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Abstract

Neural language models do not scale well when the vo-
cabulary is large. Noise contrastive estimation (NCE) is a
sampling-based method that allows for fast learning with
large vocabularies. Although NCE has shown promising per-
formance in neural machine translation, its full potential has
not been demonstrated in the language modelling literature.
A sufficient investigation of the hyperparameters in the NCE-
based neural language models was clearly missing. In this pa-
per, we showed that NCE can be a very successful approach
in neural language modelling when the hyperparameters of
a neural network are tuned appropriately. We introduced the
‘search-then-converge’ learning rate schedule for NCE and
designed a heuristic that specifies how to use this schedule.
The impact of the other important hyperparameters, such as
the dropout rate and the weight initialisation range, was also
demonstrated. Using a popular benchmark, we showed that
appropriate tuning of NCE in neural language models out-
performs the state-of-the-art single-model methods based on
standard dropout and the standard LSTM recurrent neural
networks.

1 Introduction
Language models (LMs), which predict the probability of a
next word given its context, play an important role in many
downstream applications such as machine translation, ques-
tion answering and text summarisation. Neural language
models that apply various neural architectures (Bengio et al.
2003; Mikolov et al. 2010; Józefowicz et al. 2016) have re-
cently demonstrated significant achievements.

In real applications, the vocabulary size is large and the
language models have to estimate a probability distribution
over many words. The need for a normalised probability dis-
tribution becomes a computational bottleneck because the
normalisation constant (i.e. the partition function) has to be
computed for the output layer.

Many solutions have been proposed to address the com-
putational complexity of the partition function. Several ap-
proaches try to make it more efficient, e.g., hierarchical
softmax (Mnih and Hinton 2009), a shortlisting method
(Schwenk 2007), or self-normalisation techniques (Chen,
Grangier, and Auli 2015). The other methods, such as impor-
tance sampling (Bengio and Sénécal 2003; Jean et al. 2014)
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or noise contrastive estimation (Mnih and Teh 2012), aim at
computing an unnormalised statistical model.

In this paper, we investigate noise contrastive estimation
(NCE) because of its statistical consistency, and the fact that
its potential has not been sufficiently explored in the liter-
ature on language models (LMs). NCE has also achieved
promising results in machine translation (Vaswani et al.
2013; Baltescu and Blunsom 2015) which indicates that its
performance on language models could be better than what
is known in current research.

NCE was first proposed in (Gutmann and Hyvärinen
2010) as an estimation principle for unnormalised statisti-
cal models. Unnormalised statistical models compute val-
ues which, in contrast to formal probabilities, do not add
up to one. In order to normalise those values so that they
become valid probabilities, they can be divided by the par-
tition function. However, the partition function is computa-
tionally expensive to compute when the number of outcomes
is large. Therefore, instead of calculating the partition func-
tion, NCE converts the original estimation problem into a
nonlinear logistic regression problem which discriminates
the noise samples generated from a known (noise) distri-
bution from the original data samples. NCE is statistically
consistent and more stable than other Monte Carlo methods
such as importance sampling (Mnih and Teh 2012). In (Gut-
mann and Hyvärinen 2010), NCE achieved the best trade-off
between computational and statistical efficiency when com-
pared against importance sampling, contrastive divergence
(Hinton 2002), and score matching (Hyvärinen 2005). This
method has also been applied in language modelling and ma-
chine translation (Mnih and Teh 2012; Vaswani et al. 2013;
Baltescu and Blunsom 2015; Zoph et al. 2016).

Many features of NCE are not understood, especially the
hyperparameters in deep learning when NCE is used at the
output layer. Also, comparisons against standard LSTM-
based single-model softmax have never shown that NCE can
compete with softmax on those tasks on which softmax is
feasible.

Our results are clearly surprising in the face of the exist-
ing literature which generally indicates that NCE is an infe-
rior method. For example, studying language modelling in
(Józefowicz et al. 2016), the authors argued that importance
sampling (IS) may be better than NCE as IS optimises a mul-
ticlass classification task whereas NCE is solving a binary



task. In (Józefowicz et al. 2016), the authors managed to im-
prove the results on language modelling using IS, whereas
similar improvements for NCE were not found. Overall, the
current literature does not have substantial, empirical evi-
dence that NCE is a powerful method for neural network
language modelling.

Another example that demonstrates weak performance of
NCE on language modelling is (Chen, Grangier, and Auli
2015). The authors explain that a limited number (50) of
noise samples in NCE does not allow for frequent sampling
of every word in a large vocabulary. The number of noise
samples has to be relatively small to make the method fea-
sible. In their experiments, NCE performed better than soft-
max only on billionW, a dataset on which softmax is very
slow due to a very large vocabulary. So NCE was better
only because softmax was not feasible on a large vocab-
ulary. In this paper, we show, for the first time, that NCE
can outperform softmax in a situation when softmax is fea-
sible and it is known to perform very well. To demonstrate
that, we used the Penn Tree Bank (PTB) dataset1 (Marcus,
Marcinkiewicz, and Santorini 1993), which is a popular lan-
guage modelling benchmark with a vocabulary size of 10k
words. Softmax is known for competitive performance on
this data, and it is feasible to apply it to this data using GPUs.

There exist papers in which the researchers tried to cre-
ate conditions which make softmax feasible to be executed
on large datasets. For example, the experiments in (Baltescu
and Blunsom 2015) are based on a few billions of training
examples and a vocabulary with over 100k tokens. To man-
age the softmax computation, the authors partitioned the vo-
cabulary into K classes. Under those conditions, the authors
showed that NCE performed almost as well as softmax. Soft-
max in their comparisons was approximate, however, due to
partitioning. In our paper, the goal is to compete with the
original softmax without any approximations. Our aims are
justified by the following reasoning. In theory, NCE, being a
statistically consistent method, converges to the maximum
likelihood estimation method when the number of noise
samples is increased. However, the fact that NCE solves a
different optimisation problem means that stochastic gradi-
ent descent applied to neural networks with NCE may find a
different, better local optimum than when it is applied to net-
works with softmax. Therefore, when the objective function
is highly non-convex, NCE can beat softmax even though it
is only an approximation to softmax.

Tuning hyperparameters has been an important element
of neural networks research (Bengio 2012). The main con-
tribution of our paper is based on a carefully designed hy-
perparameter tuning strategy for NCE. The separate ‘search’
and ‘convergence’ phases for controlling the learning rate
(Darken and Moody 1991) have never been applied to NCE-
based neural networks. Also, the importance of the search
phase and better convergence thanks to the randomness at-
tributed to NCE was never observed in the literature. They
appeared to be the key components in this research, and they
allowed NCE to outperform softmax on a problem on which
softmax is known to have competitive performance and to

1http://www.fit.vutbr.cz/ imikolov/rnnlm/simple-examples.tgz

be computationally feasible.

Some researchers, e.g., (Chen, Grangier, and Auli 2015),
concluded that NCE ‘is not among the best techniques for
minimising perplexity’, and this was probably the reason
why more sophisticated mechanisms, such as the ‘search’
and ‘convergence’ phases for controlling the learning rate,
were not used with NCE. This seems to be a common pattern
in deep learning research. For example, in 2006, the com-
munity used unsupervised learning to initialise supervised
learning for neural networks, whereas today, the appropriate
resources and engineering practices allow feedforward net-
works to perform very well without unsupervised initialisa-
tion (Goodfellow, Bengio, and Courville 2016, Ch. 6). Anal-
ogously, our paper shows that appropriate techniques exist to
turn NCE into a very successful method for language mod-
elling.

The paper is organised as follows. Section 2 introduces
the NCE model with a deep neural architecture, and Sec-
tion 3 describes our approach to NCE-based neural lan-
guage modelling (NCENLM). Sections 4 and 5 describe the
experimental design and the results showing that the pro-
posed method improves the state-of-the-art results on the
Penn Tree Bank dataset using language modelling based
on a standard LSTM (Hochreiter and Schmidhuber 1997;
Gers 2001).

2 Background

We study language models where given a sequence of words
W = (w1, w2, . . . , wT ) over the vocabulary V , we model
sequence probability

p(W ) =
T−1∏

i=0

p(wi+1|w1, . . . , wi) =
T−1∏

i=0

p(wi+1|ci). (1)

Here, for a given word wi+1, ci =< w1, . . . , wi > rep-
resents its full, non-truncated context. In many applica-
tions, one is interested in p(wi+1|ci). Recurrent neural net-
works try to model such probabilities that depend on a se-
quence of words ci. The recurrent connections introduce
a notion of ‘memory’ which can remember a substantial
part of word’s context ci. However, due to the gradient
vanishing and exploding problems (Pascanu, Mikolov, and
Bengio 2013), it is challenging to optimise standard recur-
rent neural networks even though their expressive power
is sufficient in many situations. For this reason, long short
term memory (LSTM) was introduced to improve learning
with a long context, ci (Hochreiter and Schmidhuber 1997;
Gers 2001). LSTM introduces the concept of memory cells
that are used to create layers. Several layers can be stacked
into larger blocks (similar to layers of neurons in the mul-
tilayer perceptron). The blocks of those layers are then un-
rolled for several time steps during learning. When n is the
last hidden layer, and i is the last unrolled time step, vni is
the activation vector that results after ci has been presented
to the network. Then, the final output layer has one vector θj
for every word wj in the vocabulary, and the probability of



the next word can be computed using the softmax function:
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Here, PSOFT

θ (wi+1|ci) is the probability of word wi+1

given context ci, θi+1 is the weight vector corresponding to
the word wi+1 at the output layer, θj is the weight vector for
the word wj in vocabulary, and |V | is the vocabulary size.
The normalising term Z is known as the partition function.
Note that unnormalised products θ⊤i+1v

n
i are not sufficient to

evaluate the words.
The softmax-based training of recurrent neural networks

that uses stochastic gradient descent (SGD) and backprop-
agation (BP) maximises the log likelihood or equivalently
minimises the cross-entropy of the training sequence con-
taining N words. This objective can be formally expressed
as

JSOFT (θ) = −
1

N

N
∑

i=1

lnPSOFT
θ (wi+1|ci). (3)

The gradient used for updating the parameters θ is

∂JSOFT (θ)
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n
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∂θ

]

.

(4)

Gradient computation is usually time-consuming because
when the vocabulary is large, the partition function in
PSOFT
θ creates the performance bottleneck for the training

and testing phases. It is advantageous to avoid this expensive
normalisation term. Noise contrastive estimation (NCE) by-
passes this calculation by converting the original optimisa-
tion problem to a binary classification problem.

In NCE, we see the corpus as a new dataset of n words of
the following format:

((c1, w2), D1)), . . . , ((cn, wn+1), Dn)

where ci represents the context, wi+1 represents the next
word after ci, and a random variable D is set to one when
wi+1 is from the training corpus (true data distribution) and
D is set to zero when wi+1 is from a known chosen noise
distribution, Pn. For a given context ci, the NCE-based neu-
ral language model (NCENLM) models data samples (from
the corpus) as if they were generated from a mixture of two
distributions (PNCE

θ and Pn). The mixture is normalised;
hence, the requirement for the normalisation term is satis-
fied implicitly as shown in Eq. (5).

The posterior probability of a sample word wi+1 gener-
ated from the mixture of the PNCE

θ and the noise distribu-
tion Pn are as follows:

P (D = 1|wi+1, ci) =
PNCE
θ (wi+1|ci)

PNCE
θ (wi+1|ci) + kPn(wi+1|ci)

P (D = 0|w̃i+1, ci) =
kPn(w̃i+1|ci)

PNCE
θ (w̃i+1|ci) + kPn(w̃i+1|ci)

(5)

where w̃i+1 is a word sampled from a known noise distribu-
tion Pn (e.g., a uniform distribution) and k is the ratio of the
number of noise samples to the number of the data samples.
A general assumption is that noise samples are k times more
frequent than data samples. Based on this posterior distribu-
tion, NCE minimises the following objective function:

JNCE(θ) = −
1

N

N
∑

i=1

[

lnP (D = 1|wi+1, ci)

+

k
∑

j=1

lnP (D = 0|w̃i+1,j , ci)
]

.

(6)

which is the same objective function (up to a factor of 1

2
) that

is minimised by the traditional logistic regression. Here, for
every word wi+1 that comes from a true data distribution,

k noise samples w̃i+1,j are generated from a known noise
distribution, Pn. (Mnih and Teh 2012) show that for large
k NCE-based parameter estimation is a close approximation
of the maximum likelihood estimation.

The gradient of the objective function is as follows:
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where,
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In the softmax gradient in Eq. 4, the normalisation term Z
is required to compute PSOFT

θ , which is a problem during
training because Z has to be computed for every gradient
calculation. Studying the NCE gradient in Eq. 7, one can
see a subtraction of two large products. The first terms of
those products are normalised implicitly regardless PNCE

θ

is normalised or not. Thus, the only terms in which normal-
isation can matter are the gradients in Eq. 7. It has been ar-
gued in the literature, however, that as far as the gradient
is concerned, Z can be learnt as a parameter (Gutmann and
Hyvärinen 2010) or it can be seen as a constant, for instance,
Z = 1 was used for all contexts in (Mnih and Teh 2012;
Vaswani et al. 2013; Zoph et al. 2016). This is the precise
reason why the partition function Z does not have to be com-
puted in every iteration in NCE.

3 Our Approach

In this section, we present our training procedure with spe-
cial hyperparameter tuning for NCE-based neural language



models (NCENLM). For training the model, stochastic gra-
dient descent (SGD) is used because SGD yields signifi-
cantly better generalisation than batch methods (Bousquet
and Bottou 2008), specially when an appropriate learning
rate schedule is utilised. The following hyperparameters
turned out to be important for the NCENLM: the learning
rate schedule, the dropout rate, and the weight initialisation
strategy. In our paper, the words are represented as the word
vectors (Mikolov et al. 2013) trained using the standard con-
tinuous skip-gram model with negative sampling.

3.1 Learning rate

The learning rate is one of the most prominent hyperparam-
eters in deep network training (Bengio 2012). The ‘search-
then-converge’ learning rate schedule for SGD usually has
the form of η(t) = η0(1+

t
τ
)−1 (Darken and Moody 1991),

where t is the epoch number, η0 is the initial learning rate, τ
is a parameter, and η(t) is the learning rate for epoch t. This
allows the learning rate to stay high during the ‘search pe-
riod’ t ≤ τ . It is expected that during this period the parame-
ters will hover around a good minimum. Then, for t > τ , the
learning rate decreases as 1

t
, and the parameters converge

to a local optimum because this schedule agrees with the
stochastic approximation theory (Robbins and Monro 1951).

In our implementation, we used the ‘search-then-
converge’ learning rate schedule of the form:

η(t) = η0 ×
( 1

ψ

)max(t+1−τ,0.0)

, (9)

which previously appeared in other studies that involve neu-
ral networks (Zaremba, Sutskever, and Vinyals 2014). The
hyperparameter ψ is kept constant in our experiments and its
value was set according to (Zaremba, Sutskever, and Vinyals
2014). During the search period (t ≤ τ epochs), the learn-
ing rate is constant and equal to η0, and during the conver-
gence period the learning rate is decreased by a factor of 1

ψ
.

The initial learning rate η0 is one in (Zaremba, Sutskever,
and Vinyals 2014), and we use the same value in our exper-
iments.

Our investigation has shown that learning with NCE is
more sensitive to the length of the search period (t ≤ τ )
when comparing with softmax. Choosing appropriate τ is,
therefore, crucial for convergence of NCE-based learning
with SGD. Our research suggests that, when NCE is used, τ
should be between 1 and two-thirds of the total number of
training epochs. For instance, if we need 40 training epochs
then τ could be between 1 and 26. This was one of the most
important insights that allowed us to improve the perfor-
mance of NCE.

3.2 Weight Initialisation

In neural networks, the initial weights are usually drawn
from a uniform distribution (Glorot and Bengio 2010), unit
Gaussian (Sutskever et al. 2013) or a general Gaussian distri-
bution (He et al. 2015). For our NCE training, we used a uni-
form distribution for the weight initialisation. All three dis-
tributions described above were compared, but the uniform
distribution led to slightly better results. However, regardless

which distribution is used, we found that NCE works much
better when the initial weights are within a smaller range,
i.e. when the variance of the initial weights is smaller than
what is suggested in (Glorot and Bengio 2010). This was
another insight that led to significant improvements in NCE
performance.

4 Experimental Methodology and

Implementation

We aim at showing that NCE can outperform alternative
methods for language modelling. In particular, we investi-
gate its performance in the context of softmax because NCE
approximates softmax being consistent with softmax in the
limit. Our implementation of NCE follows our approach pre-
sented in Sec. 3.

In our experiments, we focus on the popular perplexity
measure (PPL) using the Penn Tree Bank (PTB) dataset. It
is feasible to run ‘exact’ softmax on this dataset, and the
large literature that uses it allows for comparisons with other
approaches (see Tab. 1). The PTB dataset consists of 929k
training words, 73k validation words, and 82k test words.
The vocabulary size is 10k. Softmax usually becomes inef-
ficient when the vocabulary size exceeds 10k words.

All models were implemented in Tensorflow2 and exe-
cuted on NVIDIA K80 GPUs. The standard components of
our models follow (Zaremba, Sutskever, and Vinyals 2014)
where excellent results on this dataset were reported. The
words were represented with dense vectors trained using
the skip-gram model with negative sampling (Mikolov et al.
2013) on the Wikipedia corpus downloaded on December
2016. This word representation was used across all our ex-
periments.

In order to perform more experiments, we designed mod-
els of three sizes: small (S), medium (M) and large (L).
The small model is non-regularised whereas the medium
and large models are dropout regularised with 50% and 60%
dropout rate on the non-recurrent connections in the medium
and larger models correspondingly. This led to the best em-
pirical results after investigating different dropout rates in
the suggested ranges (Srivastava et al. 2014). All the mod-
els have two LSTM layers with the hidden layer size of
200 (S), 650 (M), and 1500 (L). The LSTM was unrolled
for 20 time steps for the small model and 35 time steps for
the medium and large models. We used mini-batch SGD for
training where the mini batch size was 20.

For sampling the initial weights, a smaller range than the
one suggested in (Glorot and Bengio 2010) turned out to be
beneficial for NCE. We tested several initialisation heuristics
which are described in the corresponding column in Tab. 3.
Row number 1 shows the formula suggested in (Glorot and
Bengio 2010). Note that U denotes a uniform distribution
with its minimum and maximum values, and ni denotes the
number of hidden nodes in layer i. Row number 2 shows our
updated formula that reduces the first range by a factor of 4,
and row number 3 shows the range values that led to the best
results in our experiments.

2https://www.tensorflow.org/



Table 1: Comparison with the state-of-the-art results of different models on the PTB dataset

Classic RNN and LSTM

Model Description Validation PPL Test PPL

Deep RNN (Pascanu et al. 2013) - 107.5

Sum-Prod Net (Cheng et al. 2014) - 100.0

RNN-LDA + KN-5 + cache (Mikolov and Zweig 2012) - 92.0

Conv.+Highway+ regularized LSTM (Kim et al. 2016) - 78.9

Non regularised LSTM with Softmax (Zaremba, Sutskever, and Vinyals 2014) 120.7 114.5

Medium regularised LSTM with Softmax (Zaremba, Sutskever, and Vinyals 2014) 86.2 82.7

Large regularised LSTM with Softmax (Zaremba, Sutskever, and Vinyals 2014) 82.2 78.4

Non regularised LSTM with NCE (our method) 106.196 102.245

Medium regularised LSTM with NCE (our method) 78.762 75.286

Large regularised LSTM with NCE (our method) 72.726 69.995

Extended or Improved LSTM

Variational LSTM (Gal and Ghahramani 2016) 77.3 75.0

Variational LSTM + Weight Tying(Press and Wolf 2016) 75.8 73.2

Pointer Sentinel LSTM (Merity et al. 2016) 72.4 70.9

Variational LSTM + Weight Tying + augmented loss (Inan, Khosravi, and Socher 2016) 71.1 68.5

Variational RHN (Zilly et al. 2016) 71.2 68.5

Variational RHN + Weight Tying (Zilly et al. 2016) 67.9 65.4

Neural Architecture Search with base 8 and shared embeddings - 62.4
Utilises a novel recurrent cell and reinforcement learning (Zoph and Le 2016)

Model Averaging/ Ensembles

38 large regularized LSTMs (Zaremba, Sutskever, and Vinyals 2014) 71.9 68.7

Model averaging with dynamic RNNs and n-gram models (Mikolov and Zweig 2012) - 72.9
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Figure 1: Selection of the learning rate parameter τ

The learning rate was scheduled using Eq. 9. The search
time limit τ was chosen empirically using Fig. 1. As a result,
τ was set to 7, 25 and 12 for the small, medium and larger
models correspondingly. During the convergence period, the
parameter ψ was set to 2, 1.2 and 1.15 for the small, medium
and larger models as suggested by (Zaremba, Sutskever, and
Vinyals 2014). We trained the models for 20, 39 and 55
epochs respectively.

The norm of the gradients (which was normalised by the
mini batch size) was clipped at 5 and 10 for the medium and
large models correspondingly. To compute validation and
testing perplexity, we used softmax to guarantee accuracy

of our comparisons.
In NCE, we used 600 noise samples. The noise samples

were generated from the power law distribution. We eval-
uated different noise sample sizes (50, 100, 150, 300, 600,
and 1200), and 600 had the best trade-off between quality
and time. We observed that when a GPU implementation is
used, it is possible to increase the sample size within a rea-
sonable range without dramatically increasing the computa-
tional complexity.

Our softmax-based language model was implemented and
parametrised accroding to (Zaremba, Sutskever, and Vinyals
2014) where it achieved the state-of-the-art results using the
standard LSTM network.

The two models that we implemented, i.e. softmax- and
NCE-based language models, used a standard LSTM net-
work (Hochreiter and Schmidhuber 1997; Gers 2001). Many
extensions to the LSTM architecture exist, e.g., Recurrent
Highway Networks (RHN) (Zilly et al. 2016), that may im-
prove LSTM’s capabilities in capturing long term dependen-
cies. In this paper, we aimed at comparing NCE and softmax
on standard LSTM networks, but our results could gener-
alise to other, potentially more advanced types of LSTM
cells. It should be noted, however, that our NCE imple-
mentation with standard LSTM outperforms some language
models which use more advanced versions of LSTM as
shown in Tab. 1.

5 Results and discussion

The results in Tab. 1 compare our best NCE-based result
with other state-of-the-art methods. Our result is the best



Table 2: Comparison of softmax and NCE
Large Model Time Valid. PPL Test PPL

Softmax (55 epochs) 9 h 11 min 82.588 78.826

Softmax (20 epochs) 3 h 40 min 79.798 76.935

NCE (55 epochs) 7 h 34 min 72.726 69.995

NCE (20 epochs) 2 h 36 min 76.268 74.129
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Figure 2: Convergence phase in the large model

in the class of single-model methods that use a standard
LSTM; the large model achieved the perplexity of 69.995

after 55 training epochs. This result outperforms all known
single-model algorithms that use the same kinds of LSTM
cells. The total time for training, validating and testing our
large NCE-based model was 7 hours 34 minutes (see Tab. 2).
The 55 epochs of softmax took 9 hours 11 minutes, and
the testing perplexity was 78.826. Early stopping, which is
a common regularisation method (Goodfellow, Bengio, and
Courville 2016), allowed softmax to achieve a testing per-
plexity of 76.935. So, softmax was clearly overfitted after
55 epochs. The same overfitting was not observed in NCE
as can be seen in Tab. 2 and Fig. 2.

Below, we present additional results that explain the good
performance achieved by NCE and provide further insights
into its properties.

Figure 2 presents the validation perplexity (Y axis) of a
large model for different dropout rates as a function of an
epoch number (X axis) at the convergence stage of learning.
One can see that softmax with a dropout rate of 60% over-
fitted since the 21st epoch. Increasing the dropout rate to
70% allowed softmax to avoid overfitting, but the asymptotic
performance was not as good as in NCE. The asymptotic
convergence of NCE was superior across a range of dropout
rates. In NCE, the gradients (Eq. 7) are different and more
noisy than in softmax (Eq. 4). We know that SGD leads to
better generalisation than batch gradient descent because of
the induced noise by updating the parameters from a single
example (Bousquet and Bottou 2008). Similar property of
NCE could justify its robust generalisation in Fig. 2.

Figures 3 and 4 show the validation perplexity (Y axis)
for selected values of τ as a function of an epoch number
(X axis) at the convergence stage of learning. These figures
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Figure 3: Convergence phase in the medium model
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Figure 4: Convergence phase in the large model

demonstrate the critical impact of the learning rate schedule
on NCE. Figure 3 shows that NCE requires a long search
period (large τ = 25) to achieve competitive asymptotic
convergence on the medium model. Figure 4 for the large
model has additional evidence that a long search period is
required because larger τ = 12, in addition to having bet-
ter asymptotic convergence, has poor (i.e. high) perplexity
in the initial phase. This poor perplexity indicates that the
algorithm explores widely at this stage, but by doing that it
can avoid converging to the nearest local optima. High ini-
tial perplexity is even more pronounced in Fig. 5 which is
for all epochs of the medium model (note that perplexity is
on the log scale here). Although difficult to see in the figure,
the asymptotic validation perplexity is the best for NCE with
τ = 25. There was also a difference in test performance be-
tween NCE and softmax: NCE with τ = 25 scored 75.959,
NCE with τ = 6 scored 83.858, softmax with τ = 25 scored
79.906, and softmax with τ = 6 achieved 78.567. NCE with
high τ was clearly the best, and increasing τ from 6 to 25 re-
duced perplexity from 83.858 to 75.959, which confirms the
significance of our arguments in Sec. 3. Thanks to the noise
samples, NCE can explore better than softmax when the ex-
ploration phase is long enough which is confirmed through
high perplexity in the initial stage of learning. This means



Table 3: Weight initialisation ranges for the uniform distribution (U) and the corresponding test perplexity (PPL)
No. Initialisation Heuristic Small Model Medium Model Large Model

1 U

(

−

√

6
√

ni+ni+1

,
√

6
√

ni+ni+1

)

U(-0.1225, 0.1225) U(-0.0679, 0.0679) U(-0.04472, 0.04472)

PPL = 104.449 PPL = 75.960 PPL = 71.184

2 U



−

√

6√
ni+ni+1

4
,

√

6√
ni+ni+1

4



 U(-0.031, 0.031) U(-0.0169, 0.0169) U(-0.011180, 0.011180)

PPL = 102.245 PPL = 75.959 PPL = 70.444

3 Empirically Tuned Ranges U(-0.0153, 0.0153) U(−0.00849, 0.00849) U(-0.00625, 0.00625)
PPL = 102.237 PPL = 75.286 PPL = 69.995

that NCE can find a better solution potentially for the same
reasons which make stochastic gradient descent better than
batch gradient descent (Bottou 2010).
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Figure 5: Validation perplexity of the medium model during
all epochs of learning

Our results in Fig. 4 and 5 indicated that good NCE re-
sults could be attributed to its high error, i.e., high perplex-
ity, in the early stages of learning which may allow for broad
exploration. We tried to enforce similar behaviour in soft-
max using a large learning rate in the search period. Fig-
ure 6(a) presents the validation perplexity in the log scale
for a large model with softmax (Y axis) as a function of a
training epoch (X axis) and the learning rate (LR) which
was increased to 1, 2, and 3 during search time. This ar-
rangement increased the validation perplexity for the first
few epochs, but the asymptotic convergence of softmax was
not improved. When, in Fig. 6(b), we compare the increased
initial softmax perplexity with NCE perplexity during the
progression of the first epoch, we can see that NCE has much
larger perplexity at this stage even though its learning rate is
not larger than one. It might be a distinct characteristic of
the NCE that helps to converge to a better local optimum
due to the initial high training error.

The numerical entries in Tab. 3, i.e., in all cells in the bot-
tom right part of the table, contain both the intervals U used
to sample initial weights and the resulting perplexity (PPL)
on a corresponding model. The results on the large model
show that weight initialisation with lower variance led to
better results, where the best perplexity of 69.995 was the
best result that NCE achieved in our experiments.
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Figure 6: High learning rate (LR) to increase the initial soft-
max perplexity (a). NCE and softmax initial perplexities in
the first epoch; note that only training perplexity is available
within one epoch (b).

6 Conclusion

Language modelling techniques can use Noise Contrastive
Estimation (NCE) to deal with the partition function prob-
lem during learning. Although it was known that NCE can
outperform softmax (which computes the exact partition
function) on large problems which are too big for softmax,
its performance has never been shown to outperform soft-
max or other methods on tasks on which softmax is feasible
and works well. In this paper, we showed that NCE can beat
all the previously best results in the class of single-model
methods based on a standard LSTM and standard dropout
achieving perplexity of 69.995. Our result establishes a new
standard on the Penn Tree Bank dataset reducing the per-
plexity of the best existing method in this class by 8.405.
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Józefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; and
Wu, Y. 2016. Exploring the limits of language modeling.
CoRR abs/1602.02410.

Kim, Y.; Jernite, Y.; Sontag, D.; and Rush, A. M. 2016.
Character-aware neural language models. In Proc. of AAAI,
2741–2749.

Marcus, M. P.; Marcinkiewicz, M. A.; and Santorini, B.
1993. Building a large annotated corpus of english: The
penn treebank. Computational linguistics 19(2):313–330.

Merity, S.; Xiong, C.; Bradbury, J.; and Socher, R. 2016.
Pointer sentinel mixture models. CoRR abs/1609.07843.

Mikolov, T., and Zweig, G. 2012. Context dependent re-
current neural network language model. In Proc. of SLT,
234–239.

Mikolov, T.; Karafit, M.; Burget, L.; Cernock, J.; and Khu-
danpur, S. 2010. Recurrent neural network based language
model. In Interspeech, 1045–1048.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Proc. of NIPS. 3111–
3119.

Mnih, A., and Hinton, G. E. 2009. A scalable hierarchical
distributed language model. In Proc. of NIPS, 1081–1088.

Mnih, A., and Teh, Y. W. 2012. A fast and simple algorithm
for training neural probabilistic language models. In Proc.
of ICML.
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