POMDP Planning and Execution in an Augmented Space

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

AAMAS-14

Marek Grześ and Pascal Poupart

David Cheriton School of Computer Science, University of Waterloo, Canada

Motivation for Investigating Upper Bounds

- Most point-based value iteration as well as branch-and-abound algorithms (including online) planning) guide their optimisation by upper bounds
- ► There is growing interest in performance guarantees to estimate how far from optimal a policy can be; helps to check if a model fits a particular application
- An upper bound policy can be good and methods of fast execution are desirable
- Upper bounds are hard to improve; better understanding and methods are required

POMDPs and their $T_{a,o}$ Matrices

Why AO-deterministic definition matters?

 $c_{1,1}$... $c_{1,n}$ $c_{1,n+1}$... $\blacktriangleright \mathbf{T}_{\mathbf{a},\mathbf{o}} = \begin{array}{c} \mathbf{s}_{\mathbf{n}} \\ \mathbf{b}_{\mathbf{n}+1} \end{array}$ $\mathbf{C}_{\mathbf{n},\mathbf{1}}$ $\mathbf{b}_{n+m} \left(\mathbf{c}_{n+m,1} \ \dots \ \mathbf{c}_{n+m,n} \ \mathbf{c}_{n+m,n+1} \ \dots \ \mathbf{c}_{n+m,n+m} \right)$ ▶ If $\mathbf{b}_{\mathbf{a},\mathbf{o}}$ is a state of the augmented POMDP, then the row for (b, a, o) has at most one non-zero entry— $T_{a,o}$ is becoming "more deterministic" when upper bounds are improved

► The key conclusion: search for new beliefs going forward from corners as well (not only from $\mathbf{b_0}$ as it is the case in GapMin, HSVI, or SARSOP)

Our Algorithm

Algor	ithm 1 : New Anchor Beliefs ($N = 50$ in all experiments)		
Data	a : $S, G, \overline{V}^G, OCF, N, Q$ - in augmented space		The
1 G_{new}	$, \leftarrow \emptyset$		
2 if P (OMDP is AO-deterministic then		
3 fo	for $i=1$ to N do		ont
4	$ \mathbf{if} b_0 \in G \mathbf{then} \\$		opu
5	return G_{new} ;	<pre>/* nothing to improve */</pre>	
6	else		(Λ/I)
7	$b \leftarrow \mathbf{ForwardSearch} \text{ or } \mathbf{LAO^*}$		

Policies that are eorem: timal for the underlying *OP of an AO-deterministic*

 $s'_n \setminus p_{n,1} \ldots p_{n,k}$

Upper Bounds for POMDPs

 $\blacktriangleright \mathsf{MDP}: \mathbf{Q}(\mathbf{s}, \mathbf{a}) = \mathsf{R}_{\mathbf{a}}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathsf{T}_{\mathbf{a}}(\mathbf{s}, \mathbf{s}') \max_{\mathbf{a}'} \mathbf{Q}(\mathbf{s}', \mathbf{a}') \ \forall \mathbf{s}, \mathbf{a}$ $\blacktriangleright \text{QMDP: } \mathbf{Q}(\mathbf{s}, \mathbf{a}) = \mathbf{R}_{\mathbf{a}}(\mathbf{s}) + \gamma \sum_{\mathbf{o}} \sum_{\mathbf{s}'} \mathbf{T}_{\mathbf{a}, \mathbf{o}}(\mathbf{s}, \mathbf{s}') \max_{\mathbf{a}'} \mathbf{Q}(\mathbf{s}', \mathbf{a}') \forall \mathbf{s}, \mathbf{a}$ FIB: $Q(s, a) = R_a(s) + \gamma \sum_{o} \max_{a'} \sum_{s'} T_{a,o}(s, s')Q(s', a') \forall s, a$

Upper Bounds for Arbitrary Beliefs Value Value $\bar{V}(b) = \max_{a} \sum b(s)Q(s,a)$ $\pi(b) = \arg \max_{a} \sum b(s)Q(s,a)$ $\pi^{\mathsf{G}}(\mathsf{b}) = \arg\max_{\mathsf{a}} \left\{ \sum_{\mathsf{s}} \mathsf{b}(\mathsf{s})\mathsf{R}(\mathsf{s},\mathsf{a}) + \gamma \sum_{\mathsf{o}\in\mathsf{O}} \mathsf{P}(\mathsf{o}|\mathsf{b},\mathsf{a})\bar{\mathsf{V}}^{\mathsf{G}}(\mathsf{b}_{\mathsf{a},\mathsf{o}}) \right\}$

								- 1		1.0	-						
proble	em	algorithm	gap	LB	l	JB f	V	time	UB	$ \mathbf{V} $	time						
baseb	all	hsvi2	1e-3	0.6412	0.64	12 991	l n.a.	999					Table	. ть		م يبالم	f
$ \mathcal{S} =$	= 7681	sarsop	7e-4	0.6412	0.64	19 1453	3 1694	400	0.6412	3878	2346		lable	: In	e qu	anty c	or upper
$ \mathcal{A} =$	6 <i>O</i> =9	GapMin	5.01	0.6346	5.65	00 1	L 1	281	0.6434	52	15219			1 (с.	1000
$\gamma = 0$).999	Aug-OCF			0.64	13	3051	970					bound	ds (UR)	afte	r 1000
rockS	ample-7_8	hsvi2	3.56	20.91	24.	46 4752	2 n.a.	998							ć		
$ \mathcal{S} =$	= 12545	sarsop	4.12	20.91	25.	02 3119	9 2473	999	24.46	8520	9806		secon	ds c	ot pl	annin	g (AO-
$\mathcal{A} =$	$13 \mathcal{O} = 2$	GapMin	25.07	7.35	32.	42 1	L 1	6.18	26.84	30	13855				•		
$\gamma = 0$	0.950	Aug-OCF			24.	81	3351	978					deteri	minis	tic P	OMD	Ps).
under	waterNav	hsvi2	23.4	729.9	753	3.3 3545	5 n.a.	1000)
$ \mathcal{S} =$	= 2653	sarsop	23.4	731.0	754	4.4 7918	3 2820	999	754.0	7947	10014						
$ \mathcal{A} =$	$6 \mathcal{O} = 103$	GapMin	80.2	675.06	755	5.3 1	L 1	742	754.8	115	10113						
$\gamma = 0$).950	Aug-OCF			754	1.6	1830	471.0									
	problem		algorith	m	σan	IR		LIF	۲ (Г		1	V.	time	LIR	V	time	
	problem aloba 10					535 /		5// /	/ ∎ 1 /1720		 n	<u>ין</u>	007	5// 1	 	10001 /	
			sarson		9.0 0.5	535.7		544.5	7 <u>1</u> 29		21	.а. 51	1000	5// 3	8035	10001.4	
		(𝔅) − २	GanMir	, <i>.</i>	9.5 10 7	555.2 522 5		544.1) <u>9</u> 0		21	23	072	544.0	1140	107/11 2	
	$\sim - 0.000$	C - J		• .	10.7	555.5	530 6	+ 0.01		1000	1 + 21	17	972 981.0 ± 3.6	544.0	1140	10741.5	
	/ = 0.555		$\Delta_{11\sigma}$	~F			530 0	± 0.01	L 	1333	.1 <u> </u>	2.2	901.5 ± 3.0 984.5 ± 2.8				
	hallway2		hsvi?	05	5250	0 3612	555.0	0.8862	> 2303		nn	U	007	0 8696	na	10003 1	
	S - 92		sarson	0.5	5247	0.3012		0.0002	2000 1 262		15	.a.	002	0.8877	4020	10003.1	
	$ \mathcal{O} = 52$ $ \mathcal{A} = 5$	$\mathcal{O} = 17$	GanMir	0.3	1405	0.3737		0.000	1202		2	18	835 5	0.0011	7023	10002.5	
	$\sim - 0.950$			г U		0.5451	0.80.	7 + 0()	1340	-6 + 11	15	806.2 ± 17.6				
	/ = 0.550		$\Delta_{11\sigma}$	~F			0.05	7 <u>+</u> 0.0 5 + 0.0)	1949	10 ± 6	5.3	$0.00.2 \pm 17.0$ 044 1 + 12 1				
	hallway		hevi?		250	0 045	0.00		5 1367	00	1.0 <u> </u>	ן.ט ר	006	1 1 8 5	n o	10026.6	
			sarson	0	210	0.945		1 206	5 456		17	.a. 13	998	1 1 1 9 6	5117	10020.0	
	2 = 00 4 = 5	(2) - 21	GanMir	$\mathbf{b} = 0$	132	0.999		1 1 2 2) 430) 04		1	76	974	1 001	3117	2035 3	
	$\gamma = 0.950$		Αιισ-Η	. 0.		0.505	1 18	6 + 0 ()	1189	7 + 13	3 0	9471 + 133	1.051	011	2000.0	
	, _ 0.500			ΓF			1 09	5 ± 0.0)	95	10 + 7	7 0	946.1 ± 11.5				
	machine		hsvi2		3 4 9	63 18	1.000	66 66	5 662		<u></u> n	а а	982	66.34	na	10003 5	
	S = 256		sarson		3 57	63 18		66.75	5 150		27	42	998	66.4	9846	10004 6	
	$ \mathcal{A} = 4$	$\mathcal{O} = 16$	GapMir	1	3.48	62.38		65.87	7 58		-:	08	898	64.64	1174	12147.0	
	$\gamma = 0.990$	- 1	Aug-H				64.68	8 + 0.0)	97	2.0 + 0).()	809.0 ± 4.1				
	,		Aug-O(CF			63.84	± 0.01	L	965	$.0 \pm 12$	2.3	918.7 ± 17.1				
	guery.s4		hsvi2	Į	51.9	569.5		621.4	1 2846		n.	.a.	999	620.4	n.a.	10002.9	
	$ \mathcal{S} = 81$		sarsop	I	54.3	569.1		623.4	1 166		67	82	1000	622.8	23742	10014.1	
	A = 4, 0	$\mathcal{O} =3$	GapMir	ן 4	45.0	569.4		614.5	5 137		6	31	956	605.2	2945	13881.0	
	$\gamma = 0.990$	I	Aug-H				589.4	± 0.06	5	1660	$.5 \pm 12$	2.8	892.0 ± 3.6				
	,		Aug-O	CF			586.4	± 0.03	3	18	71 ± 10).4	949.6 ± 5.7				
	tagAvoid		hsvi2	3.	.207	-6.150		-2.943	3 2896		n	.a.	1000	-3.378	n.a.	10001.3	
	$ \mathcal{S} = 870$		sarsop	3.	.455	-6.142		-2.686	5 9324		804	49	989	-3.298	18099	10085.4	
	$ \mathcal{A} = 5, 0 $	$\mathcal{O} =30$	GapMir	า 12	2.70	-14.0		-1.291	L 77		3	10	773	-2.436	1800	10017.0	
	$\gamma = 0.950$	·	Aug-H				-0.672	2 ± 0.0)	5840	$.3 \pm 55$	5.8	949.0 ± 5.5				
			Aug-OC	CF			-3.66	0 ± 0.0)	6861	$.0 \pm 50$).8	990.5 ± 1.4				
	срро3		hsvi2	1(0.89	12.96		23.84	4 3773		n	.a.	999	23.83	n.a.	10004.5	
	$ \mathcal{S} = 180$		sarsop		9.69	14.69		24.38	3 242		34	20	998	24.38	8879	10053.8	
	$ \mathcal{A} = 6, 0 $	$\mathcal{O} =6$	GapMir	n 6	6.87	15.43		22.30) 497		14	95	976	21.66	1624	14156.6	
	$\gamma = 0.900$		Aug-H				21.28	± 0.01	L	2808	$.0 \pm 27$	7.8	920.6 ± 23.3				
	1													1			

Augmented POMDPs

- Add m interior beliefs to the set of n states of the original POMDP
- An initial belief $Pr_0(b) = c(b)$ corresponds to interpolation of b_0 by the convex combination **c** of anchor beliefs
- $\succ \mathsf{T}_{a,o}(\mathbf{b},\mathbf{b}') = \mathsf{P}(\mathbf{b}',\mathbf{o}|a,\mathbf{b}) = \mathsf{c}(\mathbf{b}')\mathsf{Z}_{a}(\mathbf{o}|\mathbf{b})$

Avoiding Lookahead

AO-deterministic POMDPs

- Deterministic POMDPs in Littman's thesis have deterministic T and Z (all probabilities are either zero or one)
- Quasi-deterministic POMDPs have deterministic T (Besse and Chaib-draa 2009)
- We introduce AO-deterministic POMDPs when all $T_{a,o}$ matrices have at most one non-zero entry in every row—actions can be stochastic!
- ► All deterministic and quasi-deterministic POMDPs are AO-deterministic, but there exist POMDPs that are AO-deterministic but are neither deterministic nor quasi-deterministic (e.g. baseball)
- ► A few other benchmarks form ICAPS-IPPC are AO-deterministic, e.g., rockSample-7_8 and underwterNav

Aug-OCF	20.71 ± 0.03	1221 ± 34.7	937 ± 12	
---------	------------------	-----------------	--------------	--

Table: The quality of upper bounds (UB) after 1000 seconds of planning (non AO-deterministic POMDPs).

Conclusion

b

Efficient execution of upper bound policies (e.g. in an augmented space) was shown—useful for deploying upper bound policies or using them to guide branch-and-bound AO-deterministic POMDPs generalise existing definitions of deterministic and quasi-deterministic POMDPs, yet are specific enough to explain the process of refining upper bounds and to show where the augmented POMDP is converging to AO-deterministic POMDPs lead to a straightforward approach that can compute the tightest upper bounds without any use of lower bounds

Acknowledgements

This research was sponsored by NSERC and MITACS.

e-mail: {mgrzes|ppoupart}@cs.uwaterloo.ca

www: http://www.cs.uwaterloo.ca/~mgrzes