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POMDP

Partially Observable Markov Decision Process

» a discrete time, dynamical system with controls (actions)
» a policy of action optimises a utility function

> the state of the system is partially observable through noisy
sensors
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Motivation for Investigating Upper Bounds

» Most point-based value iteration as well as
branch-and-abound algorithms (including online planning)
guide their optimisation by upper bounds

» There is growing interest in performance guarantees to
estimate how far from optimal a policy can be; helps to check
if a model fits a particular application

» An upper bound policy can be good and methods of fast
execution are desirable

> Upper bounds are hard to improve; better understanding and
methods are required
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POMDP—Formally
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T, 0 Matrices
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Upper Bounds for POMDPs

» MDP:
Q(s,a) = Ra(s) + 7D o Ta(s,s’) maxy Q(s',a") Vs, a
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Upper Bounds for POMDPs

» MDP:
Q(s,a) = Ra(s) + v >y Tals,s’) maxy Q(s',d’) Vs, a

» QMDP:
Q(s,a) = Ra(s) + 7D o >s Taols,s’) maxy Q(s',d’) Vs, a
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Upper Bounds for POMDPs

» MDP:

Q(s,a) = Ra(s) + v >y Tals,s’) maxy Q(s',d’) Vs, a
» QMDP:

Q(s,a) = Ra(s) + 7> 0 Ds Tao(s,s') maxy Q(s',a") Vs, a
» FIB:

Q(s,a) = Ra(s) + 7D maxy Do Taols,s')Q(s',a") Vs, a
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Upper Bounds for Arbitrary Beliefs
A

Value

V(b) = mfxz b(s)Q(s, a)

7(b) = arg m;’axz b(s)Q(s, a)
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Upper Bounds with Interior Beliefs
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Augmented POMDPs

» Add m interior beliefs to the set of n states of the original
POMDP

» An initial belief Pry(b) = c(b) corresponds to interpolation of
by by the convex combination ¢ of anchor beliefs

> Tao(b,b") = c(b')Oi(0|b)
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Avoiding Lookahead

> Lookaheadc2
If
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Avoiding Lookahead

> Lookaheadcz
?

cl c?

4 2

» Observe that the convex combination of b can be seen as its
embedding in the augmented space (¢ becomes a belief in
the augmented space), and the policy can be queried

directly
c
?

®
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Avoiding Lookahead—ctd
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Execution in an Augmented Space

» Recall that ¢ is a belief in the augmented space—applies
to the initial belief as well

> In the augmented space, T,, is available, hence a POMDP
can be executed in the augmented space—executed for
the purpose of updating beliefs and querying its policy

» No need to do interpolations or approximations

» This process can be efficient even though the number of
states grows because T,, becomes sparser when more
states are added (in what follows, we refer to deterministic
POMDPs to explain why)
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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Execution of Upper Bound Policies
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AO-deterministic POMDPs

» Deterministic POMDPs in Littman’s thesis have deterministic
T and O (all probabilities are either zero or one)

» Quasi-deterministic POMDPs have deterministic T (Besse
and Chaib-draa 2009)

» We introduce AO-deterministic POMDPs when all T, ,
matrices have at most one non-zero entry in every
row—actions can be stochastic!

> All deterministic and quasi-deterministic POMDPs are
AO-deterministic, but there exist POMDPs that are
AO-deterministic but are neither deterministic nor
quasi-deterministic (e.g. baseball)

» A few other benchmarks form ICAPS-IPPC are
AO-deterministic, e.g., rockSample-7_8 and underwterNav
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Why the AO-deterministic definition matters?

> Ta’o =
/ / / /
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> If b, is a state of the augmented POMDP, then the row for
(b, a, 0) has at most one non-zero entry—T, , is becoming
“more deterministic” when upper bounds are improved

» Theorem: Policies that are optimal for the underlying MDP of
an AO-deterministic POMDP are also optimal at the corner
beliefs of this POMDP.
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Our Algorithm

The key conclusion: search for new beliefs going forward from

corners as well (not only from by as it is the case in GapMin,
HSVI, or SARSOP)

Algorithm 1: New Anchor Beliefs (N = 50 in all experiments)
Data: S, G, V¢, OCF, N, Q- in augmented space

1 Grew <0
2 if POMDP is AO-deterministic then
3 for i=1 to N do
4 if by € G then
5 ‘ return Gpew; /* nothing to improve */
6 else
7 b + ForwardSearch or LAO*
8 L add b into Grew
9 else
10 H <+ SampleCorners(G, OCF, N) ; /* sample among corners with non-deterministic transitions only */
11 for all corner beliefs b € H do
12 repeat
13 ¢+ embed b into augmented space
14 a* « action for ¢ using augmented Q-values
15 sample observation o according to P(o|b,a*)
16 b bao
17 until b € GU Grew
18 add b into Grew

19 return Gpew
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Results—Execution Time and Quality of Upper Bound
Policies
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Results—AQO-deterministic POMDPs

Table: The quality of upper bounds (UB) after 1000 seconds of planning
(AO-deterministic POMDPs).

problem algorithm gap LB UB [T V] time UB |V| time
baseball hsvi2 le-3 0.6412 0.6412 991 n.a. 999
|S| = 7681 sarsop 7e-4 0.6412 0.6419 1453 1694 400 || 0.6412 3878 2346
| A|=6 |O]|=9 GapMin 5.01 0.6346 5.6500 1 1 281]| 0.6434 52 15219
vy = 0.999 Aug-OCF 0.6413 3051 970
rockSample-7.8  hsvi2 356 2091 24.46 4752 n.a. 998
|S| = 12545 sarsop 412 2091 25.02 3119 2473 999 24.46 8520 9806
|A|=13 |O|=2 GapMin |25.07 735 3242 1 1 618|| 2684 30 13855
~ = 0.950 Aug-OCF 24.81 3351 978
underwaterNav hsvi2 234 7299 753.3 3545 n.a. 1000
|S| = 2653 sarsop 23.4 731.0 7544 7918 2820 999 754.0 7947 10014
|A|=6 |©]|=103 GapMin | 80.2 675.06 755.3 1 1 742 7548 115 10113
~ = 0.950 Aug-OCF 754.6 1830 471.0
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Results—non-AO-deterministic POMDPs

Table: The quality of upper bounds (UB) after 1000 seconds of planning
(non AO-deterministic POMDPs).

problem algorithm gap LB UB IT| |V| time
aloha.10 hsvi2 9.0 535.4 544.4 4729 n.a. 997
|S| =30 sarsop 9.5 535.2 544.7 48 2151 1000
|[A|=9,]0| =3  GapMin 107 5335 544.2 81 223 972
v = 0.999 Aug-H 539.6 £ 0.01 1999.1 + 21.7 981.9 + 3.6
Aug-OCF 539.0 + 0.01 3345 £ 22.8 984.5 + 2.8

hallway2 hsvi2 0.5250  0.3612 0.8862 2393 n.a. 997
|S| =92 sarsop 0.5247  0.3737 0.8984 262 1519 992
|[A] =5, |0 =17  GapMin 0.4495  0.3497 0.7992 122 218 8355
v = 0.950 Aug-H 0.897 £ 0.0 1349.6 + 11.5  896.2 + 17.6
Aug-OCF 0.805 + 0.0 861.0 + 6.3 944.1 £+ 12.1

hallway hsvi2 0.250 0.945 1.195 1367 n.a. 996
|S| =60 sarsop 0.210 0.995 1.206 456 1713 998
|A] =5 |0l =21 GapMin 0132  0.989 1.122 94 176 974
~v = 0.950 Aug-H 1.186 + 0.0 1189.7 + 13.0  947.1 + 13.3
Aug-OCF 1.095 + 0.0 951.0 7.0 946.1 £ 115

machine hsvi2 3.49 63.18 66.66 662 n.a. 982
|S| = 256 sarsop 3.57 63.18 66.75 150 2742 998
|A] =4, |0| =16 GapMin 348 6238 65.87 58 208 898
~ = 0.990 Aug-H 64.68 £+ 0.0 972.0 £+ 0.0 809.0 + 4.1
Aug-OCF 63.84 + 0.01 965.0 + 12.3  918.7 4+ 17.1

tagAvoid hsvi2 3.207 -6.150 -2.943 2896 n.a. 1000
|S| = 870 sarsop 3.455  -6.142 -2.686 9324 8049 989
|Al =5, |0 =30 GapMin 1270 -140 -1.201 77 310 773
= 0.950 Aug-H -0.672 + 0.0 5840.3 £ 55.8 949.0 £ 55
Aug-OCF -3.660 + 0.0 6861.0 + 50.8 990.5 + 1.4
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Conclusion

1. Efficient execution of upper bound policies (e.g. in an
augmented space) was shown—useful for deploying upper
bound policies or using them to guide branch-and-bound

2. AO-deterministic POMDPs generalise existing definitions of
deterministic and quasi-deterministic POMDPs, yet are
specific enough to explain the process of refining upper bounds
and to show where the augmented POMDP is converging to

3. AO-deterministic POMDPs lead to a straightforward approach
that can compute the tightest upper bounds without any use
of lower bounds
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