POMDP Planning and Execution in an Augmented Space

Marek Grześ and Pascal Poupart

WATERLOO

International Conference on Autonomous Agents and Multiagent Systems

Paris, May 5-9, 2014

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

POMDP

Partially Observable Markov Decision Process

- ▶ a discrete time, dynamical system with controls (actions)
- a policy of action optimises a utility function
- the state of the system is partially observable through noisy sensors

Motivation for Investigating Upper Bounds

- Most point-based value iteration as well as branch-and-abound algorithms (including online planning) guide their optimisation by upper bounds
- There is growing interest in performance guarantees to estimate how far from optimal a policy can be; helps to check if a model fits a particular application
- An upper bound policy can be good and methods of fast execution are desirable
- Upper bounds are hard to improve; better understanding and methods are required

POMDP—Formally

$$\begin{array}{c} \checkmark \langle S, A, O, T, Z, R, b_0, \gamma \rangle \\ s_1' & \dots & s_n' \\ T_a = \begin{array}{c} s_1 \\ \dots \\ s_n \end{array} \begin{pmatrix} P(s_1'|a, s_1) & \dots & P(s_n'|a, s_1) \\ \dots & \dots \\ P(s_1'|a, s_n) & \dots & P(s_n'|a, s_n) \end{pmatrix} \\ \\ \bullet \\ Z_a = \begin{array}{c} s_1' \\ \dots \\ s_n' \\ \end{array} \begin{pmatrix} P(o_1|s_1', a) & \dots & P(o_k|s_1', a) \\ \dots & \dots \\ P(o_1|s_n', a) & \dots & P(o_k|s_n', a) \end{pmatrix} \end{array}$$

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

$T_{a,o}$ Matrices

$$S_{1}' \qquad \dots \qquad S_{n}'$$

$$F_{a} = \sum_{s_{n}}' \begin{pmatrix} P(s_{1}'|a,s_{1}) & \dots & P(s_{n}'|a,s_{1}) \\ \dots & \dots & \dots \\ P(s_{1}'|a,s_{n}) & \dots & P(s_{n}'|a,s_{n}) \end{pmatrix}$$

$$C_{1} \qquad \dots \qquad C_{k}$$

$$P(s_{1}'|a,s_{n}) \qquad \dots & P(s_{n}'|a,s_{n}) \end{pmatrix}$$

$$Z_{a} = \sum_{s_{n}'}' \begin{pmatrix} P(o_{1}|s_{1}',a) & \dots & P(o_{k}|s_{1}',a) \\ \dots & \dots & \dots \\ P(o_{1}|s_{n}',a) & \dots & P(o_{k}|s_{n}',a) \end{pmatrix}$$

$$T_{a,o} = T_{a}diag(Z_{a}(o)) = \sum_{s_{1}'}' & \dots & S_{n}'' \\ P(s_{1}',o|a,s_{1}) & \dots & P(s_{n}',o|a,s_{1}) \\ \dots & \dots & \dots \\ P(s_{1}',o|a,s_{n}) & \dots & P(s_{n}',o|a,s_{n}) \end{pmatrix}$$

Upper Bounds for POMDPs

► MDP: $Q(s, a) = R_a(s) + \gamma \sum_{s'} T_a(s, s') \max_{a'} Q(s', a') \forall s, a$

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Upper Bounds for POMDPs

• MDP: $Q(s, a) = R_a(s) + \gamma \sum_{s'} T_a(s, s') \max_{a'} Q(s', a') \forall s, a$

• QMDP: $Q(s, a) = R_a(s) + \gamma \sum_o \sum_{s'} T_{a,o}(s, s') \max_{a'} Q(s', a') \forall s, a$

Upper Bounds for POMDPs

• MDP:

$$Q(s, a) = R_a(s) + \gamma \sum_{s'} T_a(s, s') \max_{a'} Q(s', a') \forall s, a$$

• QMDP:

$$Q(s,a) = R_a(s) + \gamma \sum_o \sum_{s'} T_{a,o}(s,s') \max_{a'} Q(s',a') \forall s, a$$

FIB:

 $Q(s, a) = R_a(s) + \gamma \sum_o \max_{a'} \sum_{s'} T_{a,o}(s, s')Q(s', a') \ \forall s, a$

Upper Bounds for Arbitrary Beliefs

WATERLOO CHERITON SCH イロト イポト イヨト イヨト

3

Upper Bounds with Interior Beliefs

イロト イポト イモト イモト

3

Augmented POMDPs

- Add *m* interior beliefs to the set of *n* states of the original POMDP
- An initial belief Pr₀(b) = c(b) corresponds to interpolation of b₀ by the convex combination c of anchor beliefs

$$\bullet \ T_{a,o}(b,b') = c(b')O_a(o|b)$$

$T_{a,o} =$						
	s'_1		s'n	b_{n+1}'		b'_{n+m}
<i>s</i> ₁	$(c_{1,1})$		<i>c</i> _{1,<i>n</i>}	$c_{1,n+1}$		$c_{1,n+m}$
		•••			•••	
s _n	<i>c</i> _{<i>n</i>,1}		C _{n,n}	$c_{n,n+1}$		$C_{n,n+m}$
b_{n+1}	<i>c</i> _{<i>n</i>+1,1}		$C_{n+1,n}$	$c_{n+1,n+1}$		$c_{n+1,n+m}$
b_{n+m}	$\int c_{n+m,1}$		$C_{n+m,n}$	$C_{n+m,n+1}$		$c_{n+m,n+m}$

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

Avoiding Lookahead

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE ・ロト ・聞ト ・ヨト ・ヨト

1

Avoiding Lookahead

Observe that the convex combination of b can be seen as its embedding in the augmented space (c becomes a belief in the augmented space), and the policy can be queried directly

Avoiding Lookahead—ctd

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

Execution in an Augmented Space

- Recall that c is a belief in the augmented space—applies to the initial belief as well
- In the augmented space, T_{a,o} is available, hence a POMDP can be executed in the augmented space—executed for the purpose of updating beliefs and querying its policy
- ► No need to do interpolations or approximations
- This process can be efficient even though the number of states grows because T_{a,o} becomes sparser when more states are added (in what follows, we refer to deterministic POMDPs to explain why)

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIE NCE イロン イ団と イヨン イヨン

- 1

WATERLOO | CHERITON SCHOOL 0 COM **VCE** イロン イ団と イヨン イヨン

WATERLOO | CHERITON SCHOO **VCE**

WATERLOO CHERITON SCHOO **VCE**

WATERLOO CHERITON SCHOO COM **VCE** イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOO COM **VCE** イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOO COM **VCE** イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOOL 0 COM NCE イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOOL OF COM NCE イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOOL OF COM **VCE** イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOOL OF COMPU NCE イロン イ団と イヨン イヨン

WATERLOO CHERITON SCHOOL OF COMPU NCE イロン イ団と イヨン イヨン

COM

NCE

AO-deterministic POMDPs

- Deterministic POMDPs in Littman's thesis have deterministic
 T and O (all probabilities are either zero or one)
- Quasi-deterministic POMDPs have deterministic T (Besse and Chaib-draa 2009)
- ► We introduce AO-deterministic POMDPs when all T_{a,o} matrices have at most one non-zero entry in every row—actions can be stochastic!
- All deterministic and quasi-deterministic POMDPs are AO-deterministic, but there exist POMDPs that are AO-deterministic but are neither deterministic nor quasi-deterministic (e.g. baseball)
- A few other benchmarks form ICAPS-IPPC are AO-deterministic, e.g., rockSample-7_8 and underwterNav

Why the AO-deterministic definition matters?

$$T_{a,o} = S_1' \quad \dots \quad S_n' \quad b_{n+1}' \quad \dots \quad b_{n+m}' \\ S_1 \\ \dots \\ S_n \\ b_{n+1} \\ \dots \\ b_{n+m} \begin{pmatrix} c_{1,1} & \dots & c_{1,n} & c_{1,n+1} & \dots & c_{1,n+m} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c_{n,1} & \dots & c_{n,n} & c_{n,n+1} & \dots & c_{n,n+m} \\ c_{n+1,1} & \dots & c_{n+1,n} & c_{n+1,n+1} & \dots & c_{n+1,n+m} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c_{n+m,1} & \dots & c_{n+m,n} & c_{n+m,n+1} & \dots & c_{n+m,n+m} \end{pmatrix}$$

- ► If b_{a,o} is a state of the augmented POMDP, then the row for (b, a, o) has at most one non-zero entry—T_{a,o} is becoming "more deterministic" when upper bounds are improved
- Theorem: Policies that are optimal for the underlying MDP of an AO-deterministic POMDP are also optimal at the corner beliefs of this POMDP.

Our Algorithm

The key conclusion: search for new beliefs going forward from **corners** as well (not only from b_0 as it is the case in GapMin, HSVI, or SARSOP)

```
Algorithm 1: New Anchor Beliefs (N = 50 \text{ in all experiments})
   Data: S. G. \bar{V}^{G}, OCF, N. Q- in augmented space
 1 G_{new} \leftarrow \emptyset
   if POMDP is AO-deterministic then
       for i=1 to N do
 3
           if b_0 \in G then
 4
                return Gnew:
                                                                                                              /* nothing to improve */
 5
            else
                b \leftarrow ForwardSearch \text{ or } LAO^*
 7
                add b into G_{new}
 8
 9 else
       H \leftarrow \mathbf{SampleCorners}(G, OCF, N);
                                                        /* sample among corners with non-deterministic transitions only */
10
       for all corner beliefs b \in H do
           repeat
12
                c \leftarrow embed b into augmented space
13
                a^* \leftarrow action for c using augmented Q-values
14
                sample observation o according to P(o|b, a^*)
15
16
                b \leftarrow b_{a,o}
           until b \notin G \cup G_{new}
17
           add b into G_{new}
18
19 return Gnew
```

э

Results—Execution Time and Quality of Upper Bound Policies

Figure: Ratio of the execution time to QMDP execution time

Figure: Ratio of simulated quality to SARSOP lower bound policies

WATERLOO - (E)

э

- ∢ 🗇 ト

Results—AO-deterministic POMDPs

Table: The quality of upper bounds (UB) after 1000 seconds of planning (AO-deterministic POMDPs).

problem	algorithm	gap	LB	UB	Γ	$ \bar{V} $	time	UB	$ \bar{V} $	time
baseball	hsvi2	1e-3	0.6412	0.6412	991	n.a.	999			
S = 7681	sarsop	7e-4	0.6412	0.6419	1453	1694	400	0.6412	3878	2346
A = 6 O = 9	GapMin	5.01	0.6346	5.6500	1	1	281	0.6434	52	15219
$\gamma = 0.999$	Aug-OCF			0.6413		3051	970			
rockSample-7_8	hsvi2	3.56	20.91	24.46	4752	n.a.	998			
S = 12545	sarsop	4.12	20.91	25.02	3119	2473	999	24.46	8520	9806
$ \mathcal{A} = 13 \mathcal{O} = 2$	GapMin	25.07	7.35	32.42	1	1	6.18	26.84	30	13855
$\gamma = 0.950$	Aug-OCF			24.81		3351	978			
underwaterNav	hsvi2	23.4	729.9	753.3	3545	n.a.	1000			
S = 2653	sarsop	23.4	731.0	754.4	7918	2820	999	754.0	7947	10014
$ \mathcal{A} = 6 \mathcal{O} = 103$	GapMin	80.2	675.06	755.3	1	1	742	754.8	115	10113
$\gamma = 0.950$	Aug-OCF			754.6		1830	471.0			

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Results-non-AO-deterministic POMDPs

Table: The quality of upper bounds (UB) after 1000 seconds of planning (non AO-deterministic POMDPs).

problem	algorithm	gap	LB	UB	F	$ \bar{V} $	time
aloha.10	hsvi2	9.0	535.4	544.4	4729	n.a.	997
S = 30	sarsop	9.5	535.2	544.7	48	2151	1000
$ \mathcal{A} = 9, \mathcal{O} = 3$	GapMin	10.7	533.5	544.2	81	223	972
$\gamma = 0.999$	Aug-H			539.6 ± 0.01		1999.1 ± 21.7	981.9 ± 3.6
	Aug-OCF			539.0 ± 0.01		3345 ± 22.8	984.5 ± 2.8
hallway2	hsvi2	0.5250	0.3612	0.8862	2393	n.a.	997
S = 92	sarsop	0.5247	0.3737	0.8984	262	1519	992
$ \mathcal{A} = 5, \mathcal{O} = 17$	GapMin	0.4495	0.3497	0.7992	122	218	835.5
$\gamma = 0.950$	Aug-H			0.897 ± 0.0		1349.6 ± 11.5	896.2 ± 17.6
	Aug-OCF			0.805 ± 0.0		861.0 ± 6.3	944.1 ± 12.1
hallway	hsvi2	0.250	0.945	1.195	1367	n.a.	996
S = 60	sarsop	0.210	0.995	1.206	456	1713	998
$ \mathcal{A} = 5, \mathcal{O} = 21$	GapMin	0.132	0.989	1.122	94	176	974
$\gamma = 0.950$	Aug-H			1.186 ± 0.0		1189.7 ± 13.0	947.1 ± 13.3
	Aug-OCF			1.095 ± 0.0		951.0 ± 7.0	946.1 ± 11.5
machine	hsvi2	3.49	63.18	66.66	662	n.a.	982
S = 256	sarsop	3.57	63.18	66.75	150	2742	998
$ \mathcal{A} = 4, \mathcal{O} = 16$	GapMin	3.48	62.38	65.87	58	208	898
$\gamma = 0.990$	Aug-H			64.68 ± 0.0		972.0 ± 0.0	809.0 ± 4.1
	Aug-OCF			63.84 ± 0.01		965.0 ± 12.3	918.7 ± 17.1
tagAvoid	hsvi2	3.207	-6.150	-2.943	2896	n.a.	1000
$ \tilde{S} = 870$	sarsop	3.455	-6.142	-2.686	9324	8049	989
$ \mathcal{A} = 5, \mathcal{O} = 30$	GapMin	12.70	-14.0	-1.291	77	310	773
$\gamma = 0.950$	Aug-H			-0.672 ± 0.0		5840.3 ± 55.8	949.0 ± 5.5
	Aug-OCF			- 3.660 ± 0.0		6861.0 ± 50.8	990.5 ± 1.4

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

Conclusion

- 1. Efficient execution of upper bound policies (e.g. in an augmented space) was shown—useful for deploying upper bound policies or using them to guide branch-and-bound
- 2. AO-deterministic POMDPs generalise existing definitions of deterministic and quasi-deterministic POMDPs, yet are specific enough to explain the process of refining upper bounds and to show where the augmented POMDP is converging to
- 3. AO-deterministic POMDPs lead to a straightforward approach that can compute the tightest upper bounds without any use of lower bounds