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Motivating Reward Shaping



Reinforcement Learning

e
—= (o }—

state rreward action

" s, | Environment ]4—

| \.

[Sutt 98]

Temporal credit assignment problem



Deep Reinforcement Learning
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Challenges
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» Temporal credit assignment problem

> In games, we can just generate more data for reinforcement
learning

» However, ‘more learning’ in neural networks can be a
challenge ... (see next slide)



Contradictory Objectives
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» Easy to overfit

» Early stopping is a potential regulariser, but we need a lot of
training to address the temporal-credit assignment problem

» Conclusion: It can be useful to mitigate the temporal credit
assignment problem using reward shaping!



Reward Shaping

> <5t7 at, St+1, ft+1>

> rey1 goes to Q-learning, SARSA, R-max etc.

v

rt+1 + F(St7 at7 St-‘rl)

v

where F(s¢, at, st41) = YP(st+1) — P(st)



Policy Invariance under Reward Transformations

Potential-based reward shaping is necessary and sufficient to
guarantee policy invariance [Ng 99]

Straightforward to show in infinite-horizon MDPs [Asmu 08]

Investigating episodic learning leads to new insights



Problematic Example in Single-agent RL
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» F(s,goal) =0 in my PhD thesis
» [Ng 99] required F(goal,-) =0

» ®(goal) = 0 is what is necessary



Multi-agent Learning and Nash Equilibria
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Multi-agent Learning and Nash Equilibria

When M is sufficiently large,

we have a new Nash Equlibrium.




PAC-MDP Reinforcement Learning and R-max
Optimism in Al and Optimisation
> A*
» Branch-and-Bound

» R-max and optimistic potential functions [Asmu 08|



PAC-MDP Reinforcement Learning and R-max
Optimism in Al and Optimisation
> A*
» Branch-and-Bound

» R-max and optimistic potential functions [Asmu 08]

Sufficient conditions for R-max
> vsGGoalscD(S) =0
> Yseknown®(s) = C where C is an arbitrary number

> vsGUnknowncb(S) >0

» where Goals N Known N Unknown = &



MDP Planning: Infinite-horizon

» MDP solutions methods: linear programming
> F(s,a,5") = y®(s') — &(s)

» The impact of reward shaping:

Z)\(s,a) (s,a,5")F(s,a,s) = Z¢ (s’
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MDP Planning: Finite-Horizon
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