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Abstract. In the paper, a new method for cost-sensitive learning of
decision trees is proposed. Our approach consists in extending the exist-
ing evolutionary algorithm (EA) for global induction of decision trees.
In contrast to the classical top-down methods, our system searches for
the whole tree at the moment. We propose a new fitness function which
allows the algorithm to minimize expected cost of classification defined
as a sum of misclassification cost and cost of the tests. The remaining
components of EA i.e. the representation of solutions and the special-
ized genetic search operators are not changed. The proposed method is
experimentally validated and preliminary results show that the global
approach is able to effectively induce cost-sensitive decision trees.

1 Introduction

In many data-mining applications, especially in medicine or business, the tra-
ditional minimization of classification errors is not the most adequate scenario.
Particular decisions have often significantly different impact on the overall result.
It is especially evident in medical diagnosis, where misclassifying an ill person
as a healthy one is generally much more dangerous (and costly) than an inverse
error. In such situations different misclassification costs associated with decisions
are used to compensate the problem. Additionally, the cost of decision making
(i.e. the cost of used features) can be also taken into account. This is usually
obtained by preferring such a classifier which gives equally accurate predictions
with a lower cost, calculated as a sum of costs of the performed tests. In med-
ical domain, similar diagnostic accuracy can be sometimes obtained with very
expensive tests as well as with simple and cheap examinations.

Cost-sensitive classification is the term which encompasses all types of learn-
ing where cost is considered [12]. However most of existing cost-sensitive sys-
tems consider only one cost type. There are two main approaches to making
a classifier cost sensitive. In the first group classical classifiers are converted
into cost-sensitive ones. In the context of decision tree learning it encompasses
mainly changing the splitting criteria and/or adopting pruning techniques for
incorporating misclassification cost (e.g. [1,2,4]) or cost of tests (e.g. in EG2 [9]).
Another method of misclassification cost minimization is proposed in [10], where
instance-weighting is applied, but the method requires the conversion of the cost
matrix into the cost vector. Among systems, which take into account both cost
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types the two approaches should be mentioned: Inexpensive Classification with
Expensive Tests - ICET [11] and Internal Node Strategy - INS [7,14]. ICET uses
the standard genetic algorithm to evolve a population of biases for modified C4.5
and INS is based on a total cost criterion for nominal attributes and two-class
problems. The second group includes general methods for making an arbitrary
classifier cost-sensitive. MetaCost [3] is based on wrapping a meta-learning stage
around the error-based classifier. Another method proposed by Zadrozny et al.
[13] uses cost-proportionate rejection sampling and ensemble aggregation. How-
ever, both mentioned approaches incorporate only misclassification costs.

In the paper, a cost-sensitive extension of our EA-based system [6] for deci-
sion tree learning is presented. In contrast to the typical top-down induction, the
global method searches simultaneously for both the optimal tree structure and
all tests in internal nodes. Such an approach is computationally more complex
but it often allows avoiding sub-optimal solutions imposed by greedy techniques.
As a result accurate and more compact classifiers are obtained. It should be un-
derlined that necessary adaptation of our error-based system to incorporate both
misclassification and test costs are limited almost only to the fitness function.
Apart from slightly modified method for assigning the class labels to leaves all
remaining elements of the original algorithm do not have to be changed.

The rest of the paper is organized as follows. In the next section, an evolu-
tionary algorithm for global induction of decision trees is briefly described. In
section 4 the cost-sensitive extension of our system is proposed. Preliminary ex-
perimental validation of the proposed approach is presented in section 5. The
paper is concluded in the last section.

2 Global Induction of Decision Trees

In this section, main ideas of our EA-based system called Global Decision Tree
(GDT) are briefly presented. For more detailed description please refer to [6].

Representation and Initialization. Decision trees are represented in their
actual form as univariate trees where any test in an internal node concerns only
one attribute. In case of a nominal attribute at least one value is associated
with each branch (inner disjunction). For a continuous-valued feature typical
inequality tests with boundary thresholds as potential splits are considered. A
boundary threshold for the given attribute is defined as a midpoint between the
successive pair of examples from different classes in the sequence sorted by the
increasing value of the attribute. All boundary thresholds are calculated before
starting the evolutionary induction.

Individuals in the initial population are generated using the classical top-down
algorithm, but tests are chosen in a dipolar-like way [5].

Genetic Operators. There are two specialized genetic operators corresponding
to classical mutation and crossover. When crossover is applied the randomly
chosen parts (i.e. sub-trees or only tests) of two individuals are swapped. There
are a few variants of this exchange.
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Mutation-like operator is a more complex operator and is applied to a given
tree node. Possible modifications depend on the node type (i.e. whether it is a
leaf node or an internal node). For a non-terminal node a few possibilities exist:
i) a completely new test can be drawn, ii) existing test can be altered by shifting
the splitting threshold (continuous-valued feature) or re-grouping feature values
(nominal feature), iii) the test can be replaced by another test from the tree
and finally iv) the node can be transformed into a leaf. Modifying a leaf node
makes sense only if it contains feature vectors form different classes. The leaf
is transformed into an internal node and a new test is randomly chosen. The
search for effective tests can be recursively repeated for all descendants.

The application of any genetic operator can result in a necessity of relocation
of the input vectors between parts of the tree rooted in the modified node.
Additionally local maximization of the fitness function is performed by pruning
lower parts of the subtree on condition it improves the value of the fitness.

Error-Based Fitness Function. The goal of any classification system is cor-
rect prediction of class labels of new objects, however such a target function
cannot be directly defined. Instead the accuracy on the training data is often
used, but their direct optimization leads to the over-fitting problem. In classical
systems this problem is usually mitigated by post-pruning techniques. In our ap-
proach a complexity term is introduced into the fitness function preventing the
over-specialization. The fitness function, which is maximized, has the following
form:

Fitness(T ) = QReclass(T ) − α · (S(T ) − 1), (1)

where QReclass(T ) is the re-classification quality, S(T ) is the size of the tree T
expressed as the number of nodes and α is a relative importance of the complexity
term (default value is 0.005) and a user supplied parameter.

3 Cost-Sensitive Extension

There are only two modifications (new fitness function and class label assign-
ment) necessary for incorporating misclassification and test costs into GDT.

Preliminaries. Let learning set E = {e1, e2, . . . , eM} consist of M examples.
Each example e ∈ E is described by N attributes (features) A1, A2, . . . , AN

and the corresponding feature costs are denoted by C1, C2, . . . , CN respectively.
Additionally, a decision (class label) associated with an object e is represented
by d(e) ∈ D. The set of all examples with the same decision dk ∈ D is denoted by
Dk = {e ∈ E : d(e) = dk} and the class assigned (predicted) by the tree T to the
example e is denoted by T (e). Let Cost(di, dj) ≥ 0 be the cost of misclassifying
an object from the class dj as belonging to the class di. We assume that the cost
of the correct decision is equal zero i.e., Cost(di, di) = 0 for all di.

Cost-Sensitive Fitness Function. Performance of an error-based tree is
judged by the classification accuracy whereas a cost-sensitive tree is assessed
by the average cost, which is a sum of the average misclassification cost and



124 M. Krȩtowski and M. Grześ

the average test costs. This suggests replacing in the fitness function the re-
classifcation accuracy with the expected cost of classification. The expected cost
in general is not limited, but for a given dataset, cost matrix and attribute costs,
the maximum misclassification and test costs can be calculated. As a result the
normalized cost can be easily obtained and fits into [0, 1] range.

First, the misclassification cost MCost(T ) of the tree T is estimated on E:

MCost(T ) =
1
M

·
∑

e∈E

Cost(T (e), d(e)). (2)

The maximal misclassification cost for a given dataset and a cost matrix is equal:

MaxMC =
1
M

·
∑

dk∈D

|Dk| · max
i�=k

Cost(di, dk). (3)

By dividing MCost(T ) by MaxMC one can obtain the normalized misclassi-
fication cost, which is equal 0 for the perfect classification and 1 in the worst
possible case.

Similar approach can be applied to calculate normalized average tests cost of
tree T induced from training data E. Let A(e) denote the set of all attributes
used in tests (on the path from the root node to the terminal leaf reached by e)
necessary to classify an object e. Hence, tests cost TC(e) of classifying an object
e by tree T is equal:

TC(e) =
∑

Ai∈A(e)

Ci. (4)

It should be noted that renewed use of any feature in the following tests does
not increase TC(e). The average test cost TCost(T ) can be defined as follows:

TCost(T ) =
1
M

·
∑

e∈E

TC(e). (5)

The maximal value of this cost for the given learning set is equal:

MaxTC =
1
M

·
N∑

i=1

Ci, (6)

where all features Ai ∈ A are necessary for making prediction for any object.
Normalized average test cost is calculated by dividing TCost(T ) by MaxTC. It
is equal zero for the tree composed only of one leaf and is equal 1 when in every
path of the tree all features are used in tests.

Finally, the fitness function, which is minimized, is defined as follows:

Fitness(T ) =
MCost(T ) + TCost(T )
MaxMC + MaxTC

+ α · (S(T ) − 1). (7)

Class Labels for Leaves. In standard error-based decision trees the class
labels are assigned to leaves by using the majority rule based on training objects
which reached a leaf-node. In cost-sensitive case the class labels for leaves are
chosen to minimize the misclassification cost in each leaf.
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4 Experimental Results

In this section GDT is compared with nonnative implementations of ICET, INS
and EG2 on four datasets that were investigated in [11]. Costs of attributes that
are provided for these datasets were used and cost matrices were prepared in
the following way. All values of the misclassification cost are at least equal to
the sum of features cost. In the subsequent experiments presented in Table 1,
penalty for misclassifying less frequent class had been increasing. Ratios of such
costs were: 1.5, 2, 3 and FLF /FMF where FLF and FMF are frequencies of less
and more frequent class respectively.

It can be observed that GDT is significantly better on heart data both in
terms of the tree size and the average cost on the test data. This dataset is a
good example of the situation when the top-down heuristic is trapped into a
local minimum and the method working in a global manner is able to find more
optimal structure of the tree. Another dataset in which top-down algorithms
found also relatively big trees is the pima dataset. In this case GDT finds smaller
trees but without improvement in terms of cost, which means that the system
was able to eliminate repeated tests on previously used features. As for bupa and
hepatitis datasets the results of all the algorithms except ICET are comparable.

Evolutionary algorithms are considered to be as good as its fitness function.
These statement is in some way observed in bupa dataset. In this case GDT found
very small trees which are identical in each run (standard deviation is zero). It
shows that the algorithm is able to find small and relatively good result that is
very stable. But on the other hand this result is not optimal. Comparisons with
other algorithms show that there is still place for improvement (e.g. by tuning

Table 1. The results with different cost matrices

Dataset GDT ”ICET” ”EG2” ”INC”
Size Cost Size Cost Size Cost Size Cost

bupa 40/55 3.0 18.96±0.0 52.7 47.37±2.2 4 18.73 4 18.74
40/60 3.0 19.13±0.0 52.6 48.42±2.3 5 19.56 5 19.56
40/80 3.0 19.83±0.0 53.2 51.50±2.5 3 19.82 3 19.83
40/120 3.0 21.22±0.0 52.1 61.86±3.3 1 22.96 1 22.96

heart 600/704 7.9 142.61±7.6 48.9 306.11±19.4 16 151.94 17 165.12
600/900 5.8 163.25±5.5 44.8 371.58±49.8 20 187.79 20 196.82
600/1200 5.6 199.27±27.1 46.4 382.10±40.7 24 199.56 20 227.13
600/1800 4.1 257.9±8.1 48.3 478.74±41.9 20 239.67 20 239.67

hepatitis 50/262 6.8 30.83±4.1 5.8 34.02±4.3 6 32.11 6 30.9
50/75 7.5 13.15±3.1 5.8 18.53±0.8 5 10.05 5 10.06
50/100 7.3 15.34±3.2 5.7 21.98±3.1 7 7.77 5 12.84
50/150 7.1 20.42±3.7 5.8 25.09±3.1 6 27.51 5 18.39

pima 50/92 4.3 19.92±0.6 83.9 22.86±0.7 38 18.21 24 20.05
50/75 3.4 17.58±0.2 84.5 20.63±0.9 24 16.61 28 17.94
50/100 4.6 21.23±0.4 83.9 24.4±1.0 31 19.18 26 22.5
50/150 5.0 23.77±0.5 84.9 31.59±1.1 30 23.88 24 24.41
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user specified α parameter). Further experiments showed that it is possible to
obtain better results (e.g. for α = 0.001 on bupa 40/40 we gain the best result
17.03). It means that fitness function can be further investigated and it might
improve the overall performance.

5 Conclusion

In this paper, our global method for decision tree induction is extended to handle
two types of cost: misclassification cost and cost of tests. The necessary modifi-
cations of the evolutionary algorithm encompass mainly the new fitness function.
Even preliminary results of experimental validation show that our system is able
to generate competitive cost-sensitive classifiers.
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