal at the corner beliefs and in fact all reachable beliefs when the
initial belief is a corner belief. This will become important in the
next section when we show how to gradually augment a POMDP
with anchor beliefs until it becomes AO-deterministic.

THEOREM 2. Policies that are optimal for the underlying MDP
of an AO-deterministic POMDP are also optimal at the corner be-
liefs of this POMDP.

PROOF. When each row in every Ta,o matrix has at most one
non-zero entry, corner beliefs always transition in a deterministic
way to a corner belief, which means that once the underlying state
is known, we can always determine the resulting state after each
a, o-pair. This is equivalent to working with a fully observable pro-
cess. Hence a policy that is optimal for the underlying MDP has
access to the same information (identity of the state) even when
the original POMDP is considered and therefore it is optimal at the
corner beliefs.

COROLLARY 1. Policies derived from QMDP or FIB upper
bounds are optimal at the corner beliefs when the POMDP is AO-
deterministic.

PROOF. QMDP policies are optimal for the underlying MDP
and therefore are optimal at the corner beliefs by Thm. 2. We can
also show that the FIB and QMDP upper bounds are identical for
AO-deterministic POMDPs, which means that FIB policies are also
optimal at the corner beliefs. FIB applies the update rule shown in
Eq. 6. If for all s only one s′ is possible after any a, o-pair, the FIB
equation can be simplified to

Q(s, a) = R(s, a) + γ
∑

o maxa′ Ta,o(s, s′(s))Q(s′, a′) (10)

which further reduces to

Q(s, a) = R(s, a) + γ
∑

o Ta,o(s, s′(s))V (s′) (11)

because there is only one s′ inside maxa′ . Hence, V (s′) can be
used to remove the dependence on a and maxa′ . The resulting
update rule is a QMDP update rule as in Eq. 4.

6. A SYNTHESIS OF DETERMINISTIC
AND AUGMENTED POMDPS

Our formulation of AO-deterministic POMDPs that were intro-
duced in Sec. 5 has important implications for augmented POMDPs
1http://pomdp.org/examples/index.shtml

and how one may design an algorithm to gradually augment the set
of anchor beliefs and obtain tighter upper bounds. In particular, the
current perception is that only the beliefs reachable from the initial
POMDP belief are important to consider as anchor beliefs [8]. We
show that beliefs reachable from corner beliefs can also be good
anchor belief candidates.

The process of improving an upper bound can be seen as a loop
over three steps: (1) selection of new anchor beliefs, (2) recon-
struction of the augmented POMDP with new anchor beliefs, (3)
computation of FIB on the augmented POMDP. This is exactly how
GapMin is implemented [16]; though, it selects beliefs according to
a forward search from the initial belief only. An interesting ques-
tion is when should we stop adding new anchor beliefs and is it
possible to make this decision without consulting any lower bound?
The answer is in our definition of AO-deterministic POMDPs. An
important feature of augmented POMDPs is that whenever—for an
anchor belief b—the reachable belief ba,o is added to G, the transi-
tion from b to ba,o becomes deterministic in the corresponding Ta,o

matrix, i.e., in Ta,o, the row that corresponds to b, will have only
one non-zero entry equal to Pr(o|b, a) at ba,o. Therefore, the pro-
cess of refining upper bounds through the addition of new anchor
beliefs, can be seen as a gradual determinisation of the correspond-
ing augmented POMDP. The determinisation is important, because
after adding ba,o to the augmented POMDP, the upper bound at b
becomes closer to V ∗. An exact Bellman backup is used to prop-
agate the upper bound at ba,o back to b. In general, anchor beliefs
do not necessarily need to be those that are reachable from the ini-
tial belief (as it is done in SARSOP, HSVI2, or GapMin). Beliefs
reachable from the corner beliefs are also good candidates since
they help to determinise augmented POMDPs.

Overall, considering the properties of AO-deterministic POMDPs,
tightening an upper bound can be seen as a dual process. The first
process tries to make the augmented POMDP deterministic for cor-
ner beliefs and this way the QMDP solution of such a POMDP
would be optimal for any initial belief that belongs to G, whereas
for any belief not in G the second process with forward search
would be required (as introduced in [10, 2]). When V̄ G(b0) is con-
sidered, sometimes better improvements can be achieved through
the addition of anchor beliefs found using forward search from the
initial belief, whereas in other cases determinisation of the aug-
mented POMDP by a search from the corner beliefs may lead to
tighter bounds. The process that reduces V̄ G(b0) the fastest is do-
main dependent. In particular, in domains that are AO-deterministic,
only forward search is important because there is no need to add
beliefs reachable from the corners since that part of the POMDP
is already deterministic. Based on this discussion, we propose an
algorithm (shown in Alg. 1) to refine upper bounds. When the
POMDP is deterministic and b0 ∈ G then we know that the up-
per bound solution is optimal. In contrast, when bo 6∈ G, then the
only thing that makes sense is a forward search from b0. When the
POMDP is not AO-deterministic, we sample the set H of N cor-
ner belief states from G where we sample only among corners that
have at least one ba,o 6∈ G. Here, the sampling is based on the occu-
pancy frequency (OCF) [15]. Intuitively, the more often the corner
belief is visited (when the policy starts in b0), the more critical it
will be to improve its upper bound estimate. Hence, corners whose
occupancy frequency with respect to b0 is higher are ranked higher
and are more likely to be sampled. After that, for every belief inH ,
we sample one trajectory and add to G the first belief that was not
in G. When the execution of the above algorithm terminates, we
update the augmented POMDP with new anchor beliefs. Next, FIB
is computed on a new, larger augmented POMDP and the above
procedure is executed again.

Algorithm 1: Anchor Beliefs: Our Method (N = 50 in all
experiments)

Data: S, G, V̄ G, OCF , N , Q- in augmented space
Gnew ← ∅1
if POMDP is AO-deterministic then2

for i=1 to N do3
if b0 ∈ G then4

return Gnew; /* nothing to improve */5
else6

b← FORWARDSEARCH or LAO*7
add b into Gnew8

else9
H ← SAMPLECORNERS(G, OCF , N) ; /* sample among10
corners with non-deterministic transitions
only */
for all corner beliefs b ∈ H do11

repeat12
c← embed b into augmented space13
a∗ ← action for c using augmented Q-values14
sample observation o according to P (o|b, a∗)15
b← ba,o16

until b 6∈ G ∪Gnew17
add b into Gnew18

return Gnew19

Interestingly, almost 15 years ago Hauskrecht [7] investigated
a very similar direction, however his motivation was different; at
least, it did not make connections with deterministic POMDPs. In
the algorithm for adaptive selection of anchor beliefs, Hauskrecht
sampled beliefs reachable from corners and added reachable beliefs
to G. This process also leads to determinisation of the augmented
POMDP according to our definition. His motivation for this pro-
cedure (shown in detail in Alg. 2) was that when the successors of
current anchor beliefs are added to G, the values of corner beliefs
may be reduced and this may subsequently reduce the values of
beliefs that interpolate the corner beliefs. In every iteration, Alg. 2

Algorithm 2: Anchor Beliefs: Hauskrecht’s method
Data: S, G, V̄ G

Gnew ← ∅1
for all corner beliefs b ∈ S do2

repeat3
a∗ ← LOOK-AHEAD(b,V̄ G)4
sample observation o according to P (o|b, a)5
b← ba,o6

until b 6∈ G ∪Gnew7
add b into Gnew8

return Gnew9

samples one trajectory starting form every original corner b ∈ S
(S is the set of corners of the original POMDP). Note, that this al-
gorithm will not find any useful anchor beliefs when the original
POMDP is deterministic.

Properties of augmented POMDPs and the fact that they con-
verge to deterministic augmented POMDPs, when more beliefs are
added, could be used as another way of illustrating that planning in
infinite horizon POMDPs is undecidable [11] since infinitely many
anchor beliefs may be required.

7. EXPERIMENTS
Even though POMDP planning with infinite horizon is undecid-

able [11], Poupart et. al [16] reduced the gap between lower and

upper bounds to one unit at the third significant digit for many
standard POMDP benchmarks2. We report experiments for the
POMDPs that were challenging for all algorithms tested in [16],
i.e., problems where existing algorithms cannot close the gap to
one unit at the third significant digit. Note that even POMDPs with
a small number of states may be difficult to solve as suggested by
the size of the remaining gap.

7.1 Policy Execution Times
When bounding algorithms (i.e., SARSOP, HSVI2, GapMin) per-

form planning, they need to execute lower and/or upper bound poli-
cies. Hence, fast execution of upper bound policies can lead to
faster planning. Before we evaluate the quality of upper bounds,
we compare the execution time of several upper bound polices; we
also include a lower bound policy from SARSOP for reference.

The experiment compares the execution time of 1000 episodes
of some policies optimized for 1000 seconds. This includes SAR-
SOP’s lower bound policy and three upper bound policies obtained
by running Alg. 1 with the sawtooth approximation: a standard
lookahead policy in the original space (UB-Orig-lookahead), em-
bedding of beliefs in the augmented space (UB-C), and upper bound
policy in the augmented space (UB-Augmented). Fig. 2 shows the
running times as multiples (in logarithmic scale) of the time taken
by a cheap default QMDP policy. The results confirm that the ex-
ecution of upper bound policies in the original space with look-
ahead is time consuming. The time to execute lower bound poli-
cies (SARSOP) is also considerably large. While the execution of
lower bound policies involve only the computation of dot products
between beliefs and α-vectors, the process becomes time consum-
ing when the number of α-vectors is large. UB-C turned out to
be the fastest in most cases; though, execution in the augmented
space was faster in two cases. Overall the time to execute upper
bound polices can be reduced significantly with the techniques de-
scribed in this paper. Even though the policy in the augmented
space was not faster than the UB-C policy in general, it was still
faster than other policies in many cases. This is a useful insight be-
cause augmented POMDPs provide an elegant way of using anchor
beliefs, which are important whenever upper bounds are required
for branch-and-bound [12, 4] or bounding planners [16]. Since
UB-C was the fastest in this experiment, we used it in Alg. 1 as
part of the most competitive solution in the next experiment.

The simulated quality (averaged over 1000 trials) of the poli-
cies compared in Fig. 2 is shown in Fig. 3. QMDP was surpris-
ingly good on more than half of the benchmarks. Even if bounding
POMDP planners have difficulties to tighten the gap, upper bound
policies—QMDP in particular—can be competitive in a practice.
In some situations, the upper bound policy in the augmented space
(UB-Augmented) showed superior performance, which is nice given
that it is the second fastest policy. Policies derived from upper
bounds can be poor since they do not directly optimize a lower
bound. This happened on a few domains in Fig. 3, e.g., on learning.c2-
c4. In such situations, one cannot rely on upper bound policies.
Nevertheless, better upper bounds are advantageous for both branch-
and-bound and bounding point-based planners.

7.2 Upper Bounds
Upper bounds are useful to evaluate how far from optimal a pol-

icy may be and to guide the search for good controllers in branch
and bound [12, 4]. Hence, there is a need to tighten upper bounds.
We compare the upper bounds from Sec. 6 to the state-of-the-art.

We used the source code of SARSOP, HSVI2, and GapMin avail-
able at their authors’ websites and all algorithms were executed
2http://www.cassandra.org/pomdp/examples/index.shtml

Table 2: The quality of upper bounds (UB) after 1000 seconds
of planning (AO-deterministic POMDPs).

problem algorithm gap LB UB |Γ| |V̄ | time UB |V̄ | time
baseball hsvi2 1e-3 0.6412 0.6412 991 n.a. 999
|S| = 7681 sarsop 7e-4 0.6412 0.6419 1453 1694 400 0.6412 3878 2346
|A|=6 |O|=9 GapMin 5.01 0.6346 5.6500 1 1 281 0.6434 52 15219
γ = 0.999 Aug-OCF 0.6413 3051 970
rockSample-7_8 hsvi2 3.56 20.91 24.46 4752 n.a. 998
|S| = 12545 sarsop 4.12 20.91 25.02 3119 2473 999 24.46 8520 9806
|A|=13 |O|=2 GapMin 25.07 7.35 32.42 1 1 6.18 26.84 30 13855
γ = 0.950 Aug-OCF 24.81 3351 978
underwaterNav hsvi2 23.4 729.9 753.3 3545 n.a. 1000
|S| = 2653 sarsop 23.4 731.0 754.4 7918 2820 999 754.0 7947 10014
|A|=6 |O|=103 GapMin 80.2 675.06 755.3 1 1 742 754.8 115 10113
γ = 0.950 Aug-OCF 754.6 1830 471.0

on the same machine. Our method is named Aug-OCF and cor-
responds to Alg. 1 whereas Aug-H represents Alg. 2. Out of 24
problems (selection criterion explained at the beginning of Sec. 7),
21 of them were not AO-deterministic according to Def. 1. Hence,
for those problems, our algorithm selects anchor beliefs based on
the occupancy frequency and ranks corners as shown in Alg. 1. Ta-
ble 3 shows the results. The column UB shows the upper bound
computed by each method. Our algorithm Aug-OCF computed the
best upper bounds on the majority of benchmarks. Interestingly, an
old idea suggested by Hauskrecht [7] and implemented in Aug-H
turned out to be very competitive.

The three remaining POMDPs were AO-deterministic. Two of
them, underwaterNav and rockSample_7-8 have both deterministic
actions and deterministic observations whereas baseball has only
deterministic observations. Aug-H did not compute any interior
anchor belief for those AO-deterministic domains because it starts
its sampling process from corner beliefs and in the case of AO-
deterministic POMDPs interior beliefs are never reached. For this
reason, Aug-H does not appear in the results in Table 2. Aug-OCF
performed only forward search from b0 according to Alg. 1 (the al-
gorithm determines beforehand that expanding initial corners will
not find any additional anchor beliefs). Our forward search is a vari-
ation of LAO*. The results show that HSVI2 was the best within
1000 seconds time limit. This fact is not surprising because LAO*
requires an efficient implementation that does not always adhere to
its original motivation; the original paper [6] introduces one such
variation called efficient LAO*. Since current research on bound-
ing algorithms for POMDPs has focused on forward search from
b0, HSVI2, SARSOP and GapMin can be seen as fast, efficient im-
plementations of LAO*-type of algorithms, and there is no surprise
that HSVI2 was the best in Table 2. This work shows how to tighten
the upper bounds for non AO-deterministic POMDPs as reported in
Table 3. To further highlight the quality of our results, Table 3 con-
tains additional upper bounds computed by HSVI2, SARSOP, and
GapMin, when these algorithms are given an order of magnitude
more time. It can be seen that in most cases after 104 seconds the
upper bound found by these methods is still not as good as what
our proposed algorithms find in 103 seconds.

8. CONCLUSION AND FUTURE WORK
Tightening upper bounds on the optimal value function remains

an important challenge [8, 16]. In this paper, we introduced the
notion of AO-deterministic POMDPs, which generalizes previous
notions of deterministic POMDPs, and combined it with the notion
of augmented POMDPs that are used in bounding planners. We
showed that the process of improving upper bounds makes the aug-
mented POMDP deterministic, i.e., by improving the upper bound,
one makes the augmented POMDP more deterministic. This expla-
nation allowed us to design a straightforward solution that yields

Table 3: The quality of upper bounds (UB) after 1000 seconds of planning (non AO-deterministic POMDPs).

problem algorithm gap LB UB |Γ| |V̄ | time UB |V̄ | time
aloha.10 hsvi2 9.0 535.4 544.4 4729 n.a. 997 544.1 n.a. 10001.4
|S| = 30 sarsop 9.5 535.2 544.7 48 2151 1000 544.3 8035 10000.5
|A| = 9, |O| = 3 GapMin 10.7 533.5 544.2 81 223 972 544.0 1140 10741.3
γ = 0.999 Aug-H 539.6± 0.01 1999.1± 21.7 981.9± 3.6

Aug-OCF 539.0± 0.01 3345± 22.8 984.5± 2.8
aloha.30 hsvi2 38 1212 1249 2062 n.a. 1000 1247.5 n.a. 10011.6
|S| = 90 sarsop 74 1177 1252 86 1245 999 1249.1 5859 10000.1
|A| = 29, |O| = 3 GapMin 112 1135 1248 34 212 883 1244.3 1258 11941.7
γ = 0.999 Aug-H 1244.0± 0.03 1603.1± 11.4 907.9± 4.5

Aug-OCF 1242.9± 0.07 1780± 36.8 973.8± 6.8
cit hsvi2 0.0951 0.7430 0.8381 3739 n.a. 975 0.8376 n.a. 10024.4
|S| = 284 sarsop 0.0491 0.7909 0.8399 3108 1368 967 0.8395 4484 10337.5
|A| = 4, |O| = 28 GapMin 0.8379 0.0 0.8379 1 75 882 0.8373 239 10647.5
γ = 0.990 Aug-H 0.8368± 0.0 3450.0± 43.6 900.2± 22.2

Aug-OCF 0.8358± 0.0 1910.0± 25.3 957.2± 5.3
fourth hsvi2 0.3758 0.2416 0.6174 3345 n.a. 994 0.6170 n.a. 10003
|S| = 1052 sarsop 0.3300 0.2875 0.6175 3595 888 975 0.6175 2756 10299.1
|A| = 4, |O| = 28 GapMin 0.6175 0.0 0.6175 1 19 594 0.6169 97 11659.1
γ = 0.990 Aug-H 0.615± 0.0 4176.0± 0.0 643.6± 14.2

Aug-OCF 0.613± 0.0 1735.0± 26.5 973.9± 5.5
hallway2 hsvi2 0.5250 0.3612 0.8862 2393 n.a. 997 0.8696 n.a. 10003.1
|S| = 92 sarsop 0.5247 0.3737 0.8984 262 1519 992 0.8877 4029 10002.5
|A| = 5, |O| = 17 GapMin 0.4495 0.3497 0.7992 122 218 835.5
γ = 0.950 Aug-H 0.897± 0.0 1349.6± 11.5 896.2± 17.6

Aug-OCF 0.805± 0.0 861.0± 6.3 944.1± 12.1
hallway hsvi2 0.250 0.945 1.195 1367 n.a. 996 1.185 n.a. 10026.6
|S| = 60 sarsop 0.210 0.995 1.206 456 1713 998 1.196 5117 10002.6
|A| = 5, |O| = 21 GapMin 0.132 0.989 1.122 94 176 974 1.091 344 2035.3
γ = 0.950 Aug-H 1.186± 0.0 1189.7± 13.0 947.1± 13.3

Aug-OCF 1.095± 0.0 951.0± 7.0 946.1± 11.5
iff hsvi2 0.924 8.931 9.855 7134 n.a. 999 9.828 n.a. 1142.4
|S| = 104 sarsop 0.775 9.095 9.871 6811 1991 997 9.827 2684 1566.5
|A| = 4, |O| = 22 GapMin 0.683 9.249 9.932 402 595 955 9.801 1501 3261.5
γ = 0.999 Aug-H 9.945± 0.0 3407.4± 18.8 983.8± 2.8

Aug-OCF 9.828± 0.01 2961± 19.7 973.2± 5.6
learning.c2 hsvi2 0.090 1.549 1.639 4082 n.a. 996 1.616 n.a. 10087.7
|S| = 12 sarsop 0.093 1.556 1.648 4903 2054 996 1.624 7044 10017
|A| = 8, |O| = 3 GapMin 0.054 1.552 1.607 245 276 925
γ = 1.000 Aug-H 1.996± 0.0 1733.7± 17.8 989.7± 2.8

Aug-OCF 1.777± 0.0 4471± 85.7 987.1± 2.1
learning.c3 hsvi2 0.250 2.364 2.614 4229 n.a. 988
|S| = 24 sarsop 0.222 2.446 2.668 981 4094 997 2.647 8300 10008.8
|A| = 12, |O| = 3 GapMin 0.217 2.422 2.640 370 243 933 2.607 500 1809.9
γ = 1.000 Aug-H 2.992± 0.0 2293.4± 19.2 992.1± 2.5

Aug-OCF 2.762± 0.0 4021± 20.2 984.8± 2.7
learning.c4 hsvi2 0.567 3.055 3.622 4569 n.a. 999
|S| = 48 sarsop 0.321 3.358 3.679 923 3717 982 3.668 7811 10101.7
|A| = 16, |O| = 3 GapMin 0.418 3.291 3.710 280 339 974 3.615 399 2285.3
γ = 1.000 Aug-H 3.987± 0.0 3086.2± 14.5 977.3± 5.3

Aug-OCF 3.749± 0.0 3731± 36.1 986± 3.9
machine hsvi2 3.49 63.18 66.66 662 n.a. 982 66.34 n.a. 10003.5
|S| = 256 sarsop 3.57 63.18 66.75 150 2742 998 66.4 9846 10004.6
|A| = 4, |O| = 16 GapMin 3.48 62.38 65.87 58 208 898 64.64 1174 12147.0
γ = 0.990 Aug-H 64.68± 0.0 972.0± 0.0 809.0± 4.1

Aug-OCF 63.84± 0.01 965.0± 12.3 918.7± 17.1
milos-aaai97 hsvi2 18.31 49.15 67.46 3965 n.a. 998 65.25 n.a. 10003
|S| = 20 sarsop 19.61 49.74 69.35 3699 4465 997 67.5 13560 10004.3
|A| = 6, |O| = 8 GapMin 15.56 49.95 65.52 488 927 888 62.79 3741 11710.0
γ = 0.900 Aug-H 53.7± 0.0 1634.0± 10.9 969.7± 2.8

Aug-OCF 52.9± 0.05 2941± 35.2 980.2± 5.3
mit hsvi2 0.0939 0.7910 0.8849 5539 n.a. 1000 0.8848 n.a. 10013.5
|S| = 204 sarsop 0.0665 0.8189 0.8854 2820 1861 999 0.8853 6015 10090.3
|A| = 4, |O| = 28 GapMin 0.1677 0.7163 0.8840 53 74 927 0.8825 493 11326.9
γ = 0.990 Aug-H 0.8827± 0.0 3292.8± 24.7 957.6± 17.1

Aug-OCF 0.8818± 0.0 1460± 31.4 950.4± 8.8
pentagon hsvi2 0.1920 0.6341 0.8261 4361 n.a. 997 0.8258 n.a. 10020.1
|S| = 212 sarsop 0.1311 0.6962 0.8273 3196 1228 971 0.8273 3960 10089.6
|A| = 4, |O| = 28 GapMin 0.8258 0.0 0.8258 1 111 784 0.8249 336 12240.9
γ = 0.990 Aug-H 0.8242± 0.0 3304.8± 25.8 964.0± 5.8

Aug-OCF 0.8239± 0.0 1785± 14.2 960± 8.2
query.s3 hsvi2 26.2 546.8 573.1 1203 n.a. 997 571.8 n.a. 10000.1
|S| = 27 sarsop 28.1 546.8 574.8 112 3132 999 573.9 10556 10000.6
|A| = 3, |O| = 3 GapMin 8.01 546.6 554.7 123 1088 938 550.2 3120 7702.4
γ = 0.990 Aug-H 551.6± 0.02 1960.2± 10.2 979.7± 3.5

Aug-OCF 550.2± 0.05 2801± 80.3 972.6± 3.9
query.s4 hsvi2 51.9 569.5 621.4 2846 n.a. 999 620.4 n.a. 10002.9
|S| = 81 sarsop 54.3 569.1 623.4 166 6782 1000 622.8 23742 10014.1
|A| = 4, |O| = 3 GapMin 45.0 569.4 614.5 137 631 956 605.2 2945 13881.0
γ = 0.990 Aug-H 589.4± 0.06 1660.5± 12.8 892.0± 3.6

Aug-OCF 586.4± 0.03 1871± 10.4 949.6± 5.7
sunysb hsvi2 0.2396 0.5566 0.7963 4370 n.a. 997 0.7957 n.a. 10076.6
|S| = 300 sarsop 0.3233 0.4748 0.7980 3537 1229 986 0.7979 3853 10070.2
|A| = 4, |O| = 28 GapMin 0.7962 0.0 0.7962 1 96 958 0.7948 294 10049.1
γ = 0.990 Aug-H 0.7919± 0.0 3474.8± 49.7 898.4± 20.4

Aug-OCF 0.7908± 0.0 1760± 11.8 960.7± 7.1
tiger-grid hsvi2 0.388 2.138 2.525 3394 n.a. 990 2.510 n.a. 10017.7
|S| = 36 sarsop 0.262 2.267 2.529 945 2165 997 2.523 6354 10043.1
|A| = 5, |O| = 17 GapMin 0.246 2.174 2.420 103 168 934 2.397 634 3418.2
γ = 0.950 Aug-H 2.403± 0.0 1139.4± 8.5 960.2± 8.9

Aug-OCF 2.398± 0.0 1111± 19.7 935.3± 9.9
tagAvoid hsvi2 3.207 -6.150 -2.943 2896 n.a. 1000 -3.378 n.a. 10001.3
|S| = 870 sarsop 3.455 -6.142 -2.686 9324 8049 989 -3.298 18099 10085.4
|A| = 5, |O| = 30 GapMin 12.70 -14.0 -1.291 77 310 773 -2.436 1800 10017.0
γ = 0.950 Aug-H -0.672± 0.0 5840.3± 55.8 949.0± 5.5

Aug-OCF -3.660± 0.0 6861.0± 50.8 990.5± 1.4
cppo3 hsvi2 10.89 12.96 23.84 3773 n.a. 999 23.83 n.a. 10004.5
|S| = 180 sarsop 9.69 14.69 24.38 242 3420 998 24.38 8879 10053.8
|A| = 6, |O| = 6 GapMin 6.87 15.43 22.30 497 1495 976 21.66 1624 14156.6
γ = 0.900 Aug-H 21.28± 0.01 2808.0± 27.8 920.6± 23.3

Aug-OCF 20.71± 0.03 1221± 34.7 937± 12

 0.1

 1

 10

 100

 1000

a
lo

h
a
.1

0

a
lo

h
a
.3

0

b
a
se

b
a
ll

cit

cp
p
o
3

fo
u
rth

h
a
llw

a
y

h
a
llw

a
y
2

iff le
a
rn

in
g
.c2

le
a
rn

in
g
.c3

le
a
rn

in
g
.c4

m
a
ch

in
e

m
ilo

s-a
a
a
i9

7

m
it

p
e
n
ta

g
o
n

q
u
e
ry.s3

q
u
e
ry.s4

ro
cksa

m
p
le

7
8

su
n
y
sb

ta
g
A
v
o
id

tig
e
r-g

rid

u
n
d
e
rw

a
te

rN
a
v

UB-C UB-Augmented SARSOP UB-Orig-Lookahead

Figure 2: The ratio of execution time of selected policies to QMDP execution time.

 0.0625

 0.125

 0.25

 0.5

 1

 2

a
lo

h
a
.1

0

a
lo

h
a
.3

0

cit

fo
u
rth

h
a
llw

a
y
2

h
a
llw

a
y

iff le
a
rn

in
g
.c2

le
a
rn

in
g
.c3

le
a
rn

in
g
.c4

m
a
ch

in
e

m
ilo

s-a
a
a
i9

7

m
it

p
e
n
ta

g
o
n

q
u
e
ry.s3

q
u
e
ry.s4

su
n
y
sb

tig
e
r-g

rid

b
a
se

b
a
ll

cp
p
o
3

ro
ckS

a
m

p
le

-7
-8

ta
g
A
v
o
id

u
n
d
e
rw

a
te

rN
a
v

QMDP UB-C UB-Augmented UB-Orig-Lookahead

Figure 3: The ratio of simulated values of selected policies to simulated values of SARSOP lower bound policies.

tighter bounds than state-of-the-art bounding planners on the ma-
jority of hard benchmarks from [16]. The key to design our al-
gorithms was our synthesis of AO-deterministic and augmented
POMDPs. Furthermore, our results were obtained without using
any lower bounds to guide the search. In future work, it would be
interesting to see how our ideas could be combined with existing
planners that optimize both bounds at the same time. We believe
that this could lead to further improvements.

Until now, the execution of upper bound policies was not prac-
tical due to prohibitive computational costs although upper bounds
are computed during planning [8, 16]. We showed two new meth-
ods that avoid traditional lookahead and embed beliefs in the aug-
mented space. As a result, the time to execute upper bound policies
is now on par and sometimes lower than that of lower bound poli-
cies. In the future we would like to explore the use of our methods
in the context of branch and bound search techniques [12, 17, 4]
since upper bounds are critical for pruning.

Acknowledgement
This research was sponsored by NSERC and MITACS.

9. REFERENCES
[1] C. Besse and B. Chaib-draa. Quasi-deterministic partially

observable Markov decision processes. In ICONIP, pages
237–246, 2009.

[2] B. Bonet. Deterministic POMDPs revisited. In UAI, pages
59–66, 2009.

[3] M. Grześ, P. Poupart, and J. Hoey. Controller compilation
and compression for resource constrained applications. In
Proc. of ADT, 2013.

[4] M. Grześ, P. Poupart, and J. Hoey. Isomorph-free branch and
bound search for finite state controllers. In IJCAI, 2013.

[5] E. Hansen. An improved policy iteration algorithm for
partially observable MDPs. In NIPS, 1998.

[6] E. A. Hansen and S. Zilberstein. LAO * : A heuristic search
algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2):35–62, 2001.

[7] M. Hauskrecht. Value-function approximations for partially
observable Markov decision processes. Journal of Artificial
Intelligence Research, 13:33–94, 2000.

[8] D. Hsu, W. Sun, and L. N. Rong. What makes some POMDP
problems easy to approximate? In NIPS, 2007.

[9] H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient
point-based POMDP planning by approximating optimally
reachable belief spaces. In RSS, 2008.

[10] M. L. Littman. Algorithms for Sequential Decision Making.
PhD thesis, Department of Computer Science, Brown
University, March 1996. CS-96-09.

[11] O. Madani, S. Hanks, and A. Condon. On the undecidability
of probabilistic planning and infinite horizon partially
observable decision problems. In Proc. of AAAI, pages
541–548, 1999.

[12] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R.
Cassandra. Solving POMDPs by searching the space of finite
policies. In UAI, pages 417–426, 1999.

[13] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for POMDPs. In IJCAI,
pages 1025–1032, 2003.

[14] J. Pineau, G. J. Gordon, and S. Thrun. Anytime point-based
approximations for large POMDPs. Journal of Artificial
Intelligence Research, 27:335–380, 2006.

[15] P. Poupart. Exploiting Structure to Efficiently Solve Large
Scale Partially Observable Markov Decision Processes. PhD
thesis, University of Toronto, Toronto, Canada, 2005.

[16] P. Poupart, K.-E. Kim, and D. Kim. Closing the gap:
Improved bounds on optimal POMDP solutions. In ICAPS,
2011.

[17] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online
planning algorithms for POMDPs. Journal of Artificial
Intelligence Research, 32:663–704, 2008.

[18] T. Smith and R. Simmons. Point-based POMDP algorithms:
improved analysis and implementation. In UAI, 2005.

[19] M. T. J. Spaan and N. Vlassis. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195–220, 2005.

	Introduction
	Background
	Partially Observable Markov Decision Processes
	Upper Bounds
	Augmented POMDPs

	Direct Policy Approximation
	Policy Execution in Augmented Space
	Deterministic POMDPs
	A Synthesis of Deterministic and Augmented POMDPs
	Experiments
	Policy Execution Times
	Upper Bounds

	Conclusion and Future Work
	References

