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Abstract. A new evolutionary algorithm for induction of oblique decision trees

is proposed. In contrast to the classical top-down approach, it searches for the

whole tree at the moment. Specialized genetic operators are developed, which enable

modifying both the tree structure and the splitting hyper-planes in non-terminal

nodes. The problem of over-fitting can be avoided thanks to suitably defined fitness

function. Experimental results on both synthetical and real-life data are presented

and compared with obtained by the state-of-the-art decision tree systems.

1 Introduction

There exists dozens of decision tree induction algorithms [13]. However, a

wide diversity among decision tree systems is somehow seeming. Almost all

approaches are based on top-down strategy, where the learning set is associ-

ated with the root node and recursive procedure of optimal split searching,

sub-nodes creation and feature vectors redistribution is applied until the stop

condition is met. This greedy search technique is fast, easy to implement and,

what is probably the most important, efficient in practical situations. On the

other hand, it is evident that for many problems, the top-down induction fails

to find the optimal solution and more sophisticated methods can be indis-

pensable. However, it should be clearly stated that more complex algorithms

are generally more time consuming.

In this paper, a global approach to induction of decision trees is inves-

tigated. In contrast to the classical step-wise manner of tree building, the

whole tree (its structure and all splits) is searched at the time. Moreover,

the top-down approach is often combined with the post-pruning applied in

order to prevent the over-fitting problem. In the proposed method, any re-

structuring procedure is not necessary, because the assurance of the optimal

tree size is embedded into the search process. As a result, the global approach

allows to find suitable trees, both in terms of the classification power and the

complexity.

The proposed method consists in designing a specialized evolutionary al-

gorithm for decision tree building. Evolutionary algorithms (EA) are stochas-

tic, search techniques, which were inspired by the process of biological evo-

lution [11]. Their main advantage is ability to avoid the local optima, which
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is especially important in such a difficult optimization problem as induction

of decision trees.

The simplest type of decision trees is called univariate, because tests in

non-terminal nodes are based on single attributes. Such a test is equivalent

to partitioning the feature space with an axis-parallel hyper-plane. In case

of non-axis parallel decision border, applying only univariate test can lead

to their approximation by a very complicated stair-like structure. The afore-

mentioned problem is eliminated by oblique (perceptron, linear) trees, where

linear combinations of attributes are utilized in tests. The first such a sys-

tem was CART [6], but it had a strong preference for univariate tests. One

of the most well-known oblique tree system is Oblique Classifier 1 (OC1)

[12], which combines deterministic and randomized techniques in search for

optimal splits. Other interesting top-down based oblique tree systems were

proposed by Gama et al. [9] and Bobrowski et al. [3]. APDT (Alopex Per-
ceptron Decision Tree) [16] can be seen as a first step toward more global

induction of decision trees, because it evaluates goodness of a split based also

on the degree of linear separability of sub-nodes.

The first application of evolutionary approach to linear tree induction was

done in BTGA (Binary Tree-Genetic Algorithm) system [8], where standard

genetic algorithm (SGA) with binary representation was used to find a split-

ting hyper-plane in each non-terminal node. In [7], the original OC1 system

was successfully extended by using two standard algorithms: (1+1) evolu-

tion strategy and SGA. The system described in [10] utilized the specialized

evolutionary algorithm for optimization of hyper-plane locations based on

the dipolar criteria. After the greedy recursive partitioning the potentially

over-specialized decision tree is post-pruned. That system can be treated as

a top-down predecessor of the approach proposed in this paper.

A global approach to decision tree induction was investigated in genetic

programming (GP) community. Nikolaev at el. applied [14] standard GP

framework with specialized fitness function to evolve univariate decision tree-

like programs. In [5] GP allows to induce classification trees with limited

oblique splits.

The rest of the paper is organized as follows. In the next section the

proposed evolutionary algorithm is detailed. Its experimental validation on

both artificial and real-life problems is described in the section 3. In the last

section, conclusions and plans for future work are presented.

2 Evolutionary Algorithm for Global Induction of
Oblique Decision Trees

General structure of the proposed evolutionary algorithm follows the typi-

cal framework [11] and only application-specific issues are described in this

section.
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2.1 Preliminaries

A learning set is composed of M objects: N -dimensional feature vectors xj =
[xj

1, ..., x
j
N ]T (j = 1, ..., M)(xj ∈ RN ) belonging to one of K classes. The

feature space could be divided into two regions by a hyper-plane:

H(w, θ) = {x : 〈w,x〉 = θ}, (1)

where w = [w1, ..., wN ] (w ∈ RN ) is a weight vector, θ is a threshold and

〈w,x〉 represents an inner product. If 〈w,xi〉− θ > 0, it can be said that the

feature vector xi is on the positive side of the hyper-plane H(w, θ).
A dipole [4] is a pair (xi, xj) of feature vectors. A dipole is called mixed

if and only if feature vectors constituting it belong to different classes and a

pair of the vectors from the same class constitutes pure dipole. Hyper-plane

H(w, θ) splits the dipole (xi,xj) if and only if:

(〈w,xi〉 − θ) · (〈w,xj〉 − θ) < 0 (2)

It means that the input vectors xi and xj are situated on the opposite sides

of the dividing hyper-plane.

2.2 Representation, Initialization and Termination Condition

An oblique decision tree is a binary tree with splitting hyper-planes in non-

terminal nodes and class labels in leaves. Each hyper-plane in the tree can

be represented by a fixed-size N + 1-dimensional table of real numbers cor-

responding to the weight vector w and the threshold θ. However, the size

and the structure of the classifier for a given learning set cannot be known

in advance of induction. In such a situation, a variable-length representation

is indispensable. Furthermore, during the induction process, additional infor-

mation concerning, among other things, the learning vectors associated with

each node are necessary. As a result, decision trees are not especially encoded

in the form of traditional (binary or real-valued) chromosomes and they are

represented in their actual form in the presented system.

An initial population is created by applying for each individual the fol-

lowing simple top-down algorithm combined with selection of optimal tree

size according to the fitness function. An effective test in non-terminal nodes

is searched based on randomly chosen mixed dipole (xi, xj). The hyper-plane

Hij(w, θ) is placed to split it:

w = xi − xj and θ = δ · 〈w,xi〉+ (1− δ) · 〈w,xj〉, (3)

where δ ∈ (0, 1) is a randomly drawn coefficient, which determines the dis-

tance to the opposite ends of the dipole. Hij(w, θ) is perpendicular to the

segment connecting dipole ends.

The EA terminates if the fitness of the best individual does not improve

during the fixed number of generations (default value is equal to 1000) or the

maximum number of generations is reached (default value: 10000).
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Fig. 1. Hyper-plane initialization based on randomly chosen mixed dipol

2.3 Fitness Function

The ultimate goal of any classification system is correct prediction of classes

for new unlabelled feature vectors, which were not accessible during the learn-

ing phase. It is obvious that such a target function cannot be directly defined.

Instead the classification quality on the training data is often applied as an

estimate measure of the predictive power of the classifier. However, it should

be underlined that optimizing only the re-classification quality leads to the

over-fitting problem. In classical systems this problem is usually mitigated

by post-pruning techniques. In our approach another solution is proposed.

A complexity term is introduced into the fitness function. This term works

as a certain type of penalty, which is proportional to the size of the tree.

This way more compact trees are promoted and it allows avoiding the over-

specialization.

Finally, the fitness function, which is maximized, has the following form:

Fitness(T ) = QReclass(T )− α · S(T ), (4)

where QReclass(T ) is the re-classification quality, S(T ) is the size of the tree

T expressed as a number of nodes and α - is a relative importance of the

complexity term (default value is 0.005) and a user supplied parameter. It is

rather obvious that there is no one, optimal value of α for all possible dataset.

When the concrete problem is analyzed, tuning this parameter may lead to

the improvement of the results (in terms of accuracy or classifier complexity).

2.4 Genetic Operators

It is now commonly accepted opinion, that task specific operators are highly

useful in improving optimization process. In our system two complex genetic

operators are currently employed: MutateNode and CrossoverTrees. Both of

them can alter the tree structure as well as splitting hyper-planes in non-

terminal nodes.

The first composite operator can be seen as a combination of the typi-

cal mutation-like operator with the dipolar operator introduced in [10]. Mu-
tateNode is applied to every single node of the tree with the given probability
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(default value is equal to 0.1). The operator can cause with equal probability

a modification of the test or a change of the node role. If a non-terminal node

is concerned it can be pruned to a leaf or the corresponding hyper-plane can

be altered. The hyper-plane position can be modified due to an application of

the dipolar operator or by standard mutation. The dipolar operator chooses

at random one dipole from the set of not divided mixed and divided pure

dipoles. Then it shifts the hyper-plane by modifying only one randomly cho-

sen weight wi in such a way that the chosen mixed dipole is divided or division

of pure one is avoided. When a leaf is concerned it can be only replaced by a

new non-terminal node unless it is not reasonable.

(a)

(b)

I

I

I
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II

Fig. 2. CrossoverTrees operator: (a) exchange limited only to tests (b) exchange

of the whole sub-trees

The second operator is an equivalent of the standard crossover operator

and alters two individuals by replacing parts of the input trees. The exchange

can be limited only to nodes or can encompass also sub-trees (see Fig. 2).

At the beginning, the type of the exchange is randomly drawn (two variants

are equally probable) and then, regardless of the type, one node in each tree

is chosen also at random. If both nodes are non-terminal ones, the typical

one-point crossover is applied on weights vectors and thresholds. In other

cases nodes are just substituted. After the exchange concerning the nodes,

depending on range of the operator, sub-tree starting from the altered nodes

can be also replaced.

It should be underlined that trees modified by genetic operators require

renewed determination of locations of all input feature vectors in the affected

parts. As a result of this process some parts of the tree can be even pruned,

because they do not contain any input feature vectors.

As a selection mechanism the proportional selection with linear scaling

is applied. Additionally elitist strategy is used, which means that the best
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tree in terms of the fitness function in each iteration is copied to the next

population.

It was observed by Bennett et al. [1] that in oblique trees enlarging the

margin, defined as the distance between decision boundary and the input

feature vectors, is profitable in term of classifcation accuracy. In the presented

system, a simple mechanism based on this observation was introduced. In

each non-terminal node, two the closest feature vectors (x+ and x−) to the

splitting hyper-plane H(w, θ) are determined on the opposite sides of it.

If the found dipole is mixed, the hyper-plane is centered by modifying the

threshold:

θ′ =
1
2
[〈w,x+〉+ 〈w,x−〉]. (5)

It should be noted that such an operation does not change the fitness function.

3 Experimental Results

In this section experimental validation of the proposed approach on both

artificial and real-life datasets is described. All results presented in the ta-

bles correspond to averages of 5 runs and were obtained by using test sets

(mainly in case of synthetic datasets) or by 10-fold stratified cross-validation.

Average number of nodes is given as a complexity measure. For the purpose

of the comparison, results obtained by C4.5 (release 8) [15] and OC1 [12]

with default parameters are also presented. If not otherwise stated, the pro-

posed system (described as GEA-ODT in tables) is run with default values

of parameters.
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Fig. 3. Examples of artificial datasets (rotated chessboard4 and house)

3.1 Artificial Datasets

In this subsection, synthetical datasets with analytically defined decision bor-

ders are analyzed. Analogous experiments are described in [12] and [16],
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but original datasets are not available, hence similar configurations were

generated by using random number generator. All these datasets are two-

dimensional, except LS10 problem which is defined with 10 features. Number

of feature vectors in the learning sets is 1000. Examples of synthetical datasets

are depicted in Fig. 3.

Before presenting the definitive results, two experiments with parameters

of the proposed system are presented. In the first one, usefulness of intro-

ducing the dipolar operator is investigated on the 2-class rotated chessboard

problem. In Fig. 4 two learning curves (in fact, their initial parts) correspond-

ing to induction without and with the use of dipolar operator are illustrated.

As it could be expected applying the dipolar-based approach allows to speed

up the search process.
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Fig. 4. Results of initial experiments on chessboard2 problem: comparison of learn-

ing curves with and without dipolar operator

Sore point of any decision tree induction method is finding appropri-

ate balance between re-classification quality and generalization power related

to the tree complexity. In the global approach parametr α from the fitness

function seems crucial for this problem. In the next experiment, we investi-

gated how the classification quality and the tree complexity are influenced by

changes of α. The relationships obtained on chessboard2 dataset are presented

in Fig. 5.

It can be observed that for relatively broad range of values (0.05-0.001)

optimal trees were found. Further decrease of a parameter results in perfor-

mance deterioration in terms of tree simplicity.

The final results of experiments concerning synthetical datasets are gath-

ered in Table 1. For all domains GEA-ODT perform very well, both in accu-



316 Marek Krętowski and Marek Grześ

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7
 0

 2

 4

 6

 8

 10

 12

 14

 16

Q
ua

lit
y 

on
 te

st
 d

at
a

T
re

e 
si

ze

-log(α)

Quality
Tree size

Fig. 5. Results of initial experiments on chessboard2 problem: impact of α on the

classification quality and the tree complexity

Table 1. Experimental results obtained for artificial datasets

GEA-ODT GEA-ODT OC1 OC1 C4.5 C4.5

Dataset Quality Size Quality Size Quality Size

chessboard2 99.1 7 99.3 11 93.3 47

chessboard4 99.3 7 99.5 7 94.6 87

zebra1 98.5 7 98.2 15 50 1

zebra2 99.0 5 99.8 7 96.9 55

zebra3 98.2 15.8 95.1 29 91.6 99

house 95.8 5.4 95.9 5 98 39

LS10 92.6 4.2 96 7 76.2 295

racy and tree complexity. It could be observed that the global method was

able to find slightly less complicated trees than generated by other methods.

3.2 Real-life Datasets

In the second series of experiments a few well-known real-life datasets taken

from UCI Machine Learning Repository [2] were analyzed and obtained re-

sults are collected in Table 2.

The proposed system performed very well on almost all analyzed datasets.

Only for vehicle domain it was significantly worse that OC1 and C4.5. For this
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dataset EA is converging very slowly and it was observed that the maximum

number of iteration was used to stop the algorithm. When this constraint is

relaxed the quality raise to more than 69%, but the computation time is really

long (a few hours). Concerning complexities of the trees, it can be found that

the global EA approach is generally more efficient than other systems.

Table 2. Results obtained for UCI datasets

GEA-ODT GEA-ODT OC1 OC1 C4.5 C4.5

Dataset Quality Size Quality Size Quality Size

breast-w 96.7 3 95.3 5 94.9 26

bupa 67.7 4.9 67.5 12.9 64.7 44.6

iris 97.0 5 96.6 5 94.7 8.4

page-blocks 94.6 3.7 97 23 97 82.2

pima 73.5 3.2 72.6 9.1 74.6 40.6

sat 83.1 11 85.4 45 85.5 435

vehicle 65.4 14.7 70.2 30.4 72.3 129

waveform 81.5 6.2 78 5 73.5 107

4 Conclusions

In the paper, new evolutionary algorithm for induction of oblique decision

trees is presented. The greedy top-down technique is replaced by the global

approach, where the whole tree is searched at the moment. The experimental

validation indicates that the accuracy of the proposed method is at least

comparable with the results obtained by leading decision tree systems. In

terms of the tree complexity it seems that global algorithm is able to find

more compact classifiers than the competitors.

The presented system is constantly improved and currently feature selec-

tion is embedded into the algorithm, which will allow eliminating redundant

and noisy features at each non-terminal node. Furthermore several directions

of possible future research exist. One of them is designing more robust fitness

function, which has a critical influence on the performance of the system. We

also want to incorporate into the induction process the variable misclassifi-

cation cost and feature’s cost.

The proposed approach is not the fastest one now but hopefully it is

known that evolutionary algorithms are well suited for parallel architecture.

We plan to speed up our system by re-implementing it in the distributed

environment.
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