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Finite-state Controllers (FSCs) for Partially Observable
Markov Decision Process (POMDPs)
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Value Function: α-vectors
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Policy Iteration:

I Compute α-vectors for a current controller

I Use those α-vectors to improve the controller



Node Improvement in Bounded Policy Iteration (BPI)

1-simplex of 2 states

v
a
lu

e
 a

t 
st

a
te

 0

v
a
lu

e
 a

t 
st

a
te

 1

αi

αj



Node Improvement in Bounded Policy Iteration (BPI)

1-simplex of 2 states

v
a
lu

e
 a

t 
st

a
te

 0

v
a
lu

e
 a

t 
st

a
te

 1

αi

αj

b~o(n,s)



Node Improvement in Bounded Policy Iteration (BPI)

1-simplex of 2 states

v
a
lu

e
 a

t 
st

a
te

 0

v
a
lu

e
 a

t 
st

a
te

 1

αi

αj

b~o(n,s)



The Need to Escape Local Optima

1-simplex of 2 states

v
a
lu

e
 a

t 
st

a
te

 0

v
a
lu

e
 a

t 
st

a
te

 1

αi

αj

δ

1-simplex of 2 states

v
a
lu

e
 a

t 
st

a
te

 0

v
a
lu

e
 a

t 
st

a
te

 1

αi

αj

1-simplex of 2 states

v
a
lu

e
 a

t 
st

a
te

 0

v
a
lu

e
 a

t 
st

a
te

 1

αi

αj



Find a New Node with Maximal Improvement Over Entire
Belief Simplex

Γa,o ← V a,o
n (s) =

Ra(s)

|O|
+ γ

∑
s′∈S

P(o|s ′, a)P(s ′|a, s)V π
n (s ′), ∀n

max:
∑

a,n′,o,s w(s)P(n′, a|o)V a,o
n′ (s)− β

s.t.
∑

s w(s) = 1;
∑

n′,a P(n′, a|o) = 1;

∀a,o1,o2
∑

n1
P(n1, a|o1) =

∑
n2
P(n2, a|o2)

∀nβ ≥
∑

s w(s)V π
n (s);

∀sw(s) ∈ R; ∀n′,a,oP(n′, a|o) ∈ [0, 1]

I Quadratic objective

I All constraints are linear



Optimal Solution to the Escape Problem

Theorem 1: There exists an optimal solution that corresponds to
a deterministic node.



How to Solve this Quadratic Programme?

I Quadratic terms are products of two probabilities—the belief
state, w(s), and the edge probability, P(n′, a|o); thus,
McCormick relaxation can be applied

I Thanks to Theorem 1, McCormick relaxation finds an
optimal, deterministic node

I But, McCormick relaxation leads to a mixed-integer linear
programme (MILP) which is intractable

I Fortunately, we don’t need an optimal solution to our MILP;
solutions that yield a non-trivial improvement at w(s) will
eventually help the policy iteration algorithm

I Even a linear relaxation of our MILP can be sufficient (see the
paper for interesting properties)



Heuristic Tricks to Avoid Heavy Guns (i.e. CPLEX)

I One-step lookahead (on-policy and off-policy)

I Node splitting

I Checking corners



Some Results from our Paper
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Figure : Relative values: normalised values so that the SARSOP upper
bound is 1 and the worst value achieved by any algorithm is 0. Relative
time: normalised time where the longest time is 1 and the shortest time
is 0.



Conclusion

1. A new view on principled methods for policy iteration in
POMDPs

2. A new efficient method for improving individual nodes

3. An intuitive explanation of local optima and challenges in
escaping it

4. A guaranteed method for escape that facilitates fast, anytime
execution

5. Deterministic nodes appear to be sufficient for node
improvement, and the best node for escape is deterministic
too

6. Heuristic methods analysed (with new connections
identified—node splitting vs. node improvement) and used in
a practical and well-justified manner


