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Motivation and Contribution

I Finite-state controllers (FSCs) are the most energy efficient POMDP
policies (see Grzes et al. “Energy Efficient Execution of POMDP Policies.”)
which shows their suitability for mobile applications

I Efficient and robust algorithms that compute small policies/controllers
become desirable

I We investigate incremental methods that guarantee the escape from local
optima

I We push the understanding and the performance of policy iteration for
POMDPs to the point that for the first time they are competitive with the
state-of-the-art point-based methods

Finite-state Controllers for POMDPs
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Node Improvement in Bounded Policy Iteration (BPI)
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Figure 1 : Alpha vectors αj for improved nodes.

The Need to Escape Local Optima
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Figure 2 : Possible node improvements computed in BPI; αi corresponds to an old node and
αj to a new node.

Find a New Node with Maximal Improvement Over Entire Belief
Simplex

The näıve way to compute the exact DP update for POMDPs is to
enumerate all possible alpha vectors. We can compute the set Γa,o of vectors
Va,o

n (s) for each 〈a, o〉 pair by applying a DP update:

Γa,o ← Va,o
n (s) =

Ra(s)

|O|
+ γ

∑
s′∈S

P(o|s′, a)P(s′|a, s)Vπ
n (s′), ∀n

Having Va,o
n (s) for each 〈a, o〉 pair, we can formulate the following

optimisation problem:

max:
∑

a,n′,o,s w(s)P(n′, a|o)Va,o
n′ (s)− β

s.t.
∑

s w(s) = 1;
∑

n′,a P(n′, a|o) = 1;
∀a,o1,o2

∑
n1

P(n1, a|o1) =
∑

n2
P(n2, a|o2)

∀nβ ≥
∑

s w(s)Vπ
n (s);

∀sw(s) ∈ R;∀n′,a,oP(n′, a|o) ∈ [0, 1]

Figure 3 : A quadratic optimization program to search for a new node that provides maximal
improvement at the entire belief simplex; the belief w (witness belief) is the belief at which the
improvement happens. Decision variables are the witness belief w, the current value β at belief
w, and node parameters P(n′, a|o) which, when interpreted as probabilities, correspond to
P(n′|o)P(a).

Optimal Solution to the Escape Problem

Theorem

There always exists an optimal solution to the quadratic problem shown in
Fig. 3 that is integral ∀n′,a,o P(n′, a|o), i.e., there exists an optimal
solution that corresponds to a deterministic node.

Our Algorithm

max:
∑

a,n′,o,s y(s, n′, a, o)Va,o
n′ (s)− β

s.t.
∑

s w(s) = 1;
∑

n′,a P(n′, a|o) = 1;
∀a,o1,o2

∑
n1

P(n1, a|o1) =
∑

n2
P(n2, a|o2)

∀nβ ≥
∑

s w(s)Vπ
n (s);

∀sw(s) ∈ R;∀n′,a,oP(n′, a|o) ∈ {0, 1};
∀s,a,o,n′0 ≤ y(s, a, o, n′) ≤ P(n′, a|o);
∀s,a,o,n′w(s) + P(n′, a|o)− 1 ≤ y(s, a, o, n′) ≤ w(s);

Real variables Integer variables

Figure 4 : The McCormick transformation of the quadratic program in Fig. 3.

I Thanks to the above theorem, McCormick relaxation finds an optimal,
deterministic node

I MILP is intractable, but we don’t need the optimal solution
I Even a linear relaxation of our MILP can be sufficient (see the paper for

interesting properties)

Practial Implementation with Fast Heuristics

Algorithm 1: IPI(-LP): Incremental Policy Iteration for POMDPs.
Data: POMDP
Result: FSC for POMDP
FSC.N ← {n1} ; /* the first node */1
FSC.N ← FSC.N ∪ {n2} ; /* the second node */2
while impr = true do3

Policy evaluation4
for n ∈ FSC.N do5

impr ←IMPROVENODE(FSC, n); /* DP or LP */6

if ¬impr then /* escape is required */7
impr ←ONPOLICYLH(FSC)8
if ¬impr then9

impr ←BESTOF(OFFPOLICYLH, SPLIT, CORNER)10
if ¬impr then11

impr ←MILPESCAPE(FSC)12

Prune dominated nodes13

Results
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Figure 5 : Relative values: normalised values so that the SARSOP upper bound is 1 and the
worst value achieved by any algorithm is 0. Relative time: normalised time where the longest
time is 1 and the shortest time is 0.

Conclusion

I A new view on principled methods for policy iteration in POMDPs
I A new efficient method for improving individual nodes
I An intuitive explanation of local optima and challenges in escaping it
I A guaranteed method for escape that facilitates fast, anytime execution
I The best node for escape is deterministic
I Heuristic methods analysed (with new connections identified) and used in a

practical and well-justified manner
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