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Abstract. In the paper, a new method of decision tree learning for cost-
sensitive classification is presented. In contrast to the traditional greedy
top-down inducer in the proposed approach optimal trees are searched in
a global manner by using an evolutionary algorithm (EA). Specialized ge-
netic operators are applied to modify both the tree structure and tests in
non-terminal nodes. A suitably defined fitness function enables the algo-
rithm to minimize the misclassification cost instead of the number of clas-
sification errors. The performance of the EA-based method is compared
to three well-recognized algorithms on real-life problems with known and
randomly generated cost-matrices. Obtained results show that the pro-
posed approach is competitive both in terms of misclassification cost and
compactness of the classifier at least for some datasets.

1 Introduction

Nowadays computer-aided decision support systems become more and more pop-
ular in solving complex decision-making problems in marketing, finance and
medicine. Based on gathered datasets of examples they enable training various
types of classifiers in form of neural networks, decision trees and rules. However,
in most cases only the number of classification errors is taken into account during
the induction process. In many practical applications this classical approach is
not suitable because there are other factors, such as costs, which may influence
final decisions. In [24] Turney discussed different types of costs associated with
inductive learning (e.g., the cost of tests, the cost of objects and the misclassi-
fication cost). The term cost-sensitive classification encompasses all these types
of costs.

There are two main groups of methods for making a classifier cost-sensitive. In
the first group, individual error-based systems are converted into cost-sensitive
ones. One of the first attempts to incorporate misclassification costs into decision
tree learning was made in the CART system [4]. The method consists in the
modification of the class prior probabilities used in the splitting criterion and
in the application of the cost-based measure to a tree pruning. Another cost-
sensitive methods for pruning decision trees are proposed in [10,3]. However, it
should be emphasized that stand-alone pruning procedures have only a limited
capability to change the tree structure created by an error-based inducer. In [22]
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the C4.5 system [21] was modified using instance-weighting, but the method
requires converting of a cost matrix into a cost vector, which can result in poor
performance in multi-class problems. Recently, Ling et al. [17,26] proposed an
algorithm that minimizes the sum of the misclassification and test costs. This
approach is based on a new splitting criterion (total cost) for nominal attributes
and two-class problems.

The second group includes general methods for making an arbitrary clas-
sifier cost-sensitive. MetaCost [7] is based on wrapping a meta-learning stage
around the error-based classifier. Another method proposed by Zadrozny et
al. [25] uses cost-proportionate rejection sampling and ensemble aggregation.
Iterative weighting and gradient boosting are investigated by Abe et al. [1] in
multi-class problems.

The proposed approach consists in developing a specialized evolutionary algo-
rithm for global induction of cost-sensitive decision tree classifiers. Several EA-
based systems which learn decision trees in the top-down manner (e.g. BTGA
[6], OC1-ES [5], DDT-EA [12]) have been proposed so far. Generally, they apply
evolutionary approach to the search of splitting hyper-planes in non-terminal
nodes of oblique decision trees.

In this paper, a global approach to decision tree induction is advocated. In
contrast to a step-wise construction, the whole tree is being searched at the time.
It means the simultaneous search for an optimal structure of the tree and for all
tests in non-terminal nodes. The global approach was initially proposed by Koza
in [11], where genetic programming was used for evolving LISP S-expressions
that correspond to simple decision trees. A similar idea was investigated in the
GATree system [20] which directly evolves classification trees with nominal tests.
In our previous papers, we showed that EA-based global inducer can efficiently
generate univariate [13], linear [14] and mixed [15] decision trees.

Concerning applications of evolutionary techniques to cost-sensitive learning
of decision trees, according to our knowledge, only one attempt can be men-
tioned. In [23] Turney proposed the ICET system, which uses the standard ge-
netic algorithm to evolve a population of biases for the modified C4.5. Both
feature and misclassification costs are taken into account.

The rest of the paper is organized as follows. In the next section, the proposed
evolutionary algorithm is described in details. Section 3 contains experimental
validation of the approach on the benchmark classification problems with known
and randomly generated cost-matrices. In the last section conclusions and pos-
sible directions of the future work are presented.

2 Evolutionary Algorithm for Global Induction

The structure of the proposed evolutionary algorithm follows the typical frame-
work [18] and only application-specific issues (the fitness function, specialized
genetic operators, ...) are described in more detail in this section.
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2.1 Preliminaries

We assume that a learning set E = {e1, e2, . . . , eM} consists of M examples.
Each example e ∈ E is described by N attributes (features) A1, A2, . . . , AN and
labeled by a class c(e) ∈ C. The set of all examples from the class ck ∈ C is
denoted by Ck = {e ∈ E : c(e) = ck} and the class assigned (predicted) by the
tree T to the example e is denoted by T (e).

Let Cost(ci, cj) ≥ 0 be the cost of misclassifying an object from the class cj

as belonging to the class ci. We assume that the cost of the correct decision is
equal zero i.e., Cost(ci, ci) = 0 for all ci.

2.2 Representation, Initialization and Termination Condition

In our system, decision trees are represented in their actual form as classical uni-
variate trees where each test in a non-terminal node concerns only one attribute.
Additionally, in every node information about learning vectors associated with
the node is stored and it enables the algorithm to perform efficiently local struc-
ture and tests modifications during applications of genetic operators.

In case of a nominal attribute at least one value is associated with each
branch. It means that an inner disjunction is built-in into the induction al-
gorithm. For a continuous-valued feature typical inequality tests with boundary
thresholds1 [8] as potential splits are considered. All boundary thresholds for
each continuous-valued attribute are calculated before starting the evolutionary
induction [13]. It significantly limits the number of possible splits and focuses
the search process.

In standard error-based decision trees class labels are associated with leaves
by using the majority rule based on training objects which reached a leaf-node.
In cost-sensitive case class labels for leaves are chosen to minimize the misclas-
sification cost in each leaf.

Individuals in the initial population are generated as follows. The classical top-
down algorithm is applied, but tests are chosen in a dipolar way [12]. Among
feature vectors located in the considered node two objects from different classes
(so called mixed dipole) are randomly chosen. An effective test, which separates
two objects into sub-trees, is created randomly by taking into account only
attributes with different feature values. Recursive divisions are repeated until
the stopping condition (based on the minimal number of learning vectors in a
node or homogeneity of a node) is met. Finally, the resulting tree is post-pruned
according to the fitness function.

The algorithm terminates if the fitness of the best individual in the population
does not improve during the fixed number of generations (default value is equal
200). Additionally, the maximum number of generations is specified which limits
the computation time in case of a very slow convergence (default value: 1000).

1 A boundary threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples belong to two different classes.
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2.3 Fitness Function

The properly defined fitness function is a crucial element for every evolutionary
algorithm. In case of induction of decision structures it is obvious that there is
no possibility to directly optimize accuracy of the classifier on unseen examples.
Instead, the system performance on the training data is usually used to guide
the search process and additional factors are introduced to prevent the over-
fitting and to increase the generalization power of the classifier (e.g. [13,16]). An
analogous approach is applied in our system.

The misclassification cost MC(T ) of the tree T is estimated on the training
data:

MC(T ) =
1
M

·
∑

e∈E

Cost(T (e), c(e)). (1)

The values of the misclassification cost do not fit into range [0, 1] like classifica-
tion errors, however, it is easy to calculate the maximal cost for a given dataset
and a cost matrix:

MaxMC =
1
M

·
∑

ck∈C

|Ck| · max
i�=k

Cost(ci, ck). (2)

Hence, by dividing MC(T ) by MaxMC one can obtain the normalized misclas-
sification cost, which is equal 0 for the perfect prediction and 1 in the worst case.
Finally, the fitness function, which is maximized, is defined as follows:

Fitness(T ) =
(

1 − MC(T )
MaxMC

)
· 1
1 + α · S(T )

, (3)

where S(T ) is the size of the tree T expressed as a number of nodes and α is a
user supplied parameter (default value is 0.001).

It should be expected that there is no one optimal value of α for all possible
datasets and cost matrices. When the certain problem is analyzed, tuning this
parameter may lead to the improvement of the results (in terms of the misclas-
sification cost or classifier complexity).

2.4 Genetic Operators

There are two specialized genetic operators called CrossTrees and MutateNode
which fulfill the role of crossover and mutation operators from the classic frame-
work.

CrossTrees alike the standard crossover operator modifies two chromosomes
(i.e. trees) by swapping their certain parts. There are three types of crossover-like
modifications that can be performed on trees: two of them concern sub-trees and
one only tests. Firstly, one random node is drawn from each tree. Then the type
of modification is chosen. By default all types of these operations are equally
probable, but the user can specify his own proportions. First one exchanges sub-
trees rooted in chosen nodes. This variant is analogous to the typical crossover
operator introduced in genetic programming. Second operator replaces only tests
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between chosen nodes. This type of modification is possible solely when tests have
the same number of outcomes. Third operator is the most radical. It replaces in
random order all branches of chosen nodes. It is evident that the same effect can
be achieved by combining two or more exchanges of the first type.

MutateNode, like the standard mutation operator, takes one argument (i.e. a
single node of the tree). This operator can be applied to each node with a given
probability (default value 0.05). The result of this operator depends on what
kind of a node is considered (i.e. a leaf or an internal node). When modifying
an internal node the following possibilities are by default equally probable (this
probabilities are again user specified):

– a test in the current node can be replaced by a completely new test chosen
in a dipolar way,

– a less drastic possibility in reference to the previous one consists in changing
the threshold of a test on a real attribute or modifying groups of nominal
values (i.e. two branches of the current node can be merged into one branch
or a group can be split creating an additional branch) according to the
application of an inner disjunction to tests on nominal attributes,

– a test in the current node and a test from one of node’s sons can be ex-
changed, it concerns nodes which have non-leaf descendants

– one of the branches of the current node can be multiplied and replace another
branch which is to be dropped,

– each node, even the root, can be transformed into a leaf; this operator allows
reducing in a straight way the tree size.

A leaf node can be modified on condition that it contains feature vectors
belonging to different classes. Such a leaf can be replaced by:

– a non-terminal node with a randomly chosen test,
– a sub-tree generated according to the dipolar algorithm which is also applied

during initialization.

After application of some of the described operators it may be necessary to
alter locations of some of the learning vectors. It can lead to such a situation
where there are nodes or even whole sub-trees without any training examples.
For this reason empty parts of the tree have to be removed. It is done by using
either simple algorithm which does it directly or by specialized operator called
MaximizeFitness. This operator not only drops empty parts of the tree but also
performs more sophisticated modifications. It visits all nodes of a tree in bottom-
up order. It tries to replace each not-terminal node by a leaf while taking into
account potential gain in the fitness. MaximizeFitness is by default applied to
all trees from initial population and to sub-trees which appear after replacing
leaves.

As a selection mechanism the ranking linear selection [18] is applied. Addi-
tionally, the chromosome with the highest value of the fitness function in the
iteration is copied to the next population (the elitist strategy).
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3 Experimental Results

In this section experimental validation is presented. The proposed approach (de-
noted in tables as GDT-MC) is compared with the commercial cost-sensitive
classifier C5.0 which is enhanced version of C4.5 [21]. Our global inducer is also
compared with MetaCost [7] and CostSensitiveClassifier (denoted as CSJ48) of
the Weka system [9]. Both MetaCost and CSJ48 are based on wrapping an error-
based classifier (J48 which is Weka’s implementation of C4.5 was used in the
experiments).

Performance of all presented systems is assessed on a subset of the well-known
datasets publicly available from the UCI Machine Learning Repository [2]. More
complex datasets with continuous-valued features and no missing values were
chosen. All results presented in the tables correspond to averages of 10 runs and
were obtained by using test sets (when available) or by the 10-fold stratified
crossvalidation. The average number of leaves is given as a complexity measure
of classifiers.

3.1 Known Cost-Matrices

Only for two datasets (namely german and heart) misclassification costs are
provided. The cost matrix in both cases is the same and non-zero costs are as
follows: Cost(c2, c1) = 1 and Cost(c1, c2) = 5.

Table 1. Misclassification costs and tree sizes obtained for datasets with known cost
matrix

MetaCost CSJ48 C5.0 GDT-MC
Dataset Cost Size Cost Size Cost Size Cost Size
german 1.26 31.61 0.69 67.31 0.71 81.37 0.58 11.69
heart 1.01 18.05 0.52 10.87 0.56 16.49 0.61 25.07
average 1.14 24.83 0.61 39.09 0.64 48.93 0.6 18.38

The results obtained with the default value of α are collected in Table 1. It
should be noted that in case of the german dataset EA-based system performs
better (both in terms of the misclassification cost and the classifier size) than
all remaining algorithms. As for the second dataset GDT-MC is slightly worse
than C5.0 and CSJ48 but still much better than MetaCost.

In order to verify the impact of the α parameter on the results, a series
of experiments with varying α was prepared (see Fig. 1 and Fig. 2). As it
could be expected, along with a decrease of α an increase of trees complex-
ity can be observed. Concerning the misclassification cost, after initial small
decrease global minimum is reached and the cost quickly rises for larger trees.
It can be also observed that for both datasets the default setting of this para-
meter (denoted by vertical dotted line) is not really optimal. For the german
dataset, where GDT−MC obtained the best result (0.58) among all competitors,
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Fig. 1. The impact of α parameter on the misclassification cost and the tree complexity
for heart dataset
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Fig. 2. The impact of α parameter on the misclassification cost and the tree complexity
for german dataset
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a further decrease of the misclassification cost to 0.54 is possible. Concerning the
heart dataset it is also possible to achieve the misclassification cost lower than
these obtained by C5.0 or CSJ48.

3.2 Simulated Cost-Matrices

For the remaining datasets, for which cost matrices are not provided, a different
but typical experimental setup is applied (see e.g. [22,19,16]). In each run of the
10-fold crossvalidation a cost matrix was generated randomly. The off-diagonal
elements of the cost matrix were drawn from the uniform distribution over the
range [1, 10]. The diagonal elements were always zero. The standard deviations
are not presented because if they had been calculated they would have expressed
the effects of varying cost matrices [7]. For each single crossvalidation run the
same random cost matrix and the same training data splits were used for all
tested algorithms.

Table 2. The average misclassification cost and the tree size for datasets with randomly
generated cost matrices

MetaCost CSJ48 C5.0 GDT-MC
Dataset Cost Size Cost Size Cost Size Cost Size
breast − w 0.29 10.02 0.24 9.81 0.24 11.15 0.22 5.6
australian 0.63 7.0 0.40 8.0 0.60 12.50 0.64 12.0
balance − scale 1.33 34.0 1.40 19.0 1.27 29.80 1.16 22.4
bupa 2.44 22.57 1.61 14.94 1.59 17.02 1.70 43.76
cars 0.21 31.0 0.07 31.0 0.05 25.60 0.05 30.0
cmc 3.08 148.6 2.46 129.0 2.36 166.3 2.04 9.87
glass 2.40 14.0 2.40 14.0 1.64 20.70 1.69 33.1
page − blocks 0.19 41.09 0.17 36.57 0.17 34.57 0.24 4.33
pima 1.64 28.19 0.93 11.82 0.93 15.61 0.91 8.92
wine 1.08 5.0 1.08 5.0 0.88 5.10 0.78 6.40
vehicle 1.96 70.88 1.53 57.21 1.53 68.98 1.54 16.69
average 1.39 37.49 1.12 30.58 1.02 37.03 1.0 17.55

As it could be observed in Table 2, for 5 out of 11 datasets, misclassification
costs of the classifiers generated by the proposed method are lower than costs
of the competitors. It is an indicative achievement while taking into account the
fact that it was compared with so many renowned and efficient counterparts.
On the other hand it is worth mentioning that there is only one dataset - page
blocks - on which GDT-MC is slightly worse than all remaining algorithms. But
it was verified that tuning the parameter α leads to the real improvement: 0.11
(α = 0.00005) which gives GDT-MC the best score.

Finally, it was confirmed one more time that global induction generally results
in less complex decision structures than obtained by top-down inducers. Only
for bupa dataset the resulting decision tree was overgrown.
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It should be mentioned that the global induction requires more processing time
compared to traditional top-down algorithms. Nevertheless, the learning time
required by GDT-MC is acceptable. For instance the system needs 2 minutes
and 20 second (on average) of CPU time on a PC workstation (PIV 3GHz, 1GB
RAM) to generate classifier for the largest dataset (page blocks - 5473 examples,
10 features and 5 classes).

4 Conclusions

In the paper, a new method of univariate decision tree induction for misclas-
sification cost minimization is presented. The proposed approach consists in
developing specialized evolutionary algorithm which globally searches for opti-
mal decision tree. Results of the experimental validation show that our system
is able to generate competitive classifiers both in terms of the misclassification
cost and the decision tree size. It should be also noted that by tuning the α
parameter which corresponds to the importance of the complexity term in the
fitness function, even better results for the given dataset can be obtained.

Furthermore, many possibilities for improvement still exist (e.g. better fitness
function, new genetic operators, ...). One direction of current research is an
extension of the cost model by incorporating costs of features (tests). It can be
done mainly by modifying the fitness function.

The proposed approach is not the fastest one now, but hopefully it is well-
known that evolutionary algorithms are well-suited for parallel architecture. We
plan to speed up our system by re-implementing it in the distributed environment.
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9. Frank, E. et al.: Weka 3 - Data Mining with Open Source Machine Learning
Software in Java. [http://www.cs.waikato.ac.nz/˜ml/weka]. University of Waikato
(2000).

10. Knoll, U., Nakhaeizadeh, G., Tausend, B.: Cost-sensitive pruning of decision trees.
LNCS 784 (1994) 383–386.

11. Koza, J.: Concept formation and decision tree induction using genetic programming
paradigm. LNCS 496 (1991) 124–128.
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