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Abstract— The decisions made by machines are increasingly
comparable in predictive performance to those made by hu-
mans, but these decision making processes are often concealed
as black boxes. Additional techniques are required to extract
understanding, and one such category are explanation meth-
ods. This research compares the explanations of two popular
forms of artificial intelligence; neural networks and random
forests. Researchers in either field often have divided opinions
on transparency, and comparing explanations may discover
similar ground truths between models. Similarity can help to
encourage trust in predictive accuracy alongside transparent
structure and unite the respective research fields. This research
explores a variety of simulated and real-world datasets that
ensure fair applicability to both learning algorithms. A new
heuristic explanation method that extends an existing technique
is introduced, and our results show that this is somewhat
similar to the other methods examined whilst also offering an
alternative perspective towards least-important features.

I. INTRODUCTION

Machine Learning (ML) is ubiquitous, and the presence of
perceivably intelligent machines is commonplace in much of
society [1], [2]. We delegate large amounts of responsibilities
to machines, and understanding why and how decisions are
made is crucial to mitigating problem behaviour.

ML models (e.g. decision trees, neural networks) are used
to provide simple interfaces to highly-complex problems [3]
(e.g. abstraction of the very complex mammal brain through
graphs). Clear understanding of a model contributes towards
this goal, but this human-centric design is often a secondary
objective behind predictive performance. Understanding can
improve efficiency, error correction and accuracy, along
with enabling trust [4], [5]. It is unlikely that a patient
preparing for serious life-critical surgery would consent to
an abstruse operation, and workplace standards for human
are often incredibly comprehensive; is it then permissible to
excuse justification of machine actions? Allowing machines
to make decisions about humans is a contentious area, and
there is much work on identifying and resolving machine
discrimination and fairness bugs [2], [6].

Some applications of ML may be content with unexplained
decisions, maybe as a solution or algorithm is difficult to
describe [4], and a leading retort against transparency is that
it reveals “trade secrets” (e.g. a business model). However,
the need for understandable and contestable decision making
is now a legal requirement (GDPR) for all businesses that
interact with humans [7]. Safety and security are paramount
to accountable, fair, and ethical ML research [8].
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There is clearly a need to understand machine decisions,
yet, it is often perceived [5] that understandable representa-
tions are structure dependant. ML algorithms are typically
categorised as either White Box (WB) or Black Box (BB),
and this has previously determined whether a learning algo-
rithm can be understood. WB algorithms produce decisions
according to transparent structure, examples are classification
rules [9], shallow decision trees [4], and linear models [5].
These can be decomposed into disjunctive predicates. Alter-
natively, BBs are complex structures with many parameters
and settings that are often incomprehensible to humans. A
popular algorithm in this category is the neural network,
and variants of these have achieved record accuracy on
complex ML tasks; such as object recognition [10] and
natural language processing [11].

A. Our Work

A common interpretation of the ‘best’ algorithm to make
decisions about humans often resolves to whichever can
be contested and defended [7], but this may not be the
most predictive (e.g. Random Forest (RF) application to
granting loans [12] when Neural Networks (NNs) may
have better predictive accuracy [13]). This work explores
similarity between explanations of RFs and NNs, and if these
are equivalent, perhaps predictive accuracy can become a
larger contributor when choosing which algorithm to apply
to new data. Formally, the learning algorithms that we
explore are examples of BBs, but it can be argued that
RFs are “grey box” models. Individual decision trees often
have defined structure, but it is unclear which models are
prioritised when collectively aggregating decisions.

As highlighted by [5], the definition of ‘interpretability’
is rarely explicit. From their research, we interpret this
as “useful information of any kind.”. This recognises that
ML can produce more than just predictive accuracy (e.g.
causal associations), and that other information or metrics
may be the most important. This definition can be split
into two distinct components: interpretation and explanation.
Informally, the interpretation of a model collectively assesses
the structure and parameters to determine which features
are important across all data (general knowledge of the
domain), while explanations identify how the model responds
to a particular input. Interpretation and explanation may
accompany each other, but importance scores between these
are unlikely to correlate in all situations. Formal definitions
of these terms are given in [14].

This paper focuses on explainability, but this is not well
defined in discourse, and different areas of research refer



to explanability differently (attribution techniques for NNs
[14] vs case-wise iterpretations [15] for RFs). We generalise
explanation method to mean any process used to generate
an explanation, where an explanation assigns quantitative
importance scores (a.k.a relevance) to each feature of a
particular data instance.

Consider an object detection task in computer vision as
an example of why explanations are important. Interpre-
tation would identify which pixels are most active across
all images, or those most active for a particular class, but
explanation will identify which pixels contribute most for a
specific input. If a prediction is incorrect, explanation can
identify (provide evidence) which pixels contributed most
to the outputs, and a human can visually interpret this to
uncover model or input flaws (see Fig. 1 for explanation ex-
amples). Such insights help with debugging and corrections
[16].

To our knowledge, no other research has evaluated the
explanations of RFs and NNs to conclude whether the same
features are identified as important by both. Our research is
not an exhaustive comparison of all possible model variations
and parameters, but we explore several existing explainabil-
ity approaches, and contribute a heuristic extension of an
existing algorithm.

In summary, the main contributions of this paper are:
• The first paper to compare explanations between neural

networks and random forests
• Replication and extension of findings and methodology

from previous work
• A new heuristic extension of an existing method
• Advice on which algorithms and parameters are most

explanatory for domains with particular characteristics

II. ALGORITHMS

A. Neural Networks

These are implemented through a graph structure con-
taining layers of units, where the internal representation of
inputs is transformed at later depths. Each unit in a network
is labelled with the product of activations and weights
in the proceeding layer applied to a non-linear activation
function, and there are many different model variations. The
shallow neural networks used in this research consist of fully-
connected layers of units.

Sections II-A.1 & II-A.2 define the explanation methods
which we use in this paper to explain decisions of NNs.

1) Sensitivity Analysis: Sensitivity evaluates the impact of
each input on network output. Explanations are unbounded,
and relevance scores may be unproportionate and scattered,
however, Sensitivity Analysis (SA) has successfully ex-
plained several problems [14]. In this paper we define the
sensitivity of an input feature Xi as the absolute summation
of each network output partially differentiated with respect
to Xi.

Our implementation of SA is:

Si(X) =

√∑|o|
k=1

(
∂ok
∂Xi

)2
, (1)

Fig. 1: Results of our LRP (left) and SA (right) implemen-
tations over a ‘0’ from the MNIST [18] dataset.

where Si(X) is the sensitivity score, and ok is the set of
network outputs.

2) Layerwise Relevance Propagation: Given an exist-
ing network and a data example X , Layerwise Relevance
Propagation (LRP) [17] discovers the contribution of each
input feature Xi by backpropagating output activations. The
algorithm was originally applied to object recognision to
identify which pixels in an image are being “looked at” by
the network, but research in the area supports application to
a range of different network variations and problems [14].

Our research uses a consistent [10] parameter variant of
LRP called the z-rule that only propagates through connec-
tions with positive weights. The algorithm is implemented
according to [14] and can be expressed as:

Rj =
∑
k

aj max(0, wjk)∑
j′
aj′ max(0, wj′k)

Rk, (2)

where R is the relevance score, j is the current unit, k is
a unit in the next layer (towards output), a is the activation
and w is the weight between two units. Given a mixed-value
vector, the max function specifies that every negative value
becomes 0.

3) Implementation: Figure 1 depicts our implementations
of LRP and SA over the MNIST [18] dataset. This is
an object recognition task, where an NN must identify
handwritten digits between 0 and 9. The underlying NN
that explains these images uses similar hyperparameters to
those in S3 of Sec. III-C (a single hidden layer, 40 HU,
100 epochs, 32 batch size, no biases, ReLu and Softmax
activation functions). Here we explain the input image, 0.
LRP very clearly explains this, while the explanation of SA
is very scattered. Our results are consistent with those of
other research [14].

B. Random Forests

Decision Trees (DTs) split on important features through
recursive-partitioning that aims to maximise the class-purity
of each partition. Predictive performance of these can be
improved through aggregation of several DTs into a forest
ensemble, but this masks the transparent structure. This paper
focuses on the Random Forest (RF) [19] and Conditional
Inference Forest (CF) [20] algorithms. The term forest is
generalised in this paper to mean either RF or CF depending
on context, and we focus on ML classification.

Forests classify data through majority voting, where the
majority contains all DTs that classify a data example
according to the most frequent prediction of all trees. There



are various DT hyperparameters that control tree structure,
but the key difference between implementations is how
subtrees are created. This is important for our experiments
as this can dictate which features appear in a DT. The
main hyperparameters for forests are ntree (the number of
ensemble members) and mtry (the number of random features
to trial over at each DT) as these effect individual DT
structure and feature frequency.

Research by [21] has shown that interpretability of forests
may fluctuate relative to the underlying ensemble members,
as some DTs (e.g. CART [19]) favour splitting on numerical
or nominal features with many categories. Their research
goes on to show that forests should be unbiased when the
objective is interpretability. Our research explores RFs and
CFs to test both biased and unbiased splitting.

The different types of forests can be explained through the
explanation methods below in Sec. II-B.1 & II-B.2.

1) Intervention in Prediction Measure: This algorithm is
similar to the simple selection frequency method described
by [21], but only certain features are counted, opposed to
all features across all trees. The Intervention in Prediction
Measure (IPM) [15] records the likelihood of each feature
appearing as a splitter in the applicable path of each ensemble
tree, and this frequency is averaged over all trees. The
explanation score assigned to each feature is the average
path-likelihood across the entire forest. IPM abbreviates ex-
planation over RFs, while explanations over CFs are referred
to as CIPM throughout this paper.

2) Adjusted IPM: The method that we propose in this
paper extends IPM by ensuring that paths which contribute
to a prediction (those in the winning majority) decide expla-
nation. This algorithm is partially class discriminative [22]
as feature likelihood alters in response to prediction, but
majority and minority DTs may have similar structure. The
current paper abbreviates AIPM as application of Adjusted
IPM over RFs, and ACIPM as application to CFs.

III. METHODOLOGY

In this section, we give details about our experiment
methodology, describing what and how we tested.

A. Tools

The Conditional (CF) and Random (RF) Forests are re-
spectively implemented in R by the cforest [20] and random-
Forest [19] packages, and these are available on the CRAN.
Support for NNs and manipulation of these uses the high-
level Keras1 library and low-level Tensorflow2 library.

The similarity between explanation methods is measured
using Spearman’s ρ and Kendall’s τ correlation metrics.

The original GlaucomaMVF dataset is obtainable from the
ipred [23] package in R, all other datasets can be obtained
from the UCI3 repository, and these are referenced in Tab. III.

1https://keras.rstudio.com
2https://tensorflow.rstudio.com
3https://archive.ics.uci.edu/ml/datasets.html

B. Method

We evaluate the explanation methods introduced in Sec. II
over simulated and real data. Simulated data is explained in
Sec. III-D.

By evaluating explanations, we are assessing:

• Whether competing models empirically produce similar
explanations

• Whether features correlate between explanations
• The confidence of a model, and the resulting explana-

tion preciseness
• Under what conditions correlation between models is

weak
• Where applicable, which explanation method correctly

captures the true explanation of features

For each dataset, we begin our comparisons by randomly
sampling 100 unique (without replacement) data instances.
Each explanation method independently generates explana-
tions for each of these using an adaptation of leave-one-
out cross validation; where one instance is selected to be
explained, and all others in the dataset are used to construct
a model. The explanations generated by this process have
differing confidence values, so we rank each feature in each
explanation to ensure fair comparison.

Average feature ranks are produced from the 100 expla-
nations, and this is recorded for each explanation method.
This metric is most applicable when we know the important
features, as with the simulation data, and this averaging is
used in [15]. Real data may not have consistent important
features, so we also generate correlation heatmaps. Each
correlation score is again averaged over the 100 explanations.

C. Datasets

Multi-layered NNs can learn complex representations, and
this is why they perform well in domains where input
features are un-informative and do not reveal information
about the final prediction. On the contrary, SIFT features
[24] aggregate individual pixels in computer vision into
informative regions or shapes. RFs are usually applied to
informative features (e.g. presence of a disease) and these
are better correlated (prehaps unintentionally [25]) with the
prediction. Prior explainability work focuses on informative
features [15], [21], and simulated data can embed high-
level associations between features. We thus believe that
comparing informative features is not a limiting factor.

Features values are numeric, and scaled between 0 and
1. This is for fair applicability to NNs, RFs and each
explanation measure, and this scaling is common in live
deployment [26]. We also remove instances with missing
values from the real datasets. These are detailed in Tab. III.

D. Simulated Data

Simulated data can assess how the explanation methods re-
spond to different dimensionality and structure, while similar
papers exploring the techniques used here also experimented
over simulated data [15], [21], [27]. Previous experiments



Scenario Instances Features
S1 300 6
S2 3000 12
S3 1500 30

TABLE I: The dimensionality of each scenario.

RF CF NN
Scenario ntree mtry ntree mtry HU Epochs

S1 500 4 300 4 4 750
S2 450 8 250 6 9 700
S3 400 13 200 9 25 650

TABLE II: The non-default hyperparameters across experi-
ments. ntree is the amount of trees in the ensemble, mtry is
the number of random features to try in each tree and HU
is the number of hidden units.

have only evaluated nominal features, and testing over nu-
merical values increases the applicability and validity of
these explanation methods [27].

Knowing and being able to manipulate class labels and
feature values of simulated data ensure that we know the
target result of each explanation. We explore three sizes of
simulation scenario (Tab. I), and each of these contains four
different datasets (problems).

Each dataset being explored is as follows:
Baseline: every feature value and class value is uniformly

sampled between 0 and 1, therefore explanatory features do
not (intentionally) exist.

One important feature: as in [15], the class value is
decided by a single feature (feature 1) and explanations
should highlight this. If the first feature value is greater than
0.5, the class becomes 0, otherwise it becomes 1.

Co-Importance: these datasets test explanations over co-
importance. If the combined sum of features 1 and 2 is less
than or equal to 1, or more than 1.5, the class of an instance
is labelled as 0, otherwise it becomes 1.

Feature importance relative to feature index: with a set
of features f , the feature at index i exerts i

|f | influence. The
class assigned to an instance X is 1 if the weighted sum
of each feature is greater than 0.5, otherwise it is 0. This is
expressed as:

C(X) =

1, if
|f |∑
i=1

(
i
|f |Xi

)
> 0.5

0, otherwise
, (3)

where C(X) is the class of X , and Xi is a feature value.
Feature importances increase progressively, and this should
be visible in the explanation results.

Some properties of the datasets are inhereited from other
research, notably [15], [21], [27]. The values of ignored fea-
tures are sampled from a uniform distribution between 0 and
1, and the class label of each instance may flip according to
a noise probability. These values are 0.1, 0.2 and 0.3. Noise
allows us to compare simulated explanation correctness and
correlation in response to predictive accuracy.

Non-default hyperparameters are listed in Tab. II.

Dataset Instances Features Classes MV Ref
GlaucomaMVF 170 66 2 17 [23]

Abalone 4177 8 29 0 [29]
Diabetic Retinopathy 1151 20 2 0 [30]
White Wine Quality 4898 12 7 0 [26]

Website Phishing 1353 10 3 0 [31]

TABLE III: Statistical summary of the real datasets.

E. Model Structure

This research uses NNs with a single hidden layer. This is
because we focus on data with informative features, and to
avoid gradient problems (shattering, vanishing or exploding
[14]) that would corrupt the findings of sensitivity analysis.
Our decision is further reinforced by [28] who states that
any network can be represented by a single hidden layer
containing many hidden units.

Unit biases are not present in the NN. The LRP algo-
rithm does not specify behaviour for these, and these are
not included in similar research using this technique [14],
[22]. Empirical evaluations, which are omitted for brevity,
showed that neither inclusion of biases nor additional hidden
layers significantly altered accuracy on our domains. Other
NN implementation details include that the ReLu activation
function is applied to each Hidden Unit (HU), the softmax
function is applied to each output unit, the batch size of each
update is 32, and RMSProp is used as the loss function. The
default number of HUs for the real data are 2

3 of the number
of features.

As mentioned in Sec. II-B, we use bootstrap sampling
without replacement when constructing RFs to avoid bias.
This method of sampling has been shown to be a fairer
assessment of feature importance if features have a varying
number of nominal categories or split on numerical attributes
[21]. By incorporating this in both tree ensembles we can
reduce bias that would skew comparisons.

IV. RESULTS

We now explore several simulation and real-world
datasets. The x-axis displays each explanation measure, and
the y-axis represents either Average feature Rank (AR) or
noise. The AR is scaled between 0 and 1 in order to highlight
importance, and darker bar shades indicate higher ranks.

A. Simulated data

Simulated data is paramount in transparency research
because the ground truth is known [21], we therefore present
results for the simulated datasets defined in Sec. III-D first.

1) Dataset 1—Baseline: Figure 2 depicts each explana-
tion method on scenarios of different size and noise. We
would expect to see the top of the bars aligned if all features
contributed equally to decisions, but high variance in bar
height across all forest results indicates that these algorithms
incorrectly favour some features. On the contrary, we can
see that LRP and SA are clearly optimal in scenarios 1 & 2
across all noise levels since their bars have similar height.

As we can clearly see in Fig. 2-S1, the original RF
explanation methods (IPM and CIPM) incorrectly identify
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Fig. 2: Explanation results of dataset 1 over the three
simulated scenarios (external y-axis). Each scenario contains
results of each noise level (internal y-axis). The x-axis for
each graph displays the 6 explanation methods, and each sub-
sub-graph displays the importance of each feature according
to the explanation measure, the given scenario and the given
noise. Bar height represents importance, and darker bars are
the most important.
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Fig. 3: Feature Rankings for Simulation Dataset 2.

specific features as the most important. One intuition for
this behaviour and the fact that noisy features are favoured is
that RFs must always have a root node. A slightly important
feature (which is only slightly more informative) is attributed
a disproportionate amount of importance; especially if the
DT is a decision stump (one splitter). LRP can distribute
the rank uniformly across all irrelevant features, whereas
DT must prioritise a feature(s) as important in order to
create nodes and partition data. Due to their nature, RFs
are somewhat “pushed” to make some features important,
whereas LRP can remain uncertain and does not have to
commit to strong opinions. This is an interesting finding as
it was not captured in previous research [15].

2) Dataset 2—One Important Feature: Figure 3 shows the
AR of feature 1 over the six explanation methods. There are
three bars per method, and the smallest amount of noise is
shown at the left-most bar of each explanation result. The
bar reaches 1 when the feature is the most important.

We can see that the forest explanation methods assign
feature 1 the most importance, in contrast, LRP consistently
struggles over all three scenarios and it was not able to
confidently identify the importance of feature 1. This result
can be partially explained using arguments in Sec. IV-A.1
where we state that DTs must always commit to a feature(s),
whereas LRP has flexibility to remain neutral. The fact that
DTs must have a root node is clearly useful in this problem.

Sensitivity analysis identifies the feature perfectly in sce-
nario 3, and almost as assuringly in scenarios 1 and 2. More
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Fig. 4: Feature Rankings for Simulation Dataset 3.
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Fig. 5: Feature Rankings for Simulation Dataset 4.

features and data instances appear to increase confidence.
The ability for it to confidently choose the best feature
diminishes as the feature-to-instance ratio decreases, but it
is otherwise capable of identifying the same features as the
forest explanations. For the reasons mentioned above, forests
also appear to be the most robust against moderate levels of
noise.

3) Dataset 3—Co-Importance: Figure 4 depicts the im-
portance given to features 1 and 2 across all simulated
scenarios. All methods correctly determine that features 1
and 2 are the most relevant. We control the noise level for
each method, and this leads to 6 bars and a lengthened graph.
LRP is the least confident, and it only just narrowly explains
correctly. LRP is uncertain which features are the best, and
this is a trend throughout the simulation results. We explore
possible resolutions to this in Sec. IV-C. Forest methods
are the most confident, potentially because they implement
a kind of internal and hard feature selection, however, the
fully-connected NNs consider all features, and as long as
classification quality (e.g. loss and predictive accuracy) is
satisfactory, these are not encouraged to perform extreme
alterations to weights and potentially regress.

4) Dataset 4—Relative Importance: This simulation
dataset assigns features progressive importance. The results
in Fig. 5 again show the average rank of each feature across
all scenarios and noise.

One can see that forest methods identify the correct ranks
across all experimental conditions; as illustrated by the “tri-
angular” shape favoured by the bars. Some inconsistencies
can be observed in the largest scenario (bottom), and we
believe that this is due to a large number of features and
a small ‘mtry’ parameter. A DT will split on the feature
that best partitions instances, but consistently omitting the



Dataset RF Acc CF Acc NN Acc
GlaucomaMVF 91.4 ± 0.007 89.7 ± 0.008 85.1 ± 0.017

Abalone 54.8 ± 0.003 56.0 ± 0.004 56.0 ± 0.003
Diabetic Retinopathy 68.1 ± 0.006 69.9 ± 0.007 72.6 ± 0.014
White Wine Quality 70.9 ± 0.003 62.4 ± 0.002 58.8 ± 0.005

Website Phishing 89.2 ± 0.002 89.0 ± 0.002 87.2 ± 0.005

TABLE IV: Testing accuracy across the test sets of each real
dataset. The ± represents the standard deviation over the 100
models.

IPM

AIPM

CIPM

ACIPM

LRP

SA

IP
M

AI
PM

C
IP

M
AC

IP
M

LR
P SA

(a) Kendall’s τ

IPM

AIPM

CIPM

ACIPM

LRP

SA

IP
M

AI
PM

C
IP

M
AC

IP
M

LR
P SA

(b) Spearman’s ρ

6
4

6
6

6
5

4
9

3
5

4
7

2
4

6
4

6
6

6
5

4
9

3
5

4
7

2
4

6
4

6
6

6
5

4
9

3
5

4
7

2
4

6
4

6
6

6
5

4
9

3
5

4
7

2
4

6
4

6
6

6
5

4
9

3
5

4
7

2
4

6
4

6
6

6
5

4
9

3
5

4
7

2
4

0

0.25

0.5

0.75

1

IPM AIPM CIPM ACIPM LRP SA

A
ve

ra
g

e
 R

a
n

k

(c) Feature Rankings

Fig. 6: Feature Rankings for the Glaucoma Dataset.

most important features can increase the frequency of less
important features. This skews explanations that use feature
frequency, and so ‘mtry’ may bias these explanations.

LRP finds this task particularly challenging. The “triangle”
of importance is partially present when there is less noise and
the feature-to-instance ratio is low, but this quickly starts to
flatten. We believe that larger datasets may work better, and
we explore this in Sec. IV-C.

B. Real World Data

This section evaluates explanation over the datasets in
Tab. IV. Each real dataset is accompanied by a graph
displaying the six explanation methods and average feature
rankings. These are kept consistent to enable comparisons,
and the selection of features is constructed from the unique
union of the top-4 AR across each explanation method.

We show correlation heatmaps between each pair of ex-
planation methods, and this process is described in Sec. III-
B. These figures are titled with the applicable correlation
method, and explanation methods are labelled on each axis.

1) GlaucomaMVF: As we can see from Fig. 6c, features
64 and 66 were unanimously chosen among the best features
across most (except LRP) explanation methods, showing that
it is possible to produce similar explanations over many
features [27]. IPM and SA are both certain that feature 64
is the most explanatory, while two of the four features are
present across all methods. The performance accuracy of the
base learners are listed in Tab. IV. Although the NN is less
accurate than the RF and CF on this dataset, these findings
identify that the same accuracy across models may not be
necessary for explainability if there are informative features
in the data.

Figures 6a & 6b show that the correlation between the
forest methods is good, but there is little correlation between
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Fig. 7: Feature Rankings for the Abalone Dataset.

IPM

AIPM

CIPM

ACIPM

LRP

SA

IP
M

AI
PM

C
IP

M
AC

IP
M

LR
P SA

(a) Kendall’s τ

IPM

AIPM

CIPM

ACIPM

LRP

SA

IP
M

AI
PM

C
IP

M
AC

IP
M

LR
P SA

(b) Spearman’s ρ

3 1
1

5 4 9 2
1

4 3 1
1

5 4 9 2
1

4 3 1
1

5 4 9 2
1

4 3 1
1

5 4 9 2
1

4 3 1
1

5 4 9 2
1

4 3 1
1

5 4 9 2
1

4

0

0.25

0.5

0.75

1

IPM AIPM CIPM ACIPM LRP SA

A
ve

ra
g

e
 R

a
n

k
(c) Feature Rankings

Fig. 8: Feature Rankings for the Diabetic Retinopathy
Dataset.

the forests and NN. Our interpretation is that the high feature
count and the existence of few instances (170 in this dataset)
effectively mean that only a few features are useful. The other
features likely contributed very little information, and so
these do not significantly impact classification, yet they skew
the correlations. This made the extremely small explanation
values undistinguishable from each other, and unimportant
features were effectively ranked randomly between each
explanation. We calculated correlations between the five
best features of each explanation method (correlating only
between the top features of each explanation method), and
results were significantly better correlated. In light of this
observation, we can argue that NNs and RFs are consistent
with respect to the most important features on highly dimen-
sional data.

2) Abalone: Tab. IV shows that no learning algorithms
have particularly high predictive accuracy on this dataset, but
Fig. 7 shows that explanation methods agree on the majority
of feature ranks. Feature 5 appears as the first, second or
third most important feature in each explanation method,
and all forest methods and SA confidently rank feature 7
as the most important. This highlights that the different
learning algorithms can still agree to an extend regardless
of predictive accuracy.

3) Diabetic Retinopathy: The correlation statistics in
Fig. 8a & 8b are surprising, as SA shows high agreement
with most other explanation methods, and different expla-
nation methods show a weaker correlation between methods
that should be intuitively similar. This indicates that the two
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Fig. 9: Feature Rankings for the White Wine Dataset.
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Fig. 10: Feature Rankings for the Website Phishing Dataset.

forests are prioritising features differently.
It should be noted that LRP poorly correlates with the

other explanation methods. This is apparent as all others
have respective agreement, and these rank features similarly,
whereas LRP failed to find two of the three most important
features agreed by all others. The fact that SA is consistent
with the correlations of other methods indicates that the NN
actually contain relevant explainability information, but LRP
cannot find it as well as SA. This may be due to using a
shallow NN, but it is quite interesting.

Figure 8c shows that features 3 and 15 appear among the
most important features across most explanation methods,
but this finding is not very confident. The feature-to-instance
ratio of the dataset is quite low and this could explain when
why there is a more scattered assignment of importance.

4) White Wine Quality: Figure 9 is the only dataset for
which we have explicit domain knowledge, and professional
opinions in the original paper [26] state that features 6 and 11
(bubbles and alcohol content) strongly influence each class
of wine. We can see that all the methods identified those
features, though in LRP they do not have the highest ranks
and confidence is lower.

5) Website Phishing: All algorithms have high predictive
accuracy and consistent feature rankings over this dataset.
We can see in Fig. 10c that all methods recognise either
features 1 or 3 as the most important.

This is the only experiment in which the results of LRP
are strongly correlated with RFs, and where our adapted IPM
method (ACIPM) can significantly contribute to finding use-
ful features. These display a very strong positive correlation
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Fig. 11: Experiments focusing on LRP.

in Fig. 10a and 10b. LRP agrees on feature ranks with most
other algorithms, and this is very much against the trend of
other results presented in this paper. One intuitive way to
explain the sudden rise in confidence is due to the structure
of the dataset. The original feature values are trinary (1, 0,
-1) and ordered. This means that there is a smaller possible
input space (310 = 59049 combinations) and algorithms
now have much tighter solution bounds. The training data
covers approximately 1

59 of all possible results, so perhaps a
single-layer NN can develop a better fit; thus improving the
explanations of LRP. The prominence of the NN and LRP
explanation measure means that it would be worth exploring
the properties of these data in future research.

C. Further Simulation Over LRP

This research has explored various datasets, and the ex-
planation results produced by LRP are surprising. We show
in Fig. 1 that our implementation of LRP and NN setup
produces visually accurate explanations over pixel inputs,
whereas SA is incredibly scattered. LRP is unsure of feature
importance on our simulated data, but other research [14]
shows that LRP can provide very accurate explanations. We
therefore explore other hyperparameter settings and sizes of
data to generate more confident results.

Figure 11 shows further experiments focused on LRP.
We again explore the problem in Sec. III-D:Dataset 4 (each
feature has relative importance depending on feature index),
and the setup of the experiments is similar to those in Tab. II
(10 features, 1250 epochs, 32 BS). The control variables in
each experiment are the number of simulated instances (x-
axis), and the number of hidden units (external y-axis).

This figure is zoomed into the 0-0.5 range as explanations
are not confident, but there is a pattern. As the number of
instances and hidden units increase, the network becomes
more certain of feature importances. This may indicate that
NNs with more hidden layers could be better for LRP.
The sub-graph in the top right (250,000 instances: 24HUs)
shows a clear “triangle” of importance scores. While SA
performs well on smaller datasets, LRP requires more data
and greater hyperparameter values. We were unable to eval-
uate extremely large datasets in our original scenarios due to
limitations in the R implementation of CFs.

V. CONCLUSION

To the best of our knowledge, this is the first system-
atic comparison of the explanations extracted from random
forests and neural networks over data of different size
and structure. Our results show that these methods can be
consistent, but this is largely dataset dependent. We have seen



(Website Phising and Abalone) that explanations are the most
correlated over data with few features and instances, and
our results show that high predictive accuracy does not nec-
essarily guarantee similar explanations between algorithms
(Abalone and Diabetic Retinopathy). We thus conclude that
small traditional datasets using informative features may
produce the most similar explanations between sensitivity
analysis using shallow neural networks and random forests.

Experiments in this paper extend the work of [15] by
testing additional data types and sizes, and as recommended
by [27], the IPM method has experienced additional de-
ployment and increased dimensionality. It was observed that
the methods which explain decisions of NNs are the most
consistent with IPM over unbiased random forests. This is
shown through the correlation metrics in Fig. 8a & 8b and
the average ranks in Fig. 8c, 9c & 10c of Sec. IV. This
confirms that removing bias from random forests [21], [27] is
a sound objective for IPM and related methods. We have also
identified that small values of the “mtry” parameter may bias
feature importance, and this should be investigated further.

Our experiments show that LRP results were not always
consistent with other methods, and we believe that this is
because it is designed for deep neural networks and low-
level (un-informative) features. We have seen that neural net-
works can identify feature importance, as sensitivity analysis
performs well, but LRP struggles to find this. Finding real
data that is equally applicable to both algorithms would be
interesting to explore in future research. We may have un-
intentionally disadvantaged LRP through use of informative
and high-level features, and discovering optimal scenarios
for both learners would be interesting. We partially explore
alternative neural network parameters in Sec. IV-C, but the
objective of this paper was to explore explanation methods
over RFs, CFs and NNs, and this proved difficult over larger
datasets. We have begun to identify that correctness of LRP
explanations increases with more hidden units and training
data.
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Montavon, Wojciech Samek, and Klaus-Robert Müller. Unmasking
clever hans predictors and assessing what machines really learn.
Nature communications, 10(1):1096, 2019.

[17] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
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