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» Finite-state controllers (FSCs) are the most energy efficient POMDP _

policies (see Grzes et al. “Energy Efficient Execution of POMDP Policies.” )

which shows their suitability for mobile applications There always exists an optimal solution to the quadratic problem shown in

Fig. 3 that is integral V,y ..o P(n’, alo), i.e., there exists an optimal
g g a, : P

» Efficient and robust algorithms that compute small policies/controllers _ S
solution that corresponds to a deterministic node.

become desirable

» We investigate incremental methods that guarantee the escape from local
optima

» We push the understanding and the performance of policy iteration for
POMDPs to the point that for the first time they are competitive with the max: Y . o Y(s,n';a,0)Vi°(s) — 3

. — 1- / — 1.

state-of-the-art point-based methods st 2 w(s) =15, ,P(n,alo) =1,

V3701702 an P(n]-’ a|0]_) — an P(n27 a|02)

Vo8 2> > w(s)V7(s);

Vsw(s) € R; V0P (', alo) € {0,1};

Vs,a,0n0 < y(s,a,0,n") < P(n',alo);

Vs,a,o,n’w(s) + P(",a a|o) —1< Y(sa a, 0, n,) < W(S);
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Figure 4 The McCormick transformation of the quadratic program in Fig. 3.
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» Thanks to the above theorem, McCormick relaxation finds an optimal,
deterministic node

» MILP is intractable, but we don't need the optimal solution

» Even a linear relaxation of our MILP can be sufficient (see the paper for
interesting properties)

Algorithm 1: IPI(-LP): Incremental Policy Iteration for POMDPs.

Data: POMDP

Result: F°'SC for POM DP

FSC.N < {n:i}; /+ the first node
FSC.N < FSC.N U {na}; /+ the second node
while impr = true do

Policy evaluation

forn € FSC.N do

impr <—IMPROVENODE(F'SC,n); /+* DP or LP
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Figure 1 : Alpha vectors o for improved nodes. if ~impr then /v escape is required

impr < ONPOLICYLH(FSC)
if ~2mpr then
impr <BESTOF(OFFPOLICYLH, SPLIT, CORNER)
if ~2mpr then
| impr <MILPESCAPE(FSC)
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The naive way to compute the exact DP update for POMDPs is to II |I| ‘ I ||||I||| | ‘Ill“ ||||||| I I l| |

enumerate all possible alpha vectors. We can compute the set I®° of vectors P QP Mesy o)
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Ra(S) Figure 5 © Relative values: normalised values so that the SARSOP upper bound is 1 and the

[a° Va’O(S) — + ~ E P(O‘S,, a)P(s’|a, S)Vﬂ(s’), v, V\.IOI’St. value achieved by any algc.)rithm is 0. Relative time: normalised time where the longest
n n
‘Ol time is 1 and the shortest time is 0.

Having V2-°(s) for each (a, 0) pair, we can formulate the following
optimisation problem:
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Figure 2 © Possible node improvements computed in BPI; a; corresponds to an old node and
«j to a new node.
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max. Za,n’,o,s w(s)P(n",alo)V3°(s) — B » A new view on principled methods for policy iteration in POMDPs

st. ) w(s) =1; Zn’,a P(n’;alo) = 1; » A new efficient method for improving individual nodes
Vao1,0, 2_n, P(N1,a]01) = ) P(n2, aloy) » An intuitive explanation of local optima and challenges in escaping it
Va8 2 > _sw(s)V7(s); » A guaranteed method for escape that facilitates fast, anytime execution
Vsw(s) € R; Vi a0P(n',alo) € [0,1]

Figure 3 © A quadratic optimization program to search for a new node that provides maximal » Heuristic methods analysed (with new connections identified) and used in a

» The best node for escape is deterministic

improvement at the entire belief simplex; the belief w (witness belief) is the belief at which the
improvement happens. Decision variables are the witness belief w, the current value 3 at belief
w, and node parameters P(n’, a|o) which, when interpreted as probabilities, correspond to

P(n’|o)P(a).

oractical and well-justified manner

This research was sponsored by NSERC and MITACS.

e-mail: m.grzes@kent.ac.uk and ppoupart@uwaterloo.ca www: http://www.cs.kent.ac.uk/people/staff/mgd83/




