
1

Compositional Verification of Relaxed-Memory Program
Transformations

MIKE DODDS, MARK BATTY, and ALEXEY GOTSMAN

�is paper is about verifying program transformations on an axiomatic relaxed memory model of the kind used in C/C++

and Java. Relaxed models present particular challenges for verifying program transformations, because they generate many

additional modes of interaction between code and context. For a block of code being transformed, we de�ne a denotation

from its behaviour in a set of representative contexts. Our denotation summarises interactions of the code block with the rest

of the program both through local and global variables, and through subtle synchronisation e�ects due to relaxed memory.

We can then prove that a transformation does not introduce new program behaviours by comparing the denotations of the

code block before and a�er. Our approach is compositional: by examining only representative contexts, transformations

are veri�ed for any context. It is also fully abstract, meaning any valid transformation can be veri�ed. We cover several

tricky aspects of C/C++-style memory models, including release-acquire operations, sequentially consistent fences, and

non-atomics. We also de�ne a variant of our denotation that is �nite at the cost of losing full abstraction. Based on this

variant, we have implemented a prototype veri�cation tool and applied it to automatically prove and disprove a range of

compiler optimisations.

1 INTRODUCTION
Context and objectives. Any program de�nes a collection of observable behaviours: a sorting algorithm maps

unsorted to sorted sequences, and a paint program responds to mouse clicks by updating a rendering. It is o�en

desirable to transform a program without introducing new observable behaviours – for example, in a compiler

optimisation or programmer refactoring. Such transformations are called observational re�nements, and they

ensure that properties of the original program will carry over to the transformed version. It is also desirable

for transformations to be compositional, meaning that they can be applied to a block of code irrespective of the

surrounding program context. Compositional transformations are particularly useful for automated systems such

as compilers, where they are known as peephole optimisations.
�e semantics of the language is highly signi�cant in determining which transformations are valid, because it

determines the ways that a block of code being transformed can interact with its context and thereby a�ect the

observable behaviour of the whole program. Our work applies to a relaxed memory concurrent se�ing. �us, the

context of a code-block includes both code sequentially before and a�er the block, and code that runs in parallel.

Relaxed memory means that di�erent threads can observe di�erent, apparently contradictory orders of events –

such behaviour is permi�ed by programming languages to re�ect CPU-level relaxations and to allow compiler

optimisations.

We focus on axiomatic memory models of the type used in C/C++ and Java. In axiomatic models, program exe-

cutions are represented by structures of memory actions and relations on them, and program semantics is de�ned

by a set of axioms constraining these structures. Reasoning about the correctness of program transformations

on such memory models is very challenging, and indeed, compiler optimisations have been repeatedly shown

unsound with respect to models they were intended to support (Vafeiadis et al. 2015; Ševčı́k and Aspinall 2008).

�e fundamental di�culty is that axiomatic models are de�ned in a global, non-compositional way, making it

very challenging to reason compositionally about the single code-block being transformed.

Publication date: January 2017.

1:2 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

Approach. Suppose we have a code-block B, embedded into an unknown program context. We de�ne a denota-
tion for the code-block which summarises its behaviour in a restricted representative context. �e denotation

consists of a set of histories which track interactions across the boundary between the code-block and its context,

but abstract from internal structure of the code-block. We can then validate a transformation from code-block

B to B′ by comparing their denotations. �is approach is compositional: it requires reasoning only about the

code-blocks and representative contexts; the validity of the transformation in an arbitrary context will follow.

It is also fully abstract, meaning that it can verify any valid transformation: considering only representative

contexts and histories does not lose generality.

We also de�ne a variant of our denotation that is �nite at the cost of losing full abstraction. We achieve this

by further restricting the form of contexts one needs to consider in exchange for tracking more information in

histories. For example, it is unnecessary to consider executions where two context operations read from the same

write.

Using this �nite denotation, we implement a prototype veri�cation tool, Stellite. Our tool converts an input

transformation into a model in the Alloy language (Jackson 2012), and then checks that the transformation is valid

using the Alloy* solver (Milicevic et al. 2015). Our tool can prove or disprove a range of introduction, elimination,

and exchange compiler optimisations. Many of these were veri�ed by hand in previous work; our tool veri�es

them automatically.

Contributions. Our contribution is twofold. First, we de�ne the �rst fully abstract denotational semantics

for an axiomatic relaxed model. Previous proposals in this space targeted either non-relaxed sequential consis-

tency (Brookes 1996) or much more restrictive operational relaxed models (Burckhardt et al. 2010; Jagadeesan

et al. 2012; Poetzl and Kroening 2016). Second, we show it is feasible to automatically verify relaxed-memory

program transformations. Previous techniques required laborious proofs by hand or in a proof assistant (Vafeiadis

et al. 2015; Vafeiadis and Zappa Nardelli 2011; Ševčı́k and Aspinall 2008; Ševčı́k et al. 2011, 2013). Our target

model is derived from the C/C++ 2011 standard (�e C++ Standards Commi�ee 2011). However, our aim is not to

handle C/C++ per se (especially as the model is in �ux in several respects; see §3.1). Rather we target the simplest

axiomatic model rich enough to demonstrate our approach.

2 OBSERVATION AND TRANSFORMATION
Observational re�nement. �e notion of observation is crucial when determining how di�erent programs

are related. For example, observations might be I/O behaviour or writes to special variables. Given program

executions X1 and X2, we write X1 4ex X2 if the observations in X1 are replicated in X2. Li�ing this notion, a

program P1 observationally re�nes another P2 if every observable behaviour of one could also occur with the

other – we write this P1 4pr P2. More formally, let J−K be the map from programs to sets of executions. �en we

de�ne 4pr as:

P1 4pr P2

∆
⇐⇒ ∀X1 ∈ JP1K. ∃X2 ∈ JP2K.X1 4ex X2 (1)

Compositional transformation. Many common program transformations are compositional: they modify a

sequential fragment of the program without examining the rest of the program. We call the former the code-block
and the la�er its context. Contexts can include sequential code before and a�er the block, and concurrent code

that runs in parallel with it. Code-blocks are sequential, i.e. they do not feature internal concurrency. A context

C and code-block B can be composed to give a whole program C (B).
A transformationB2 { B1 replaces some instance of the code-blockB2 withB1. To validate such transformation,

we must establish whether every whole program containing B1 observationally re�nes the same program with B2

substituted. If this holds, we say that B1 observationally re�nes B2, wri�en B1 4bl B2, de�ned by li�ing 4pr as

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:3

store(x,0); store(y,0);

store(x,1);

v1 := load(y);

store(y,1);

v2 := load(x);

store(f,0); store(x,0);

store(x,1);

store(f,1);

b := load(f);

if (b == 1)

r := load(x);

Fig. 1. Le�: store-bu�ering (SB) example. Right: message-passing (MP) example.

follows:

B1 4bl B2

∆
⇐⇒ ∀C . C (B1) 4pr C (B2) (2)

If B1 4bl B2 holds, then the compiler can replace block B2 with block B1 irrespective of the whole program,

i.e. B2 { B1 is a valid transformation. �us, deciding B1 4bl B2 is the core problem in validating compositional

transformations.

�e language semantics is highly signi�cant in determining observational re�nement. For example, the code

blocks B1 : store(x,2); store(x,5) and B2 : store(x,5) are observationally equivalent in a sequential se�ing,

but in a concurrent se�ing the intermediate state, x = 2, can be observed in B2 but not B1. In a relaxed-memory

se�ing there is no global state seen by all threads, which further complicates the notion of observation.

Compositional veri�cation. To establish B1 4bl B2, it is di�cult to examine all possible syntactic contexts. Our

approach is to construct a denotation for each code-block – a simpli�ed, ideally �nite, summary of possible

interactions between the block and its context. We then de�ne a re�nement relation on denotations and use it to

establish observational re�nement. We write B1 v B2 when the denotation of B1 re�nes that of B2.

Re�nement on denotations should be adequate, i.e., it should validly approximate observational re�nement:

B1 v B2 =⇒ B1 4bl B2. Hence, if B1 v B2, then B2 { B1 is a valid transformation. It is also desirable for the

denotation to be fully abstract: B1 4bl B2 =⇒ B1 v B2. �is means any valid transformation can be veri�ed by

comparing denotations. Below we de�ne several versions of v with di�erent properties.

3 TARGET LANGUAGE AND CORE MEMORY MODEL
We now describe our target language. Our language’s memory model is derived from the C/C++ 2011 standard

(henceforth ‘C11’), as formalized by Ba�y et al. (2011); �e C++ Standards Commi�ee (2011). However, we

simplify our model in several ways; see end of section for details. In C11 terms, our model covers release-acquire

and non-atomic operations, and sequentially consistent fences. To simplify the presentation, at �rst we omit

non-atomics, and extend our approach to cover them in §7. �us, all operations in this section correspond to

C11’s release-acquire.

Relaxed memory primer. In a sequentially consistent concurrent system, there is a total temporal order on loads

and stores, and loads take the value of the most recent store; in particular, they cannot read overwri�en values,

or values wri�en in the future. A relaxed (or weak) memory model weakens this total order, allowing behaviours

forbidden under sequential consistency. Two standard examples of relaxed behaviour are store bu�ering and

message passing, shown in Figure 1.

In most relaxed models v1 = v2 = 0 is a possible post-state for SB. �is cannot occur on a sequentially

consistent system: if v1 = 0 then store(y,1) must be ordered a�er the load of y, which would order store(x,1)
before the load of x, forcing it to assign v2 = 1. In some relaxed models, b = 1 ∧ r = 0 is a possible post-state for

MP. �is is undesirable if, for example, x is a complex data-structure and f is a �ag indicating it has been safely

created.

Publication date: January 2017.

1:4 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

Language syntax. Programs in the language we consider manipulate thread-local variables l ,l1,l2 . . . ∈ LVar
and global variables x ,y, . . . ∈ GVar, coming from disjoint sets LVar and GVar. Each variable stores a value from

a �nite set Val and is initialised to 0 ∈ Val. Constants are encoded by special read-only thread-local variables. We

assume that each thread uses the same set of thread-local variable names LVar. �e syntax of the programming

language is as follows:

C ::= l := E | store(x ,l) | l := load(x) | l := LL(x) | l ′ := SC(x ,l) | fence |
C1 ‖ C2 | C1;C2 | if (l) {C1} else {C2} | {−}

E ::= l | l1 = l2 | l1 , l2 | . . .

Many of the constructs are standard. LL(x) and SC(x ,l) are load-link and store-conditional, which are basic

concurrency operations available on many platforms (e.g., Power and ARM). A load-link LL(x) behaves as a

standard load of global variable x. However, if it is followed by a store-conditional SC(x ,l), the store fails and

returns false if there are intervening writes to the same location. Otherwise the store-conditional writes l
and returns true. �e fence command is a sequentially consistent fence: interleaving such fences between all

statements in a program guarantees sequentially consistent behaviour. We do not include compare-and-swap
(CAS) command in our language because LL-SC is more general (Anderson and Moir 1995). Hardware-level

LL-SC is used to implement C11 CAS on Power and ARM. Our language does not include loops because in this

paper we do not consider in�nite computations (see §3.1 for discussion). As a result, loops can be represented by

their �nite unrollings. Our load commands write into a local variable. In our examples, we sometimes write

‘bare’ loads without a local variable write.

�e construct {−} represents a block-shaped hole in the program. To simplify our presentation, we assume

at most one hole appears on each control-�ow path.
1

�e set Prog of whole programs consists of programs

without holes, while the set Contx of contexts consists of programs. �e set Block of code-blocks are whole

programs without parallel composition. We o�en write P ∈ Prog for a whole program, B ∈ Block for a code-block,

and C ∈ Contx for a context. Given a context C and a code-block B, the composition C (B) is C with its hole

syntactically replaced by B. For example:

C : load(x); {-}; store(y,l1), B : store(x,2) −→ C (B) : load(x); store(x,2); store(y,l1)

We restrict Prog, Contx and Block syntactically: each SC must be preceded by LL at the same location, with

no intervening SC, and we forbid LL-SC pairs from spanning parallel compositions, and from spanning the

block/context boundary.

Memory model structure. �e semantics of a whole program P is given by a set JPK of executions, which consist

of actions, representing memory events on global variables, and several relations on these. Actions are tuples in

the set Action
∆
= ActID × Kind ×Option(GVar) × Val∗. In an action (a,k,z,b) ∈ Action: a ∈ ActID is the unique

action identi�er; k ∈ Kind is the kind of action – we use load, store, LL, SC, and the failed variant SCf in the

semantics, and will introduce further kinds as needed; z ∈ Option(GVar) is an option type consisting of either a

single global variable Just(x) or None; and b ∈ Val∗ is the vector of values (actions with multiple values are used

in §4).

Given an action v , we use gvar(v) and rval(v) as selectors for the di�erent �elds. We o�en write actions so as

to elide action identi�ers and the option type. For example, load(x ,3) stands for ∃i . (i, load, Just(x), [3]). We also

sometimes elide values. We call load and LL actions reads, and store and successful SC actions writes. Given a set

of actions A, we write, e.g., reads(A) to identify read actions in A. Below, we range over all actions by u,v;

read actions by r ; write actions by w ; and LL, SC actions by ll and sc respectively.

1
Transformations that apply to multiple blocks at once can be simulated by using the fact our approach is compositional. �is means that

transformations can be applied in sequence using di�erent divisions of the program into code-block and context.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:5

〈l := load(x),σ 〉
∆
= {({load(x ,a)},∅,σ [l 7→ a]) | a ∈ Val}

〈store(x ,l),σ 〉
∆
= {({store(x ,a)},∅,σ) | σ (l) = a}

〈l := LL(x),σ 〉
∆
= {({LL(x ,a)},∅,σ [l 7→ a]) | a ∈ Val}

〈l ′ := SC(x ,l),σ 〉
∆
= {{({SC(x ,a)},∅,σ [l ′ 7→ 1]) | σ (l) = a} ∪ {({SCf (x)},∅,σ [l ′ 7→ 0])}

〈fence,σ 〉
∆
= {({ll, sc}, {(ll, sc)},σ) | ll = LL(fen,0) ∧ sc = SC(fen,0)}

〈C1 ‖ C2,σ 〉
∆
= {(A1

·∪A2,sb1 ∪ sb2,σ) | (A1,sb1,σ1) ∈ 〈C1,σ 〉 ∧ (A2,sb2,σ2) ∈ 〈C2,σ 〉}

〈C1;C2,σ 〉
∆
= {(A1

·∪A2,sb1 ∪ sb2 ∪ (A1 × A2),σ2) | (A1,sb1,σ1) ∈ 〈C1,σ 〉 ∧ (A2,sb2,σ2) ∈ 〈C2,σ1〉}

〈if (l) {C1} else {C2},σ 〉
∆
=

〈C2,σ 〉, if σ (l) = 0

〈C1,σ 〉, otherwise

Fig. 2. The thread-local semantics of our target language. We writeA1
·∪A2 for a union that is defined only when actions in

A1 and A2 use disjoint sets of identifiers. We omit identifiers from actions to avoid clu�er.

�e semantics of a program P ∈ Prog is de�ned in two stages. First, a thread-local semantics of P produces a

set 〈P〉 of pre-executions (A,sb) ∈ PreExec. A pre-execution contains a �nite set of memory actions A ∈ Action
that could be produced by the program. It has a transitive and irre�exive sequence-before relation sb ⊆ A × A,

which de�nes the sequential order imposed by the program syntax.

For example two sequential statements in the same thread produce actions ordered in sb. �e thread-local

semantics takes into account control �ow in P ’s threads and operations on local variables. However, it does not

constrain the behaviour of global variables: the values threads read from them are chosen arbitrarily. �is is

addressed by extending pre-executions with extra relations, and �ltering these executions using validity axioms.

�read-local semantics. �e thread-local semantics is de�ned formally in Figure 2. �e semantics of a program

P ∈ Prog is de�ned using function 〈−,−〉 : Prog × VMap → P (PreExec × VMap). �e values of local variables

are tracked by a map σ ∈ VMap
∆
= LVar→ Val. Given a program and an input local variable map, the function

produces a set of pre-executions paired with an output variable map, representing the values of local variables at

the end of the execution. Let σ0 map every local variable to 0. �en 〈P〉, the thread-local semantics of a program

P , is de�ned as

〈P〉
∆
= {(A,sb) | ∃σ ′. (A,sb,σ ′) ∈ 〈P ,σ0〉}

�e signi�cant property of the thread-local semantics is that it does not restrict the behaviour of global variables.

For this reason, note that the clause for load in Figure 2 leaves the value a unrestricted. We take a simpli�ed

approach to local variables at thread creation: the initial variable map σ is copied to both threads in C1 ‖ C2, and

the original map is restored when they complete. We follow Lahav et al. (2016) by encoding the fence command

by a successful LL-SC pair to a distinguished variable fen ∈ GVar that is not otherwise read or wri�en.

Execution structure. �e semantics of a program P is a set JPK of executions X = (A,sb,at, rf,mo,hb) ∈ Exec,
where (A,sb) is a pre-execution and at, rf,mo,hb ⊆ A × A. Given an execution X we sometimes write

A (X),sb(X), . . . as selectors for the appropriate set or relation. �e relations have the following purposes.

• Atomicity (at ⊆ sb) is an injective function from LL actions to SC actions that associates each successful

store-conditional to the preceding load-link action on the same location, representing a matching LL-SC

pair. �is de�nition is made possible by the strong syntactic restrictions on the use of LL-SC.

Publication date: January 2017.

1:6 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

• Reads-from (rf) is an injective map from reads to writes. A read and write action are related w
rf
−→ r if r

takes its value from w .

• Modi�cation order (mo) is an irre�exive, total order on write actions to each distinct variable. �is is a

per-variable order in which all threads observe writes to the variable; two threads cannot observe these

writes in di�erent orders.

• Happens-before (hb) is analogous to global temporal order – but unlike the sequentially consistent notion

of time, it is partial. Happens-before is de�ned as (sb∪ rf)+: therefore statements ordered in the program

syntax are ordered in time, as are reads with the writes they observe.

Validity axioms. �e semantics JPK of a program P is the set of executions X ∈ Exec compatible with the

thread-local semantics and the validity axioms, denoted valid(X):

JPK ∆
= {X | (A (X),sb(X)) ∈ 〈P〉 ∧ valid(X)} (3)

�e validity axioms on an execution (A,sb,at, rf,mo,hb) are:

• HBdef: hb = (sb ∪ rf)+ and hb is acyclic.

�is axiom de�nes hb and enforces the intuitive property that there are no cycles in the temporal

order. It also prevents an action reading from its hb-future: as rf is included in hb, this would result in a

cycle.

• HBvsMO: ¬∃w1,w2. w1

hb))
w2

mo
ii

�is axiom requires that the order in which writes to a location become visible to threads cannot

contradict the temporal order. But take note that writes may be ordered in mo but not hb.

• Coherence: ¬∃w1,w2,r . w1

mo //

rf

33w2

hb // r

�is axiom generalises the sequentially consistent prohibition on reading overwri�en values. If two

writes are ordered in mo, then intuitively the second overwrites the �rst. A read that follows some write

in hb or mo cannot read from writes earlier in mo – these earlier writes have been overwri�en. However,

unlike in sequential consistency, hb is partial, so there may be multiple writes that an action can legally

read.

• RFval: ∀r . (¬∃w ′.w ′
rf
−→ r) =⇒ (rval(r) = 0 ∧ (¬∃w .w

hb
−−→ r ∧ gvar(w) = gvar(r)))

Most reads must take their value from a write, represented by an rf edge. However, the RFval axiom

allows the rf edge to be omi�ed if the read takes the initial value 0 and there is no hb-earlier write to

the same location. Intuitively, an hb-earlier write would supersede the initial value in a similar way to

Coherence.

• Atom: ¬∃w1,w2, ll, sc. w1

rf
��

mo // w2

mo
��

ll at // sc
�is axiom is adapted from Lahav et al. (2016). For an LL-SC pair ll and sc, it ensures that there is no

mo-intervening write w2 that would invalidate the store.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:7

store(f,0)

sb, hb
��mo

��

store(x,0)
sb, hb,mo

xx
sb, hb
��

rf, hb

xx

store(x,1)

sb, hb
��

load(f,1)

sb, hb
��

store(f,1)
rf, hb

88

load(x,0)

Fig. 3. Invalid execution for theMP example
program.

Our model forbids the problematic relaxed behaviour of the message-

passing (MP) program in Figure 1 that yields b = 1 ∧ r = 0. Figure 3

shows an (invalid) execution that would exhibit this behaviour. To

avoid clu�er, here and in the following we omit hb edges obtained

by transitivity and local variable values. �is execution is allowed by

the thread-local semantics of the MP program, but it is ruled out by

the Coherence validity axiom. As hb is transitively closed, there is a

derived hb edge store(x,1)
hb
−−→ load(x,0), which forms a Coherence

violation. �us, this is not an execution of the MP program. Indeed,

any execution ending in load(x,0) is forbidden for the same reason,

meaning that the undesirable MP relaxed behaviour cannot occur.

Relaxed observations. Finally, we de�ne a notion of observational

re�nement suitable for our relaxed model. We assume a subset of

observable global variables, OVar ⊆ GVar, which can only be accessed

by the context and not by the code-block. We consider the actions and

the hb relation on these variables to be the observations. We write X |OVar for the projection of X ’s action set and

relations to OVar, and use this to de�ne 4ex for our model:

X 4ex Y
∆
⇐⇒ A (X |OVar) = A (Y |OVar) ∧ hb(Y |OVar) ⊆ hb(X |OVar)

�is is li�ed to programs and blocks as in §2, def. (1) and (2). Note that in the more abstract execution, actions on

observable variables must be the same, but hb can be weaker. �is is because we interpret hb as a constraint

on time order: two actions that are unordered in hb could have occurred in either order, or in parallel. �us,

weakening hb allows more observable behaviours (see §2).

3.1 Di�erences from C11
Our language’s memory model is derived from the C11 formalization in Ba�y et al. (2011), with a number of

simpli�cations. We chose C11 because it demonstrates most of the important features of axiomatic language

models. However, we do not target the precise C11 model: rather we target an abstracted model that is rich

enough to demonstrate our approach. Relaxed language semantics is still a very active topic of research, and

several C11 features are known to be signi�cantly �awed, with multiple competing �xes proposed. Some of

our di�erences from Ba�y et al. (2011) are intended to avoid such problematic features so that we can cleanly

demonstrate our approach.

In C11 terms, our model covers release-acquire and non-atomic operations (the la�er addressed in §7), and

sequentially consistent fences. We deviate from C11 in the following ways:

• We omit sequentially consistent accesses because their semantics is known to be �awed in C11 (Lahav et al.

2017). We do handle sequentially consistent fences, but these are stronger than those of C11: the stronger

semantics we use was proposed in Lahav et al. (2016) and proved sound under existing compilation

strategies to common multiprocessors.

• We omit relaxed (RLX) accesses to avoid well-known problems with thin-air values (Ba�y et al. 2015).

�ere are multiple recent competing proposals for �xing these problems, e.g. Je�rey and Riely (2016);

Kang et al. (2017); Pichon-Pharabod and Sewell (2016).

• We do not consider in�nite computations, because the semantics of in�nite computations in C11-style

axiomatic models remains undecided in the literature (Ba�y et al. 2015). However, our proofs do not

depend on the assumption that execution contexts are �nite.

Publication date: January 2017.

1:8 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

• Our language is based on shared variables, not dynamically allocated addressable memory, so for example

we cannot write y:=*x; z:=*y. �is simpli�es our theory by allowing us to �x the variables accessed by

a code-block up-front. We believe our results can be extended to support addressable memory, because

C11-style models grant no special status to pointers; we elaborate on this in §4.

• We add LL-SC atomic instructions to our language in addition to C11’s standard CAS. �is increases the

observational power of a context and is necessary for full abstraction in the presence of non-atomics;

see §8. LL-SC is available as a hardware instruction on many platforms supporting C11, such as Power

and ARM. However, we do not propose adding LL-SC to C11: rather, it supports an interesting result in

relaxed memory model theory. Our adequacy results do not depend on LL-SC.

4 DENOTATIONS OF CODE-BLOCKS
We construct the denotation for a code-block in two steps: (1) generate the block-local executions under a set of

special cut-down contexts; (2) from each of these executions, extract a summary of interactions between the

code-block and the context called a history.

Block-local executions. �e block-local executions of a block B ∈ Block omit context structure such as syntax

and actions on variables not accessed in the block. Instead the context is represented by special actions call and

ret, a set AB , and relations RB and SB , each covering an aspect of the interaction of the block and an arbitrary

unrestricted context.

• Local variables. A context can include code that precedes and follows the block on the same thread,

with interaction through local variables, but – due to syntactic restriction – not through LL/SC atomic

regions. We capture this with special action call(σ) at the start of the block, and ret(σ ′) at the end, where

σ ,σ ′ : LVar→ Val record the values of local variables at these points. Assume that variables in LVar are

ordered: l1,l2, . . . ,ln . �en call(σ) is encoded by the action (i,call,None,[σ (l1), . . . σ (ln)]), with fresh

identi�er i . We encode ret in the same way.

• Global variable actions. �e context can also interact with the block through concurrent reads and writes

to global variables. �ese interactions are represented by set AB of actions added to the ones generated

by the thread-local semantics of the block. �is set only contains actions on the variables VSB that B can

access (VSB can be constructed syntactically).

• Context happens-before. �e context can generate hb edges between its actions – to get adequacy (§2), we

track these with a relation RB over actions in AB , call and ret:

RB ⊆ (AB × AB) ∪ (AB × {call}) ∪ ({ret} × AB) (4)

�e context can generate hb edges between actions directly if they are on the same thread, or indirectly

through inter-thread reads. Likewise call / ret may be related to context actions on the same or di�erent

threads.

• Context atomicity. �e context can generate at edges between its actions that we capture in the relation

SB ⊆ AB × AB . We require this relation to be an injective function from LL to SC actions. We consider

only cases where LL/SC pairs do not cross block boundaries, so we need not consider boundary-crossing

at edges.

Together, call, ret, AB , RB , and SB represent a limited context, stripped of syntax, relations sb, moand rf, and

actions on global variables other than VSB . When constructing block-local executions, we represent all possible

interactions by quantifying over all possible choices of σ , σ ′, AB , RB and SB . �e set JB,AB ,RB ,SBK contains all

executions of B under this special limited context. Formally, an execution X = (A,sb,at, rf,mo,hb) is in this set

if:

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:9

hb, RB

hb, RB

mo

sb, hb

rf, hb

rf, hb

store(f,1)
load(f,1)

load(x,1)

call

sb, hb

sb, hb

ret

store(x,2)

store(x,1)

hb, RB

store(f,1)

call

ret

store(x,2)

store(x,1)
G

G

G

Fig. 4. Le�: block-local execution. Right: corresponding history.

(1) AB ⊆ A and there exist variable maps σ ,σ ′ such that {call(σ), ret(σ ′)} ⊆ A. �at is, the call, return,

and extra context actions are included in the execution.

(2) �ere exists a set Al and relation sbl such that (i) (Al ,sbl ,σ ′) ∈ 〈B,σ 〉; (ii) Al = A \ (AB ∪ {call, ret});
(iii) sbl = sb \ {(call,u), (u, ret) | u ∈ Al }. �at is, actions from the code-block satisfy the thread-local

semantics, beginning with map σ and deriving map σ ′. All actions arising from the block are between

call and ret in sb.

(3) X satis�es the validity axioms, but with modi�ed axioms HBdef
′

and Atom
′
. We de�ne HBdef

′
as:

hb = (sb ∪ rf ∪ RB)
+

and hb is acyclic. �at is, context relation RB is added to hb. Atom
′

is de�ned

analogously with SB added to at.

We say that AB , RB and SB are consistent with B if they act over variables in the set VSB . In the rest of the

paper we only consider consistent choices of AB , RB , SB . �e block-local executions of B are then all executions

X ∈ JB,AB ,RB ,SBK.
2

Example block-local execution. �e le� of Figure 4 shows a block-local execution for the code-block

l1 := load(f); l2 := load(x) (5)

Here the set VSB of accessed global variables is {f,x}, As before, we omit local variables to avoid clu�er. the

context action set AB consists of the three stores, and RB is denoted by do�ed edges.

In this execution, both AB and RB a�ect the behaviour of the code-block. �e following path is generated by

RB and the load of f = 1:

store(x,2)
mo
−−→ store(x,1)

RB
−−→ store(f,1)

rf
−→ load(f,1)

sb
−→ load(x,1)

Because hb includes sb, rf, and RB , there is a transitive edge store(x,1)
hb
−−→ load(x,1). �e edge store(x,2)

mo
−−→

store(x,1) is forced because the HBvsMO axiom prohibits mo from contradicting hb. Consequently, the Coher-

ence axiom forces the code-block to read x = 1.

2
�is de�nition relies on the fact that our language supports a �xed set of global variables, not dynamically allocated addressable memory

(see §3.1). We believe that in the future our results can be extended to support dynamic memory. For this, the block-local construction would

need to quantify over actions on all possible memory locations, not just the static variable set VSB . �e rest of our theory would remain the

same, because C11-style models grant no special status to pointer values. Cu�ing down to a �nite denotation, as in §5 below, would require

some extra abstraction over memory – for example, a separation logic domain such as (Distefano et al. 2006).

Publication date: January 2017.

1:10 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

Execution 1: History 1: Execution 2: History 2:

rf?

sb

rf

mo

sb

store(f,1)
load(f,1)

load(x,0)

call

sb

sb

ret

store(y,1)

store(y,2)
sb

load(y)

G
G
store(f,1)

call

ret

store(y,1)

store(y,2)

load(y)

sb

store(f,1)load(x,0)

call

ret

sb

rf

sb

mo
store(y,1)

store(y,2)
sb

load(y)

store(f,1)

call

ret

store(y,1)

store(y,2)

load(y)

Fig. 5. Executions and histories illustrating the guarantee relation.

Histories. From any block-local execution X , its history summarises the interactions between the code-block

and the context. Informally, the history records hb over context actions, call, and ret. More formally the history,

wri�en hist(X), is a pair (A,G) consisting of an action set A and guarantee relation G ⊆ A × A. We write

contx(X) to denote actions in A (X) outside the code-block, and de�ne the history as follows:

• �e action set A is the projection of X ’s action set to call, ret, and contx(X).
• �e guarantee relation G is the projection of hb(X) to

(contx(X) × contx(X)) ∪ (contx(X) × {ret}) ∪ ({call} × contx(X)) (6)

�e guarantee summarises the code-block’s e�ect on its context: it su�ces to only track hb and ignore other

relations. Note the guarantee de�nition is similar to the context relation RB , de�nition (4). �e di�erence is that

call and ret are switched: this is because the guarantee represents hb edges generated by the code-block, while

RB represents the edges generated by the context. �e right of Figure 4 shows the history corresponding to the

block-local execution on the le�.

To see the interactions captured by the guarantee, compare the block given in def. (5) with the block

l2:=load(x). �ese blocks have di�ering e�ects on the following syntactic context:

store(y,1); store(y,2); store(f,1) || {-}; l3:=load(y)

For the two-load block embedded into this context, l1 = 1∧l3 = 1 is not a possible post-state. For the single-load

block, this post-state is permi�ed.
3

In Figure 5, we give executions for both blocks embedded into this context. We draw the context actions that

are not included into the history in grey. In these executions, the code block determines whether the load of y
can read value 1 (represented by the edge labelled ‘rf?’). In the �rst execution, the context load of y cannot read 1

because there is the path store(y,1)
mo
−−→ store(y,2)

hb
−−→ load(y) which would contradict the Coherence axiom.

In the second execution there is no such path and the load is permi�ed to read 1.

Our abstraction theorem hides the operations inside the block, but we must nonetheless record these kinds of

hb e�ects on the context. In Execution 1, the Coherence violation is still visible if we only consider context

operations, call, ret, and the guarantee G – i.e. the history. In Execution 2, the fact that the read is permi�ed is

likewise visible from examining the history. �us the guarantee, combined with the local variable post-states,

capture the e�ect of the block on the context without recording the actions inside the block.

3
We choose these post-states for exposition purposes – in fact these blocks are also distinguishable through local variable l1 alone.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:11

Execution X1: Execution X2: History:

R

sb, hb

rf, hb
load(x,1)

store(x,1)

call

sb, hb

ret

R

sb, hb

rf, hb
load(x,1)

store(x,1)

store(x,1)

call

sb, hb

sb, hb

ret load(x,1)

call

ret

G

Fig. 6. History comparison for an example program transformation.

Comparing denotations. �e denotation of a code-block B is the set of histories of block-local executions of B
under each possible context, i.e. the set

{hist(X) | ∃AB ,RB ,SB .X ∈ JB,AB ,RB ,SBK}

To compare the denotations of two code-blocks, we �rst de�ne a re�nement relation on histories: (A1,G1) vh
(A2,G2) holds i�A1 = A2∧G2 ⊆ G1. �e history (A2,G2) places fewer restrictions on the context than (A1,G1)
– a weaker guarantee corresponds to more observable behaviours. For example in Figure 5, History 1 vh History 2
but not vice versa, which re�ects the fact that History 1 rules out the read pa�ern discussed above.

We write B1 vq B2 to state that the denotation of B1 re�nes that of B2. �e subscript ‘q’ stands for the fact we

quantify over both A and RB . We de�ne vq by li�ing vh:

B1 vq B2

∆
⇐⇒ ∀A,R,S .∀X1 ∈ JB1,A,R,SK. ∃X2 ∈ JB2,A,R,SK. hist(X1) vh hist(X2) (7)

In other words, two code-blocks are related B1 vq B2 if for every block-local execution of B1, there is a

corresponding execution of B2 with a related history. Note that the corresponding history must be constructed

under the same cut-down context A,R,S .

Theorem 1 (Adeqacy of vq). B1 vq B2 =⇒ B1 4bl B2. (Proved in §B.)

Theorem 2 (Full abstraction of vq). B1 4bl B2 =⇒ B1 vq B2. (Discussed in §8, proved in §E.)

As a corollary, a program transformation B2 { B1 is valid if and only if B1 vq B2 holds.

Example transformation. We now apply our approach to a simple program transformation:

B2 : store(x,l1); store(x,l1) { B1 : store(x,l1)

To verify this transformation, we must show that B1 vq B2. In Figure 6, we illustrate the necessary reasoning

for a single block-local execution X1 ∈ JB1,A,R,SK, with a context action set A consisting of a single load x = 1,

a context relation R relating ret to the laod, and an empty S relation. �is choice of R forces the context load

to read from the store in the block. We can exhibit an execution X2 ∈ JB2,A,R,SK with a matching history by

making the context load read from the �nal store in the block.

5 A FINITE DENOTATION
�e approach above simpli�es contexts by removing syntax and non-hb structure, but there are still in�nitely

many A/R/S contexts for any code-block. To solve this, we modify our denotation. �is gives us �niteness in

Publication date: January 2017.

1:12 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

some cases, meaning we can automatically check transformations (see §6). However the ‘cut’ approach is no

longer fully abstract. We modify our denotation as follows:

• We eliminate redundant block-local executions from the denotation by only considering those executions

X that satisfy a predicate cut(X). Intuitively, the denotation must consider each pa�ern of context

behaviour, but it need not consider every execution.

• We remove the quanti�cation over context relation R from de�nition (7) by �xing it as ∅. In exchange,

we extend the history with an extra component called a deny.

Before de�ning these steps in detail, we give the structure of our modi�ed re�nement vc. In the de�nition,

histE (X) stands for the extended history of an execution X , and vE for re�nement on extended histories.

B1 vc B2

∆
⇐⇒ ∀A,S .∀X1 ∈ JB1,A,∅,SK. cut(X1) =⇒ ∃X2 ∈ JB2,A,∅,SK. histE (X1) vE histE (X2) (8)

Theorem 3 (Adeqacy of vc). B1 vc B2 =⇒ B1 4bl B2. (Proved in §D.)

By �niteness, we mean that a code-block has a �nite number of block-local executions satisfying cut. Because

block-local executions are derived from pre-executions in the thread-local semantics, �niteness only holds if the

set of the la�er is �nite. Note that we assume a �nite domain of values in Val.

Theorem 4 (Finiteness). If for any σ the set 〈B,σ 〉 is �nite, then so is {X | ∃A.X ∈ JB,A,∅,SK ∧ cut(X)}.

Cu�ing predicate. We �rst identify the actions in a block-local execution that are visible, meaning they directly

a�ect the behaviour of the block. We write code(X) for the set of actions in X generated by the code-block.

Visible actions belong to code(X), are read from code(X), or are read by code(X). In other words,

vis(X)
∆
= code(X) ∪ {u | ∃v ∈ code(X).u

rf
−→ v ∨v

rf
−→ u}

We �rst de�ne the predicate cut′(X) below. �e overall predicate cut(X) extends this in order to keep LL-SC

pairs together: it requires that, if cut′() permits one half of an LL-SC, the other is also permi�ed implicitly (for

brevity we omit the formal de�nition of cut() in terms of cut′()). �e predicate cut′(X) is the conjunction of

cutR for reads, and cutW for writes.

cut′(X)
∆
⇐⇒ cutR(X) ∧ cutW(X)

cutR(X)
∆
⇐⇒ reads(X) ⊆ vis(X) ∧ ∀r1,r2 ∈ contx(X). (r1 , r2 ⇒ ¬∃w .w

rf
−→ r1 ∧w

rf
−→ r2)

cutW(X)
∆
⇐⇒ ∀w1,w2 ∈ (contx(X) \ vis(X)).w1

mo
−−→ w2 ⇒ ∃w3 ∈ vis(X).w1

mo
−−→ w3

mo
−−→ w2

�e predicate cutR requires that all reads are visible and that pairs of reads must read from distinct writes.

In particular, this rules out multiple context reads all reading from the same write. Unlike reads, cutW permits

writes that are not visible. However any two non-visible writes to a location must be separated in mo by a visible

write. �is still achieves �niteness (�eorem 4) because for a given pre-execution B, any two non-visible writes

must be distinguished by a visible write, limiting their number. Preserving some of non-visible writes is required

for our proof of adequacy for vc (�eorem 3).

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:13

D rf

mo

sb

store(x,1)store(x,0)

call

sb

ret

load(x,1)
Extended history (histE). �e de�nition of vc removes the context relation R,

which records the hb edges enforced by the context, and replaces it with a history

component which records the hb edges that cannot be enforced due to the execution

structure.

For example, consider the block-local execution to the right
4
. �is individual

execution represents a set of larger execution contexts, but it cannot be embedded

into a context that generates the dashed edge D as a hb – to do so would violate

the HBvsMO axiom. We represent such ‘forbidden’ edges D by a separate history

component called a deny.

�e extended history of an execution X , wri�en histE (X) is a triple (A,G,D), consisting of the familiar notions

of action set A and guarantee G ⊆ A × A, together with deny D ⊆ A × A as de�ned below:

D
∆
= {(u,v) |HBvsMO-d(u,v) ∨Cohere-d(u,v) ∨RFval-d(u,v)} ∩(

(contx(X) × contx(X)) ∪ (contx(X) × {call}) ∪ ({ret} × contx(X))
)

Each of the predicates HBvsMO-d, Cohere-d, and RFval-d generates the deny for one validity axiom. In the

diagrammatic de�nitions below, dashed edges represent the deny edge, and hb∗ is the re�exive-transitive closure

of hb:

HBvsMO-d(u,v): ∃w1,w2. w1

hb∗ // u
D // v

hb∗ // w2

mo
ll

Coherence-d(u,v): w1

mo //

rf

11w2

hb∗ // u
D // v

hb∗ // r

RFval-d(u,v): ∃w ,r . gvar(w) = gvar(r) ∧ ¬∃w ′.w ′
rf
−→ r ∧ w

hb∗ // u
D // v

hb∗ // r

One can think of a deny edge as an ‘almost’ violation of an axiom. For example, if HBvsMO-d(u,v) holds, then

the context cannot generate an extra hb-edge u
hb
−−→ v – to do so would violate HBvsMO.

Because deny edges represent constraints on the context, weakening the deny places fewer constraints, allowing

more behaviours, so we compare them with relational inclusion:

(A2,G2,D2) vE (A2,G2,D2)
∆
⇐⇒ A1 = A2 ∧G2 ⊆ G1 ∧ D2 ⊆ D1

�is re�nement on extended histories is used to de�ne our re�nement relation on blocks, vc, def. (8).

Counter-example to full abstraction. Finiteness has a cost: vc is not fully abstract. To see this, consider blocks,

B1 : skip and B2 : load(x). It is easy to see that B1 vq B2 holds: the new load can read from either a hb-earlier

write action, or the initialisation if none exists. Neither case introduces an extra guarantee edge.

However, B1 vc B2 does not hold. If the context contains a writeW , then the load can either read from it or the

initialisation. �e former generates a hb-edge in the history, while the la�er generates a deny from RFval-d – thus

history inclusion does not hold. In the quanti�ed version of our approach, the context relation R distinguishes

which origin for the load is allowed, which avoids the deny and thus avoids this problem.

4
We use this execution for illustration, but in fact cut() would not allow the context load.

Publication date: January 2017.

1:14 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

Transformation Valid? Time (s)
Introduction:

skip { fence X 76

skip { load(x) X 429

skip { l := load(x) x 18

l := load(x) { l := load(x); store(x ,l) x 72

l := load(x) { l := load(y); l := load(x) X ∞

l := load(x) { l := load(x); l := load(x) X 19851

store(x ,l) { store(x ,l); store(x ,l) x 136

fence { fence; fence X 248

Elimination:
fence { skip x 15

l := load(x) { skip x 17

l := load(x); store(x ,l) { l := load(x) x 64

l := load(x); l := load(x) { l := load(x) X 2378

store(x ,l); l := load(x) { store(x ,l) X 9118

store(x ,m); store(x ,l) { store(x ,l) X 24696

fence; fence { fence X 382

Exchange:
fence; l := load(x) { l := load(x); fence x 26

fence; store(x ,l) { store(x ,l); fence x 50

l := load(x); fence { fence; l := load(x) x 79

store(x ,l); fence { fence; store(x ,l) x 145

l := load(x); store(y,m) { store(y,m); l := load(x) x 28

m := load(y); l := load(x) { l := load(x);m := load(y) x 118

store(y,m); l := load(x) { l := load(x); store(y,m) X ∞

store(y,m); store(x ,l) { store(x ,l); store(y,m) x 641

Fig. 7. Results for our checking tool for a range of examples. X and x denote whether the transformation satisfies vc. A time
of∞ denotes that Stellite timed out a�er 8 hours. Timings were produced on a 2.3GHz AMD Opteron processor (32 cores),
with 128GB of physical memory, running Linux 3.13.0-88 and Java 1.8.0 91.

6 PROTOTYPE VERIFICATION TOOL
Stellite is our prototype tool that veri�es transformations using the Alloy* model checker (Jackson 2012; Milicevic

et al. 2015). Our tool converts an input transformation B2 { B1 into an Alloy* model encoding B1 vc B2. If the

tool reports success, then the transformation is veri�ed for unboundedly large syntactic contexts and executions.

An Alloy model consist of a collection of predicates on relations, and an instance of the model is a set of

relations that satisfy the predicates. As previously noted in Wickerson et al. (2017), there is therefore a natural

�t between Alloy models and axiomatic memory models. We use the higher-order Alloy* solver of Milicevic

et al. (2015) because the standard Alloy solver cannot support the existential quanti�cation on histories in the

de�nition of vc.

�e Alloy* solver is parameterised by the maximum size of the model it will examine. However, Stellite itself is

not a bounded model checker. Our �niteness theorem for vc (�eorem 4) means there is a bound on the size of

cut-down context that needs to be considered to verify any given transformation.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:15

Given a query B1 vc B2, the required context bound grows in proportion to the the number of internal actions

on distinct locations in B1. In our experiments we ran the tool with a model bound of 10, su�cient to give

soundness for all the transformations we consider. Note that most of our example transformations do not require

such a large bound, and execution times improve if it is reduced.

If a counter-example is discovered, the problematic execution and history can be viewed using the Alloy model

visualiser, which has a similar appearance to the execution diagrams in this paper. As vc is not fully abstract, this

counter-example could of course be spurious.

Stellite currently supports transformations with atomic reads, writes, and fences. It does not yet support

non-atomic accesses (see §7), LL-SC, or branching control-�ow. We believe supporting the above features would

not present fundamental di�culties, since the structure of the Alloy encoding would be similar. Despite the above

limitations, our prototype demonstrates that our cut-down denotation can be used for automatic veri�cation of

important program transformations.

Experimental results. We have tested our tool on a range of di�erent transformations. A table of experimental

results is given in Figure 7. Many of our examples are derived from Vafeiadis et al. (2015) – we cover all their

examples that �t into our tool’s input language. Transformations of the sort that we check have led to real-world

bugs in GCC (Morisset et al. 2013) and LLVM (Chakraborty and Vafeiadis 2016). Note that some transformations

are invalid because of their e�ect on local variables, e.g. skip { l := load(x). �e closely related transformation

skip { load(x) throws away the result of the read, and is consequently valid.

Our tool takes signi�cant time to verify some of the above examples, and two of the transformations cause

the tool to time out. �is is due to the complexity and non-determinism of the C11 model. In particular, our

execution times are comparable to existing C++ model simulators such as cppmem when they run on a few lines

of code (Ba�y et al. 2013). However, our tool is a sound transformation veri�er, rather than a simulator, and

thus solves a more di�cult problem: transformations are veri�ed for unboundedly large syntactic contexts and

executions, rather than for a single execution.

When our tool times out, this of course does not establish validity for the transformation. However, as with

bounded model checking, our experience is counter-examples are found at shallow positions in the search space.

7 TRANSFORMATIONS WITH NON-ATOMICS
We now extend our approach to non-atomic (i.e. unsynchronised) accesses. For C11 non-atomics, any concurrent

read-write or write-write pair of actions to the same location is a data race, which causes the whole program to

have unde�ned behaviour. Non-atomics are intended to enable sequential compiler optimisations that would

otherwise be unsound in a concurrent context.

Memory model with non-atomics. Non-atomic loads and stores are added to the model by introducing new

commands storeNA (x ,l) and l := loadNA (x) and the corresponding kinds of actions: storeNA, loadNA ∈ Kind.

NA is set of all actions of these kinds. We partition global variables so that they are either only accessed by

non-atomics, or by atomics. We do not support non-atomic LL-SC operations. Two new validity axioms ensure

that non-atomics read from writes that happen before them, but not from stale writes:

• RFHBNA: ∀w ,r ∈ NA.w
rf
−→ r =⇒ w

hb
−−→ r

• CoherNA: ¬∃w1,w2,r ∈ NA. w1

hb //

rf

33w2

hb // r

Modi�cation order (mo) does not cover non-atomic accesses, and we change the de�nition of happens-before

(hb), so that non-atomic loads do not add edges to it:

• HBdef: hb = (sb ∪ (rf ∩ {(w ,r) | w ,r < NA}))+

Publication date: January 2017.

1:16 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

Consider the MP program given in Figure 1. In Figure 3 we showed an execution that is forbidden by the

Coherence axiom. �is execution is forbidden because store of f to 1 is related to the load by a happens-before

edge. If all of the actions in this program were instead made non-atomic, then no happens-before would be

created, and by RFHBNA the loads of f and x would be forced to read the initialisation.

�e most signi�cant change to the model is the introduction of a safety axiom, data-race freedom (DRF). �is

forbids non-atomic read-write and write-write pairs that are unordered in hb:

DRF: ∀u,v ∈ A.

(
∃x .u , v ∧ u = (store(x ,)) ∧
v ∈ {(load(x ,)), (store(x ,))}

)
=⇒ (u

hb
−−→ v ∨v

hb
−−→ u ∨ u,v < NA)

We write safe(X) if an execution satis�es this axiom. Returning to MP, we see that there is a race between the

load on each thread and the store on the other.

Let JPKNAv be de�ned same way as JPK is in §3, def. (3). However, we add axioms RFHBNA and CoherNA and

substitute the changed axiom HBdef. �en the semantics JPK of a program with non-atomics is:

JPK ∆
= if ∀X ∈ JPKNAv . safe(X) then JPKNAv else >

�e unde�ned behaviour > subsumes all others, so any program observationally re�nes a racy program. Hence

we modify our notion of observational re�nement on whole programs:

P1 4
NA
pr P2

∆
⇐⇒ (safe(P2) =⇒ (safe(P1) ∧ P1 4pr P2))

�is always holds when P2 is unsafe; otherwise, it requires P1 to preserve safety and observations to match. We

de�ne observational re�nement on blocks, 4NAbl , by li�ing 4NApr as per §2, def. (2).

Denotation with non-atomics. We de�ne vNAq , a re�nement relation sensitive to non-atomics. We �rst introduce

the downclosure X ↓, the set of (hb ∪ rf)+ pre�xes of an execution X :

X ↓
∆
= {X ′ | ∃A.X ′ = X |A ∧ ∀(u,v) ∈ (hb(X) ∪ rf (X))+. (v ∈ A ⇒ u ∈ A)}

Here X |A is the projection of the execution X to actions in A. We li� the downclosure to sets of executions in

the standard way. Now we de�ne B1 v
NA
q B2 as follows:

B1 v
NA
q B2

∆
⇐⇒ ∀A,R,S .∀X1 ∈ JB1,A,R,SKNAv . ∃X2 ∈ JB2,A,R,SKNAv .

(safe(X2) =⇒ safe(X1) ∧ hist(X1) vh hist(X2)) ∧

(¬safe(X2) =⇒ ∃X ′
2
∈ (X2)

↓. ∃X ′
1
∈ (X1)

↓.¬safe(X ′
2
) ∧ hist(X ′

1
) vh hist(X ′

2
))

In this de�nition, we case-split on whether the execution X2 of block B2 we chose is safe or unsafe.

If X2 is safe, then the situation corresponds to vq (§4, def. (7)). In fact, if B2 is certain to be safe, for example

because it has no non-atomic accesses, the above de�nition is equivalent to vq.

If X2 is unsafe, then we can consider pre�xes of histories, not full histories. Recall that X2 represents the block

portion of an execution of an unknown program C (B2). If we can ensure that C (B2) is unsafe, then all other

programs observationally re�ne it, and the transformation will be sound by default. However, the context C is

unknown – it is represented by the history of X1. �e context is only certain to exercise block-local execution X2

if it is consistent with the history of X1.

To show that the unsafety will occur in C (B2), we require an unsafe pre�x of X2 with a related history to a

pre�x of X1. In other words, X2 will behave consistently with X1 until it becomes unsafe. �is ensures that the

unsafety in X2 will in fact occur. A�er X2 becomes unsafe, the two blocks can behave entirely di�erently, so we

need not show that the complete histories of X1 and X2 are related.

Note that the pre�xing in our de�nition of vNAq is required for full abstraction—but it would be adequate to

always require complete executions with related histories.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:17

Execution X1 Execution X2 History

loadNA(x,0)

call
sb, hb

ret

rf, hb

loadNA(x,0)

load(y,1)

sb, hb

sb, hb

sb, hb

R, hb

store(y,1)

storeNA(x,1)
race

race
loadNA(x,0)

call
sb, hb

ret'

rf, hbload(y,1)

loadNA(x,1)

sb, hb

sb, hb

sb, hb

R, hb

store(y,1)

storeNA(x,1)
race

call

ret

G

store(y,1)

storeNA(x,1)

G

Fig. 8. History comparison for an NA-based program transformation

Theorem 5 (Adeqacy of vNAq). B1 v
NA
q B2 =⇒ B1 4

NA
bl B2. (Proved in §B.)

Theorem 6 (Full abstraction of vNAq). B1 4
NA
bl B2 =⇒ B1 v

NA
q B2. (Discussed in §8, proved in §E.)

Validating a transformation. Consider the following anti-roach-motel transformation:

B2 : l1 := loadNA (x); l2 := load(y); l3 := loadNA (x)

{ B1 : l1 := loadNA (x); l3 := loadNA (x); l2 := load(y)

To verify the transformation, we must establish that B1 v
NA
q B2. In Figure 8 we illustrate the necessary

reasoning for a single block-local execution X1 ∈ JB1,A,R,SK, with a context action set A consisting of a

non-atomic store of x = 1 and an atomic store of y = 1, and a context relation R relating the store of x to the

store of y: Note the data races between loads and a store over x.

To prove the result, we exhibit a corresponding unsafe execution X2 ∈ JB2,A,R,SKv . �e histories of the

complete executions X1 and X2 di�er in their return action. In X2 the load of y takes the value of the context

store, so CoherNA forces the second load of x to read from the context store of x. �is changes the values of

local variables recorded in ret′. However, because X2 is unsafe, we can select a pre�x X ′
2

which includes the race

(we denote in grey the parts that we do not include). Similarly, we can select a pre�x X ′
1

of X1. We have that

hist(X ′
1
) = hist(X ′

2
) (shown in the �gure), even though the histories hist(X1) and hist(X2) do not correspond.

Finite denotation with NA. We have also de�ned a �nite variant of vNAq , using the cu�ing strategy described in

§5. For space reasons, we leave the details to §C.

8 FULL ABSTRACTION
�e key idea of our proofs of full abstraction (�eorems 2 and 6) is to construct a special syntactic context that

is sensitive to one particular history. Namely, given an execution X produced from a block B, this context CX
guarantees: (1) that X is the block portion of an execution of CX (B); and (2) for any block B′, if CX (B

′) has a

di�erent block history from X , then this is visible in di�erent observable behaviour. �erefore for any blocks

that are distinguished by di�erent histories, our construction can produce a program with di�erent observable

behaviour, establishing full abstraction.

Full abstraction and LL-SC. We note that our proof of full abstraction for the language with C11 non-atomics

requires the language to also include LL-SC, not just C11’s standard CAS: the former operation increases the

observational power of the context. However, for the version of our approach without non-atomics (§4) CAS

would be su�cient to prove full abstraction.

Publication date: January 2017.

1:18 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

CX = ‖m (Racqm (Nrelm ; check(m) (Nacqm (Rrelm))))

Rrelm = Rrelret(m),v1
; . . . ; Rrelret(m),vn ,

where {v1, . . . ,vn } = {v | (ret(m),v) ∈ R}

Rrelu,v = store(hu,v ,1)

Racqm (N) = Racqu1,call(m) (. . . Racqun,call(m) (N) . . .),

where {u1, . . . ,un } = {u | (u,call(m)) ∈ R}

Racqu,v (N) = if (load(hu,v)) N else store(e,1)

Nrelm = Nrelcall(m),v1
; . . . ; Nrelcall(m),vn ,

where {v1, . . . ,vn } = {v | (call(m),v) ∈ H }

Nrelu,v = store(дu,v)

Nacqm (N) = Nacqu1,ret(m) (. . . Nacqun,ret(m) (N) . . .),

where {u1, . . . ,un } = {u | (u,ret(m)) ∈ H }

Nacqu,v (N) = if (¬load(дu,v)) N else store(e,1)

check({−}) = l1 := 0; l2 := 0;

{−};

if (l1 , 1) {store(e,1)};

if (l2 , 1) {store(e,1)}

CX = Racqstore(x,2),call (Nrelcall,store(x,1) ;

Nrelcall,store(f,1) ;

check({−}))

‖ store(x,2); Rrelstore(x,2),ret;

Rrelstore(x,2),store(x,2) ;

‖ Racqstore(x,2),store(x,1) (store(x,1);

Nacqret,store(x,1) (Rrelstore(x,1),store(f,1)))

‖ Racqstore(x,1),store(f,1) (store(f,1);

Nacqret,store(f,1) (skip))

Fig. 9. Le�: Definition of the construction of CX for X ∈ JB,A,RK. We define H and check() in the text. The symbolm
ranges over context actions A and a hole {−}. Right: Example of check() and the construction for the execution in Figure 4.

Proof structure. We now sketch the proof structure for full abstraction, for simplicity eliding the treatment of

non-atomics and LL-SC. �e full proof is given in §E. Assume B1 4bl B2; we have to prove B1 vq B2.

(1) Following the de�nition of vq (def. (7) in §4), consider arbitrary A, R, and X1 ∈ JB1,A,R,∅K (∅ is due to

the fact that we ignore LL-SC).

(2) We useX1 to construct the special contextCX1
(de�ned below). �e context performs the actions speci�ed

by A and monitors executions to ensure that they do not signi�cantly diverge from X1, e.g., by checking

that the values returned by context reads match those in A. If CX1
detects a mismatch with X1, it writes

to a special observable error variable e ∈ OVar. �e contextCX1
is constructed in such a way that for any

code-block B′ and any execution Y ∈ JCX1
(B′)K in which e is not wri�en, the following three facts hold:

(a) the actions ofA appear in Y , and the actions by B′ in Y transform local variables in a way consistent

with the call and ret actions in X1;

(b) hb(Y) includes the edges in R;

(c) hb(Y) is included in the guarantee of hist(X1).
(3) We show that there is an execution Z1 ∈ JCX1

(B1)K where the actions generated by B1 match those in X1,

and where e is not wri�en; the la�er implies that the above properties (a), (b) and (c) hold of Z1.

(4) Since B1 4bl B2, by applying the de�nition of 4bl (def. (2) in §4) to the special context CX1
, we get an

execution Z2 ∈ JCX1
(B2)K where e is never wri�en.

(5) By the construction of CX1
, we know facts (a) and (b). Using this, we construct an execution X2 ∈

JB2,A,R,∅K where the actions generated by B2 match those in Z2 and the call and ret actions match

those in X1. Let hist(X1) = (A1,G1) and X2 = (A2,G2). Using (a), we show A1 = A2 and using (c) we

show G2 ⊆ G1. �is establishes hist(X1) vh hist(X2), and by def. (7), gives B1 vq B2.

Context construction. We next describe the construction of the context CX for an execution X ∈ JB,A,R,∅K
and argue that it satis�es the above properties (a)-(c). To illustrate the construction, we use the execution X in

Figure 4, for the block B de�ned by def (5). �e context CX is de�ned on the le� in Figure 9 and an application to

the example is given on the right (for brevity, we use syntactic sugar that elides manipulations of local variables).

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:19

u

R

��

sb,hb
��

store(hu,v ,1) rf,hb
// load(hu,v ,1)

sb,hb
��
v

store(дu,v ,1)

rf,G

��

sb,hb
��
u

hb
// v

sb,hb
��

load(дu,v ,1)

Fig. 10. Context construction execution shapes. Le�: Shape enforcing edges in R. Right: shape prohibiting edges not in G.

�e contextCX is a parallel composition of threads: one for the parameter code-block {−}, and one each action

inA—these are collectively ranged over bym in Figure 9. We introduce functions call and ret on the indicesm,

mapping {−} to the call and ret actions in X , respectively, and acting as the identity otherwise. Recall that for

our example execution X , the set A consists of the three writes outside the dashed rectangle. Our construction

consists of several wrapper functions, introduced below.

(1) Innermost is check(m), which for brevity, we only describe informally. For a read or a write actionu ∈ A,

check(u) executes the corresponding operation and, in the case of a read, compares the value read with

the one speci�ed by u. �e command check({−}) initialises local variables to the values speci�ed by the

call action in X , runs the code-block, {−}, and then compares the local variables with the values speci�ed

by the ret action in X . If there is a mismatch in the above cases, check writes to the error variable e . In

this way, it ensures that property (a) holds in error-free executions. We give an example of check on the

right of Figure 9.

(2) �e wrappers Rrelm and Racqm ensure property (b). Recall the type (4) of R; in our running example

from Figure 4, R is given by the dashed edges. Each Rrelm is built up of a sequence of invocations of

Rrelu,v , one for each edge (u,v) ∈ R outgoing from u = ret(m); the wrapper Racqm is constructed

symmetrically. �ese wrappers use watchdog variables hu,v to create happens-before edges as in the MP

test of Figure 1. Namely, Rrelu,v and Racqu,v respectively write to and read from the variable hu,v . If

Racqu,v does not read the value wri�en by Rrelu,v , then it writes to the error variable e . �e invocation of

Rrelu,v is sequenced a�er u and that of Racqu,v before v . Hence, any non-erroneous execution contains

the shape on the le� of Figure 10. �is reproduces the required R edge (u,v) in the happens-before. In

our running example, the edge (store(x,2),call) ∈ R is reproduced by the invocation of Racqstore(x,2),call
on the �rst thread and Rrelstore(x,2),call on the second.

(3) �e wrappers Nrelm and Nacqm ensure property (c), prohibiting new happens-before edges beyond those

in the original guarantee G of hist(X). We identify pairs that must be monitored with the relation H :

the edges of G matching the type (6) of a guarantee that are not already covered by the reverse of R.

In our running example from Figure 4, the edges from G that we need to consider are (call,write(f,1))
and (call,write(x ,1)). Each Nrelm is built up of a sequence of invocations of Nrelu,v , one for each

edge (u,v) ∈ H outgoing from u = call(m); the wrapper Racqm is constructed symmetrically. �e

above wrappers detect errant happens-before edges using watchdog variables дu,v , again relying on

the mechanics of the MP test of Figure 1. Namely, Nrelu,v and Nacqu,v respectively write to and read

from a watchdog variable дu,v . If Nacqv,u does read the value wri�en by Nrelv,u , then it writes to the

error variable e . �e invocation of Rrelu,v is sequenced before u and that of Racqu,v a�er v . Hence, if an

execution includes a happens-before edge (u,v), then it contains the shape shown on the right of Figure 10

(omi�ing the write to the error location). Here the happens-before edge (u,v) and the RFval axiom (§3)

force the read in Nacqu,v to read from the write in Nrelu,v , leading to a write to e . Hence, a non-erroneous

Publication date: January 2017.

1:20 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

execution does not contain errant happens-before edges. In our example the edge (call,store(f,1)) ∈ G
is covered by the invocation of Nrelcall,store(f,1) on the �rst thread and Nacqcall,store(f,1) on the fourth.

9 RELATED WORK
Our approach builds on Ba�y et al. (2013), which generalises linearizability (Herlihy and Wing 1990) to the

C11 memory model. Ba�y et al. represented interactions between a library and its clients by sets of histories

consisting of a guarantee and a deny; we do the same for code-block and context. However, Ba�y et al. assumed

information hiding, i.e., that the variables used by the library cannot be directly accessed by clients; we li� this

assumption here. Also, we establish both adequacy and full abstraction, propose a �nite denotation, and build an

automated veri�cation tool.

Our approach is broadly similar to the seminal concurrency semantics of Brookes (1996). In both cases, a

code block is represented by a denotation capturing possible interactions with an abstracted context. In Brookes,

denotations are sets of traces, consisting of sequences of global program states; context actions are represented

by changes in these states. To handle the more complex axiomatic memory model, our denotation consists of sets

of context actions and relations on them, with context actions explicitly represented as such. Also, in order to

achieve full abstraction, Brookes assumes a powerful atomic await() instruction which blocks until the global

state satis�es a predicate. Our full abstraction result does not require this: all our instructions operate on single

locations, and our strongest instruction is LL-SC, which is commonly available on hardware platforms.

Brookes-like approaches have been applied to several relaxed models: operational hardware models (Burckhardt

et al. 2010), TSO (Jagadeesan et al. 2012), and SC-DRF (Poetzl and Kroening 2016). Also, (Burckhardt et al. 2010;

Poetzl and Kroening 2016) de�ne tools for verifying program transformations. All three approaches are based on

traces rather than partial orders, and are therefore not directly portable to C11-style axiomatic memory models.

All three also target substantially stronger (i.e. more restrictive) relaxed models than ours.

Methods for verifying code transformations, either manually or using proof assistants, have been proposed

for several relaxed models: TSO (Vafeiadis and Zappa Nardelli 2011; Ševčı́k et al. 2011, 2013), Java (Ševčı́k and

Aspinall 2008) and C/C++ (Vafeiadis et al. 2015). �ese methods are non-compositional in the sense that verifying

a transformation requires considering the trace set of the entire program — there is no abstraction of the context.

We abstract both the sequential and concurrent context and thereby support automated veri�cation. �e above

methods also model transformations as rewrites on program executions, whereas we treat them directly as

modi�cations of program syntax; the la�er corresponds more closely to actual compilers. Finally, these methods

all require considerable proof e�ort; we build a tool that can verify transformations automatically.

�ere has also been various work on automatically verifying compiler optimisations under sequential con-

sistency. For example, Alive (Lopes et al. 2015) and Peek (Mullen et al. 2016) are tools for verifying sequential

peephole optimisations on LLVM and CompCert respectively. Vellvm is a formalization of the LLVM intermediate

representation that has been used to formally verify sequential SSA-based optimisations (Zhao et al. 2013).

Our tool is a sound veri�cation tool – that is, transformations are veri�ed for all context and all executions of

unbounded size. Several tools exist for testing (not verifying) program transformations on axiomatic memory

models by searching for counter-examples to correctness, e.g., Lahav et al. (2016) for GCC and Chakraborty and

Vafeiadis (2016) for LLVM. Alloy was used by Wickerson et al. (2017) in a testing tool for comparing memory

models – this includes comparing language-level constructs with their compiled forms. Alloy has also been used

in the MemSAT tool for simulation of the Java memory model (Torlak et al. 2010). Finally, our Alloy encoding of

the memory model is similar to the input �les for the Herd/Cat memory model simulator (Alglave et al. 2014).

10 CONCLUSIONS
We have proposed the �rst fully abstract denotational semantics for an axiomatic relaxed memory model, and

using this, we have built the �rst tool capable of automatically verifying program transformation on such a model.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:21

�e key technical challenge of our work is that axiomatic models are de�ned in a global non-compositional style.

We have shown that it is possible to recover a powerful form of compositionality that can be applied to prove

useful properties of relaxed code.

Our theory lays the groundwork for further research into the properties of axiomatic models. In particular,

our de�nition of the denotation as a set of histories and our context reduction techniques should be portable to

other axiomatic models based on happens-before, such as those for hardware (Alglave et al. 2014) and distributed

systems (Burckhardt et al. 2014). Using our techniques, we are con�dent that further sound veri�cation tools can

be developed built based on bounded model-checking techniques. We are also hopeful that our work will feed

into memory-model design, which is o�en motivated by support for key compiler transformations.

ACKNOWLEDGMENTS
�anks to Jeremy Jacob, and John Wickerson, for comments and suggestions. Dodds is supported by a Royal

Society Industrial Fellowship. Ba�y is supported by a Lloyds Register Foundation and Royal Academy of

Engineering Research Fellowship.

Publication date: January 2017.

1:22 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

REFERENCES
Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory.

ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), Article 7, 74 pages. DOI:h�p://dx.doi.org/10.1145/2627752

James H. Anderson and Mark Moir. 1995. Universal Constructions for Multi-object Operations. In Proceedings of the Fourteenth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’95). ACM, New York, NY, USA, 184–193. DOI:h�p://dx.doi.org/10.1145/224964.

224985

Mark Ba�y, Mike Dodds, and Alexey Gotsman. 2013. Library Abstraction for C/C++ Concurrency. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’13). ACM, New York, NY, USA, 235–248. DOI:
h�p://dx.doi.org/10.1145/2429069.2429099

Mark Ba�y, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. �e Problem of Programming Language

Concurrency Semantics. In Programming Languages and Systems: 24th European Symposium on Programming, ESOP 2015, Proceedings, Jan

Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 283–307. DOI:h�p://dx.doi.org/10.1007/978-3-662-46669-8 12

Mark Ba�y, Sco� Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA, 55–66. DOI:
h�p://dx.doi.org/10.1145/1926385.1926394

Stephen Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Information and Computation 127, 2 (1996), 145 – 163. DOI:
h�p://dx.doi.org/10.1006/inco.1996.0056

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Speci�cation, Veri�cation,

Optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New

York, NY, USA, 271–284. DOI:h�p://dx.doi.org/10.1145/2535838.2535848

Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying Local Transformations on Relaxed Memory Models. In Proceedings
of the 19th Joint European Conference on�eory and Practice of So�ware, International Conference on Compiler Construction (CC’10/ETAPS’10).
Springer-Verlag, Berlin, Heidelberg, 104–123. DOI:h�p://dx.doi.org/10.1007/978-3-642-11970-5 7

Soham Chakraborty and Viktor Vafeiadis. 2016. Validating Optimizations of Concurrent C/C++ Programs. In Proceedings of the 2016
International Symposium on Code Generation and Optimization (CGO ’16). ACM, New York, NY, USA, 216–226. DOI:h�p://dx.doi.org/10.

1145/2854038.2854051

Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2006. A Local Shape Analysis Based on Separation Logic. Springer Berlin Heidelberg,

Berlin, Heidelberg, 287–302. DOI:h�p://dx.doi.org/10.1007/11691372 19

Maurice P. Herlihy and Jeanne�e M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492. DOI:h�p://dx.doi.org/10.1145/78969.78972

Daniel Jackson. 2012. So�ware Abstractions – Logic, Language, and Analysis (revised ed.). MIT Press.

Radha Jagadeesan, Gustavo Petri, and James Riely. 2012. Brookes is Relaxed, Almost!. In Proceedings of the 15th International Conference
on Foundations of So�ware Science and Computational Structures (FOSSACS’12). Springer-Verlag, Berlin, Heidelberg, 180–194. DOI:
h�p://dx.doi.org/10.1007/978-3-642-28729-9 12

Alan Je�rey and James Riely. 2016. On �in Air Reads Towards an Event Structures Model of Relaxed Memory. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’16). ACM, New York, NY, USA, 759–767. DOI:h�p://dx.doi.org/10.1145/

2933575.2934536

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-memory Concurrency.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA,

175–189. DOI:h�p://dx.doi.org/10.1145/3009837.3009850

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-acquire Consistency. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 649–662. DOI:h�p:

//dx.doi.org/10.1145/2837614.2837643

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI
2017.

Nuno P. Lopes, David Menendez, Santosh Nagaraka�e, and John Regehr. 2015. Provably Correct Peephole Optimizations with Alive. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). ACM, New York, NY,

USA, 22–32. DOI:h�p://dx.doi.org/10.1145/2737924.2737965

Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. 2015. Alloy*: A General-purpose Higher-order Relational Constraint

Solver. In Proceedings of the 37th International Conference on So�ware Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,

609–619. h�p://dl.acm.org/citation.cfm?id=2818754.2818829

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler Testing via a �eory of Sound Optimisations in the C11/C++11

Memory Model. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13).
ACM, New York, NY, USA, 187–196. DOI:h�p://dx.doi.org/10.1145/2491956.2491967

Publication date: January 2017.

http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/224964.224985
http://dx.doi.org/10.1145/224964.224985
http://dx.doi.org/10.1145/2429069.2429099
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1145/1926385.1926394
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1007/978-3-642-11970-5_7
http://dx.doi.org/10.1145/2854038.2854051
http://dx.doi.org/10.1145/2854038.2854051
http://dx.doi.org/10.1007/11691372_19
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/978-3-642-28729-9_12
http://dx.doi.org/10.1145/2933575.2934536
http://dx.doi.org/10.1145/2933575.2934536
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1145/2837614.2837643
http://dx.doi.org/10.1145/2837614.2837643
http://dx.doi.org/10.1145/2737924.2737965
http://dl.acm.org/citation.cfm?id=2818754.2818829
http://dx.doi.org/10.1145/2491956.2491967

Compositional Verification of Relaxed-Memory Program Transformations • 1:23

Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Veri�ed Peephole Optimizations for CompCert. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). ACM, New York, NY, USA, 448–461. DOI:
h�p://dx.doi.org/10.1145/2908080.2908109

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics �at Permits Optimisation and Avoids �in-air

Executions. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16).
ACM, New York, NY, USA, 622–633. DOI:h�p://dx.doi.org/10.1145/2837614.2837616

Daniel Poetzl and Daniel Kroening. 2016. Formalizing and Checking �read Re�nement for Data-Race-Free Execution Models. In Proceedings
of the 22Nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume 9636. Springer-Verlag

New York, Inc., New York, NY, USA, 515–530. DOI:h�p://dx.doi.org/10.1007/978-3-662-49674-9 30

�e C++ Standards Commi�ee. 2011. Programming Languages — C++. ISO/IEC JTC1 SC22 WG21.

Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT: Checking Axiomatic Speci�cations of Memory Models. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA, 341–350. DOI:
h�p://dx.doi.org/10.1145/1806596.1806635

Viktor Vafeiadis, �ibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common Compiler

Optimisations Are Invalid in the C11 Memory Model and What We Can Do About It. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA, 209–220. DOI:h�p://dx.doi.org/10.

1145/2676726.2676995

Viktor Vafeiadis and Francesco Zappa Nardelli. 2011. Verifying Fence Elimination Optimisations. In Proceedings of the 18th International
Conference on Static Analysis (SAS’11). Springer-Verlag, Berlin, Heidelberg, 146–162. h�p://dl.acm.org/citation.cfm?id=2041552.2041566

Jaroslav Ševčı́k and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory Model. In Proceedings of the 22Nd
European Conference on Object-Oriented Programming (ECOOP ’08). Springer-Verlag, Berlin, Heidelberg, 27–51. DOI:h�p://dx.doi.org/10.

1007/978-3-540-70592-5 3

Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011. Relaxed-memory Concurrency and

Veri�ed Compilation. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’11). ACM, New York, NY, USA, 43–54. DOI:h�p://dx.doi.org/10.1145/1926385.1926393

Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A Veri�ed Compiler

for Relaxed-Memory Concurrency. J. ACM 60, 3, Article 22 (June 2013), 50 pages. DOI:h�p://dx.doi.org/10.1145/2487241.2487248

John Wickerson, Mark Ba�y, Tyler Sorensen, and George A. Constantinides. 2017. Automatically Comparing Memory Consistency Models.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA,

190–204. DOI:h�p://dx.doi.org/10.1145/3009837.3009838

Jianzhou Zhao, Santosh Nagaraka�e, Milo M.K. Martin, and Steve Zdancewic. 2013. Formal Veri�cation of SSA-based Optimizations for

LLVM. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM, New

York, NY, USA, 175–186. DOI:h�p://dx.doi.org/10.1145/2491956.2462164

Publication date: January 2017.

http://dx.doi.org/10.1145/2908080.2908109
http://dx.doi.org/10.1145/2837614.2837616
http://dx.doi.org/10.1007/978-3-662-49674-9_30
http://dx.doi.org/10.1145/1806596.1806635
http://dx.doi.org/10.1145/2676726.2676995
http://dx.doi.org/10.1145/2676726.2676995
http://dl.acm.org/citation.cfm?id=2041552.2041566
http://dx.doi.org/10.1007/978-3-540-70592-5_3
http://dx.doi.org/10.1007/978-3-540-70592-5_3
http://dx.doi.org/10.1145/1926385.1926393
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1145/3009837.3009838
http://dx.doi.org/10.1145/2491956.2462164

1:24 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

A COLLECTED DEFINITIONS
Execution observational re�nement.

X 4ex Y
∆
⇐⇒ A (X |OVar) = A (Y |OVar) ∧ hb(Y |OVar) ⊆ hb(X |OVar)

Program observational re�nement.

P1 4pr P2

∆
⇐⇒ ∀X1 ∈ JP1K. ∃X2 ∈ JP2K.X1 4ex X2

Program observational re�nement with NA.

P1 4
NA
pr P2

∆
⇐⇒ (safe(P2) =⇒ safe(P1) ∧ P1 4pr P2)

Block observational re�nement.

B1 4bl B2

∆
⇐⇒ ∀C . C (B1) 4pr C (B2)

History abstraction.

(A1,G1) vh (A2,G2)
∆
⇐⇒ A1 = A2 ∧G2 ⊆ G1

�anti�ed abstraction.

B1 vq B2

∆
⇐⇒ ∀A,R,S .∀X1 ∈ JB1,A,R,SK. ∃X2 ∈ JB2,A,R,SK. hist(X1) vh hist(X2)

Extended history abstraction.

(A2,G2,D2) vE (A2,G2,D2)
∆
⇐⇒ A1 = A2 ∧G2 ⊆ G1 ∧ D2 ⊆ D1

Cut abstraction.

B1 vc B2

∆
⇐⇒ ∀A,S .∀X1 ∈ JB1,A,∅,SK. cut(X1) =⇒ ∃X2 ∈ JB2,A,∅,SK. histE (X1) vE histE (X2)

Cut predicates.

vis(X)
∆
⇐⇒ code(X) ∪ {u | ∃v ∈ code(X).u

rf
−→ v ∨v

rf
−→ u}

cut′(X)
∆
⇐⇒ cutR(X) ∧ cutW(X)

cutR(X)
∆
⇐⇒ reads(X) ⊆ vis(X) ∧ ∀r1,r2 ∈ contx(X). r1 , r2 =⇒ ¬∃w .w

rf
−→ r1 ∧w

rf
−→ r2

cutW(X)
∆
⇐⇒ ∀w1,w2 ∈ (contx(X) \ vis(X)).w1

mo
−−→ w2 =⇒ ∃w3 ∈ vis(X).w1

mo
−−→ w3

mo
−−→ w2

Execution downclosure.

X ↓
∆
= {X ′ | ∃A.X ′ = X |A ∧ ∀(a,a

′) ∈ (hb(X) ∪ rf (X))+. a′ ∈ A ⇒ a ∈ A}

�anti�ed abstraction with NA.

B1 v
NA
q B2

∆
⇐⇒ ∀A,R,S .∀X1 ∈ JB1,A,R,SKNAv . ∃X2 ∈ JB2,A,R,SKNAv .

(safe(X2) =⇒ safe(X1) ∧ hist(X1) vh hist(X2)) ∧

(¬safe(X2) =⇒ ∃X ′
2
∈ (X2)

↓. ∃X ′
1
∈ (X1)

↓.¬safe(X ′
2
) ∧ hist(X ′

1
) vh hist(X ′

2
))

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:25

B PROOF OF THEOREM 1
We now prove adequacy of vNAq . As vNAq =⇒ vq, this su�ces to prove adequacy of vq. Our proof need several

auxiliary notions:

• codeE(X) is the projection of an execution X to actions in (codeE(X) ∪ interf (X) ∪ {call, ret}).
• �e interface actions are actions on variables in VSB that occur in the context. �ese are context actions

that can a�ect the behaviour of the code-block. We write interf (X) for this set.

• contxE(X) is the projection of an execution X to the context. �is is a more complex projection than

codeE(X) because it removes mo and rf over actions in interf (X). Let I = contx(X) ∪ {call, ret} and

C = contx(X) \ interf (X). �en

contxE(X) = (A(X) |I ,hb(X) |I ,sb(X) |I ,mo(X) |C , rf (X) |C)

• hbC(X) is the context-side projection of hb to interface actions. In other words, the projection of hb(X)
to pairs in:

(interf (X) × interf (X)) ∪ (interf (X) × {call}) ∪ ({ret} × interf (X))

• atC(X) is the context-side projection of at to context actions: i.e. the projection of at(X) to pairs in

(interf (X) × interf (X)).
• JC,R,SKv is the context-local execution of a single-hole context C – this is an analogous notion to the

block-local execution, except that rf and mo are not generated for the interface. Here R is a relation

representing dependencies in hb arising from the code and S represents code at edges. An execution X is

in this set i�:

– R is a code-side relation on interface actions interf (X):

R ⊆ (interf (X) × interf (X)) ∪ (interf (X) × {ret}) ∪ ({call} × interf (X))

– S is a code-side relation on interface actions interf (X):

S ⊆ (interf (X) × interf (X))

– �e execution satis�es the thread-local semantics:

(A(X),sb(X)) ∈ 〈C〉

We assume that a singleton hole has the following thread-local semantics:

〈{−},σ 〉
∆
= {({c,r }, {c → r },σ ′) | c = call(σ) ∧ r = ret(σ ′)}

– X satis�es HBdef’, Atom
′
, Acyclicity, RFwf, HBvsMO, Coherence, RFHBNA, CoherNA.

– �e projection X |contxE(X) satis�es RFval, MOwf. mo and rf are disjoint from actions in interf (X).
We sometimes write JCKv to stand for JC,∅,∅K, i.e. the set of context-local executions with empty code-side

relations.

Lemma 7 (Decomposition). AssumeX ∈ JC (B)Kv , and no there are no at edges inC spanning B, nor any between
the actions of B and C . �en codeE(X) ∈ JB, interf (X),hbC(X),atC(X)Kv and contxE(X) ∈ JC,hbL(X),atL(X)Kv .

Proof (code). We have several proof obligations.

• hbC(X) and atC(X) are context-side relations on interface actions (trivial by de�nition).

• (codeE(codeE(X)),sb(codeE(X))) ∈ 〈B〉, i.e. the execution satis�es the thread-local semantics.

• �e actions in codeE(codeE(X)) are in between a call / ret pair in sb. We assume we can introduce call /

ret freely to satisfy this requirement.

• codeE(X) satis�es the validity axioms for a block-local execution – note that this replaces HBdef with

HBdef’, and Atom with Atom
′
.

Publication date: January 2017.

1:26 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

For the �rst obligation, we argue inductively over the structure of C . First assume that C = {−}, i.e. C consists

only of a hole. In this case the result holds immediately from the thread-local semantics. For the inductive case,

assume C is a composite one-hole context, e.g. C1;C2 (−) / C1 (−);C2 / C1‖C2 (−) / etc.

For the fourth obligation, we prove codeE(X) satis�es the validity axioms by arguing in turn about each.

Assume the following shorthand:

codeE(X) = (A(l),hb(l),at(l)sb(l),mo(l), rf (l))

HBdef’: Let R = hbC(X). Now prove in both directions:

(a,b) ∈ hb(l) =⇒ (a,b) ∈ (sb(l) ∪ rfAT (l) ∪ R)+ (9)

(a,b) ∈ (sb(l) ∪ rfAT (l) ∪ R)+ =⇒ (a,b) ∈ hb(l) (10)

For the �rst case, any (a,b) in hb(l) must have code or interface actions at both ends, and must have originated

from a path (a,b) ∈ (sb(X) ∪ rfAT (X))+. By construction, there are no rf-edges between codeE(X) and contxE(X).
�erefore, portions of the path which stray into the context must enter and leave through call, ret, or actions in

interf (X). �ese portions of the path will be summarised by hbC(X). As a result, for any such path, there must

be an equivalent path (a,b) ∈ (sb(l) ∪ rfAT (l) ∪ hbC(X))+.

For the second case, we make a similar argument. For any pair (c,d) ∈ hbC(X), there must be a path

(c,d) ∈ (sb(X) ∪ rfAT (X)). As a consequence, for any (a,b) in (sb(l) ∪ rf (l) ∪ hbC(X))+, there must be a path

(a,b) ∈ (sb(X) ∪ rfNA (X)). �us (a,b) ∈ hb(X). As hb(l) is a projection of hb(X), this completes the proof.

Atom
′
, AcyclicityRFwf, MOwf, Coherence, RFHBNA, CoherNA: all hold immediately by the fact that

codeE(X) is a projection of X .

RFval: holds because code(X) contains exactly the actions in X that are on locations a ∈ gvB . �erefore, the

projection cannot remove the origin write for a read.

�

Proof (context). Similar argument to the code. �

Lemma 8 (Completion lemma). Let X be an execution. If valid(X) and (A(X),sb(X)) ∈ 〈Q〉↓, then X ∈ JQK↓v .

Proof. We require the existence of a Y ∈ JQKv such that X ∈ Y ↓. To prove this, we iteratively extend X by

adding sb-�nal actions, and show that the new execution can in each case be made valid. As all executions are

�nite, this proves the result.

Assume the current execution is Xi . We choose an A(Xi+1) and sb(Xi+1) such that the new execution is

extended by a single sb-�nal action, and that (A(Xi+1),sb(Xi+1) ∈ 〈Q〉
↓
. We now need to show that we can

construct a valid Xi+1.

Case-split on the type of the new action. Non-atomics read from their immediate hb predecessor, or the

init value if none exists. Atomic reads read from the end of mo, and writes can be added to the end of mo.

Compare-and-swaps read from the end of mo. All of these cases preserve the validity axioms.

Note that if the new action is a read, we may need to �x its value depending on an earlier write. �is depends

on the property of receptiveness – given a pre�x (A,sb) ∈ 〈Q ′〉 and a read r that is sb-maximal, any value can be

given to the read. �is property follows from the thread-local semantics: the only tricky cases are conditionals

and LL-SC, where receptiveness is guaranteed by the fact that any possible value is represented in the set of

possible reads.

�

Lemma 9 (Safety completion). Let X ,Y be valid executions. ¬safe(X) and X ∈ Y ↓ implies ¬safe(Y).

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:27

Proof. Prove the contrapositive: safe(Y) =⇒ safe(X). �is holds immediately from the fact that in a safe

execution, potentially racy actions must be related in hb. �

Lemma 10 (Composition). Let X and Y be executions such that X ∈ JB,A,hbC(Y),atC(Y)K↓v and Y ∈

JC,A,R′,S ′K↓v with no LL/SC pairs crossing the block boundary in each case, with hist(Y) vh hist(X) and with
atL(X) = S ′. �en there exists an execution Z such that Z ∈ JC (B)K↓v . Furthermore:

• If ¬safe(X) or ¬safe(Y), then ¬safe(Z).
• If safe(X), safe(Y), and safe(Z), and X ∈ JB,A,hbC(Y),atC(Y)Kv and Y ∈ JC,A,R′,S ′Kv , then Z ∈

JC (B)Kv and contxE(Y) 4ex contxE(Z).

Proof. We begin by de�ning Z . Taking each term of the execution in turn:

• �e action set A(Z) is the union of the two action sets A(X) and A(Y), merging call, return and interface

actions.

• sb(Z) = (sb(X) ∪ sb(Y))+.

• moZ = (mo(X) ∪mo(Y)) – as the two mo relations are disjoint, no transitive closure is needed.

• rfZ = (rf (X) ∪ rf (Y)) – likewise.

• hbZ = (sb(Z) ∪ rfAT (Z))+, ie, according to HBdef.

• atZ = at(X) ∪ at(Y).

We �rst need to show that Z ∈ JC (L)K↓v . To do this we use the completion lemma: thus our proof obligations are

(A(Z),sb(Z)) ∈ 〈C (B2)〉
↓

and valid(Z).
We observe that that (A(Z),sb(Z)) ∈ 〈C (B2)〉

↓
is obvious from the thread-local semantics.

Next prove that valid(Z). HBdef holds by construction. RFwf, RFval, MOwf, RBdef are true trivially as

for each variable, validity is checked solely in either the code or context. �is leaves Acyclicity, HBvsMO,

Coherence, CoherNA and Atom. (RFHBNA needs to be treated specially – see below).

• For Acyclicity, a violation would correspond to a path in (sb(Z) ∪ rfAT (Z) ∪ rfNA)+. As this path cannot

appear in either X or Y , it must cross between the two: each point where it does so must be an interface

action or call / return. As a result, a corresponding violation can be constructed in X .

Call-to-return paths are in (sb(X) ∪ rfAT (X))+ ∪ rfNA (X))+. Conversely, return-to-call paths are in

(sb(Y) ∪ rfAT (Y) ∪ rfNA (Y))+. As Y satis�es RFHBNA, rfNA (Y) ∈ hb(Y). �us the return-to-call portions

of the path are in hbC(Y). �is contradicts the assumption that X satis�es Acyclicity.

• For HBvsMO, a violation consists of a write pairw1,w2 such that (w1,w2) ∈ hb(Z) and (w2,w1) ∈ mo(Z).
As mo is partitioned between code and context, either both writes are in X or both in Y . By assumption,

the violation is not solely in X or Y , so the path from w1 to w2 in (sb ∪ rfAT)+ must contain a sequence of

interface actions or call / return.

(1) If the writes are in X , then mo is replicated immediately. �e block-local portions of the path are

in (sb(X) ∪ rfAT (X))+, while the context-local portions are in hbC(X). �us we can replicate the

violation.

(2) If the writes are in Y , we can use a similar argument. However, we also appeal to the fact that

hist(Y) vh hist(X), which means that hbL(X) ⊆ hbL(Y). �is means that any code-side hb edge in

X can be replicated in Y to recreate the violation.

• For Coherence and CoherNA, we note that rf and mo are partitioned between X and Y . �erefore we

can apply the same argument as for the previous axioms to show the hb edges for a violation must exist

in either X or Y .

• Similarly, for Atom we note that at is partitioned between X and Y so any violation must exist in either

X or Y .

Publication date: January 2017.

1:28 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

Finally, we consider RFHBNA. As histY vh histX , composing the two may weaken hb and generate violations

on the context side. To solve this, we convert the RFHBNA violation to a safety violation. Take a Z ′ ∈ Z ↓ such

that there is a single (hb ∪ rf)-�nal RFHBNA violation. We redirect the origin of this read to its immediate

hb-predecessor, or the initialisation value if this does not exist. �is gives an execution Z ′′ which satis�es

RFHBNA, but violated DRF. All the other validity axioms are preserved under pre�xing, so by the completion

lemma, Z ′′ ∈ JC (B)K↓v . We use Z ′′ as our constructed execution.

We now need to show that ¬safe(X) or ¬safe(Y) implies ¬safe(Z). If we had to �x an RFHBNA violation, the

new execution Z ′′ is unsafe by construction. Otherwise, composition can only weaken hb, meaning any violation

is trivially replicated.

Conversely, we need to show that if safe(X), safe(Y), and safe(Z), and X ∈ JB,A,hbC(Y),atC(Y)Kv and

Y ∈ JC,A,R′,S ′Kv , then Z ∈ JC (B)Kv and contxE(Y) 4ex contxE(Z). As Z is safe, we know we did not have

to �x a RFHBNA violation. For the rest of the proof, the same arguments as above give us a valid execution

Z ∈ JC (B)Kv .

It remains to show that contxE(Y) 4ex contxE(Z). Inclusion of context actions follows from the construction

of Z . Inclusion on hb follows from the fact that hist(Y) vh hist(X). �us the composition can only weaken hb
over context actions. �

Theorem 11 (Adeqacy). B1 v
NA
q B2 =⇒ B1 4bl B2 for blocks that include only matched LL/SC pairs.

Proof. Our objective from the de�nition of 4bl is the following property:

∀C,V . ¬safe(C (B2)) ∨
(safe(C (B1)) ∧ ∀X ∈ JC (B1)Kv . ∃Y ∈ JC (B2)Kv .X |V 4ex Y |V)

Begin the proof by picking an arbitrary C,V . �e proof then proceeds by the normal steps: decomposition,

abstraction, then composition.

• Case-split on whether C (B2) is safe or unsafe. If unsafe, we are done immediately. �erefore we can

assume safe(C (B2)).
• Pick an arbitrary execution X ∈ JC (B1)Kv .

• Apply the decomposition lemma to show that that contxE(X) ∈ JC,hbL(X),atL(X)Kv and codeE(X) ∈
JB1,hbC(X),atC(X)Kv .

• Expand the de�nition of vNAq , and pick R = hbC(X) and S = atC(X). �is gives us executions Y ∈

JB2,A,hbC(X),atC(X)K↓v and X ′ ∈ codeE(X)↓ such that:

hist(X ′) vh hist(Y) ∧
safe(Y) =⇒ (safe(X ′) ∧ (X ′ = codeE(X)) ∧ Y ∈ JB2,A,hbC(X)Kv)

• Case-split on whether safe(Y) ∧ safe(contxE(X)) holds. If not, then apply the composition lemma to

build an execution Z ∈ JC (B2)K↓v such that ¬safe(Z). By lemma 9, there must exist a Z ′ ∈ JC (B2)Kv such

that ¬safe(Z ′), which contradicts our assumption that C (B2) is safe.

Conversely, suppose safe(Y) ∧ safe(contxE(X)) holds. In this case, we apply the context lemma to

build a Z ∈ JC (B2)Kv such that contxE(X) 4ex contxE(Z). All actions on observable variables in V must

be be in the context, which means that X |V 4ex Z |V must also hold.

It remains to prove that safe(X) holds. First we observe that safe(codeE(X)) holds by the abstraction

theorem. As safe(contxE(X)) also holds, the result follows immediately.

�

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:29

C NON-ATOMICS AND DENIES
We now de�ne vNAc , a re�nement between denotations which includes both cu�ing and non-atomics.

To do this we �rst need extra deny shapes. In the following, the variables obey the following constraint:

u,a,c ∈ ret ∪ interf (X) v,b,d ∈ call ∪ interf (X)

All the actions a,b,c,d ,u,v are pairwise distinct. Note that some of the hb-edges are transitively closed, meaning

that syntactically distinct actions might be the same – e.g. w1 and u in HBvsMO-d.

CoNA-d(u,v): ∃w1,w2,r ∈ NA. w1

hb //

rf

��

hb // w2

hb∗

��
u

D
��
v

hb∗

��
r

∨ w1

hb∗ //

rf
++

u
D // v

hb∗ // w2

hb
��
r

CoNA-d2(a,b,c,d): ∃w1,w2,r ∈ NA. w1

hb∗ //

rf

!!

a
D1 // b

hb∗ // w2

hb∗

��
c

D2

��
d

hb∗

��
r

As before, we need a few notions to de�ne the deny theorem.

• denyL(X) contains all the binary denies:

denyL(X)
∆
= HBvsMO-d ∪ CoWR-d ∪ Init-d ∪ CoNA-d

• denyNA(X) contains the quaternary denies: denyNA(X)
∆
= CoNA-d2

• guarNA(X) is the projection of (rfNA ∪ hb)+ to pairs in

(interf (X) × interf (X)) ∪ (interf (X) × {ret}) ∪ ({call} × interf (X))

• Let I be the set of actions interf (X) ∪ {call, ret}. �e augmented history of X , wri�en histE (X), is de�ned

as

histE (X)
∆
= (A(X) |I ,hbL(X),denyL(X),guarNA(X),denyNA(X))

• Two augmented histories, H = (A,G,D,M ,N), H ′ = (A ′,G ′,D ′,M ′,N ′) are related H vh H
′

i�

A = A ′ ∧G ′ ⊆ G ∧ D ′ ⊆ D ∧M ′ ⊆ M ∧ N ′ ⊆ N

• FinalNA(X ,a) holds if the action a is (1) an NA action, and (2) is the hb-�nal action in the code block in

X .

• hbA(X ,a), for an execution X and action a is the projection of hb(X) to pairs in ({a} × interf (X)) ∪
(interf (X) × {a})

Publication date: January 2017.

1:30 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

• �e comparison a ≤X ,Y
na b ensures that b participates in a race if a does. Formally, the comparison holds if:

(1) a and b are actions on the same location; (2) b is a write if a is a write; and (3) hbA(Y ,b) ⊆ hbA(X ,a).
�e �nal condition is needed to ensure that history edges cannot spuriously prevent a race in Y .

• �e set of almost-valid executions JB,A,R,SKvr is de�ned identically to the standard semantics, except

that it permits RFHBNA not to hold. We write JB,A,SKvr stands for JB,A,∅,SKvr
We then de�ne deny abstraction as follows:

B1 v
NA
d B2

∆
= ∀S .∀X ∈ JB1,A,SK↓vr . ∃Y ∈ JB2,A,SK↓vr . histE (X) vE histE (Y) ∧

(∀a. FinalNA(X ,a) =⇒ ∃b ∈ A(Y). a ≤X ,Y
na b) ∧

(X ∈ JB1,A,SKvr =⇒ Y ∈ JB2,A,SKvr)

In addition to the cu�ing predicated de�ned in the body of the paper, we need the following to cover NA cuts.

NAcutR(X)
∆
= ∀r1,r2 ∈ (interf (X) ∩ Read ∩ NA).

(val(r1) = val(r2) = init ∨ ∃w .w
rf
−→ r1 ∧w

rf
−→ r2)

=⇒ (r1 = r2)

NAcutW(X)
∆
= ∀w1,w2 ∈ (interf (X) ∩Write ∩ NA).

(loc(w1) = loc(w2)) =⇒

(w1 = w2) ∨ (∃r ∈ code(X).w1

rf
−→ r ∨w2

rf
−→ r)

�e context cu�ing predicate is de�ned as the conjunction of these predicates:

cutNA (X)
∆
= cutR(X) ∧ cutW(X) ∧ NAcutR(X) ∧ NAcutW(X)

We then de�ne cut abstraction as follows:

B1 v
NA
c B2

∆
= ∀X ∈ JB1K↓vr . cutNA (X) =⇒

∃Y ∈ JB2K↓vr . histE (X) vE histE (Y) ∧
(∀a. FinalNA(X ,a) =⇒ ∃b ∈ A(Y). a ≤X ,Y

na b) ∧
(X ∈ JB1Kvr =⇒ Y ∈ JB2Kvr)

Theorem 12. B1 v
NA
d B2 =⇒ B1 v

NA
q B2

Proof. Pick a context-side A, R and an execution X ∈ JB1,A,R,SKv . Case-split on safe(X) – suppose �rst

that it does not hold.

• Pick a pre�x X ′ ∈ X and action a ∈ A(X ′) such that (1) X ′ contains precisely one safety violation, which

includes a; and (2) FinalNA(X ′,a) holds.

• Generate a new execution X ′′ by building hb as (sw ∪ sb)+ (i.e. kick out R). As all axioms but RFHBNA

are preserved under reduction of hb, X ′ ∈ JB1,A,SK↓vr .

• Apply the assumption to give an execution Y ′ ∈ JB2,A,SK↓vr , such that histE (X ′′) vE histE (Y ′). By the

theorem, there must exist an action b to the same location such that a ≤na b.

• Build Y from Y ′ by de�ning hb(Y) as sb(Y ′) ∪ rfNA (Y ′) ∪ R, and keeping other relations the same. We

now need to establish that (1) hist(X ′) vh hist(Y); (2) ¬safe(Y); and (3) valid(Y).
• hist(X ′) vh hist(Y) holds from the fact that histNA (X ′′) vE histE (Y ′), and both X ′ and Y are derived by

adding the same relation R.

• To show ¬safe(Y) we observe that action a in X ′ participates in a race. As actions in a code-block are

sb-sequenced, the other action c forming the race must be in interf (X ′). If (b,c) does not form a race

in Y , then (b,c) or (c,b) must be in hb(Y). Any such path must be in R ∪ hbL(Y) ∪ hbA(Y ′,b). �e

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:31

corresponding path must exist in R ∪ hbL(X) ∪ hbA(X ′′,b), which rules out the race in X and contradicts

the assumption.

• Finally, we need to prove that valid(Y). HBdef’ holds by construction. RFwf, RFval, MOwf, Atom are

invariant under adding hb-edges, and so follow immediately from valid(Y ′). �is leaves Acyclicity,

Coherence, HBvsMO, CoherNA, and RFHBNA.

All but RFHBNA are covered by a deny (RFHBNA requires special treatment). A new violation of an

axiom caused by edges from R would induce a corresponding deny shape in histE (Y ′). As histE (X ′) vE
histE (Y) this deny shape must also be in X ′. However, this means that the corresponding violation can

be replicated in X ′, which contradicts the assumption that valid(X ′) holds.

• �us, we have an almost-valid execution Y ∈ JB2,A,RK↓vr such that hist(X ′) vh hist(Y); (2) ¬safe(Y).
To complete the proof, we need to �x violations of RFHBNA. We use the same approach as in the proof

of �eorem 10: (1) build a shorter pre�x in Y ↓ which contains precisely one violation of RFHBNA; (2)

redirect the read to a valid origin, using the receptiveness of the thread-local semantics. �is redirection

does alter the history, because non-atomic reads do not appear in the quanti�ed history. �is gives an

execution Y ′′ such that (1) Y ′′ ∈ JB2,A,R,SK↓vr ; (2) ¬safe(Y ′′); and (3) hist(Y ′′) ∈ hist(Y ↓).
We �nally need to show that there exists anX ′′′ ∈ X ↓ such that hist(X ′′′) vh hist(Y ′′). �is necessarily

exists by application of the history pre�xing lemma. Note that X ′′′ may not necessarily be unsafe, but

Y ′′ is guaranteed to be unsafe by construction.

Now suppose that safe(X) holds. We use essentially the same proof structure as above: the constructed Y may

be safe or unsafe, depending whether we need to �x violations of RFHBNA. �

D PROOF OF THEOREMS 3 AND 5
We now prove that vNAc is adequate. Note that because vNAc =⇒ vc, we implicitly prove vc adequate. We de�ne

several versions of the abstractions with di�erent levels of context cu�ing:

B1 v
i
c B2

∆
= ∀X ∈ JB1,AK↓vr . cuti (X) =⇒

∃Y ∈ JB2,AK↓vr . histE (X) vE histE (Y) ∧
(∀a. FinalNA(X ,a) =⇒ ∃b ∈ A(Y). a ≤X ,Y

na b) ∧
(X ∈ JB1,AKvr =⇒ Y ∈ JB2,AKvr)

We de�ne several versions of the cu�ing predicate, incrementally cu�ing more of the context.

cut1 (X)
∆
= cutR(X)

cut2 (X)
∆
= cutR(X) ∧ cutW(X)

cut3 (X)
∆
= cutR(X) ∧ cutW(X) ∧ NAcutR(X)

Lemma 13 (Atomic read cutting). B1 v
1

c B2 =⇒ B1 v
NA
d B2

Proof. • Pick an execution X ∈ JB1,A,SK↓d . We now want to build a corresponding execution such that

cutR holds.

• Identify a subsetA ′ ⊆ A(X) such that cutR(X |A′) holds, and no larger subset exists. We call this maximal

projected execution X ′. We use AR to refer to the removed actions A \ A ′.

• It’s straightforward to see thatAR ⊆ Read∩interf (X). Context actions aren’t required by the thread-local

semantics, and removing context reads preserves validity, so X ′ ∈ JB1,A,SK↓d .

It’s also straightforward from the de�nition of cutR to see that any read r inAR is removed for one of

two reasons:

– context-read. �e associated write for r is in the context.

Publication date: January 2017.

1:32 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

– duplicate-read. �e associated write is read by another context read r ′ which is not removed. We call

this r ′ the representative for r .

• We have an execution X ′ ∈ JL1,A,SK↓d such that cutR(X ′) holds. Now apply the assumption to produce

an execution ∃Y ′ ∈ JL2,A,SK↓d such that histE (X ′) vE histE (Y ′).
Build a new execution Y by re-injecting the actions fromAR . As all of these actions are context reads,

the only relation that must change is rf.
– If the action is a context-read, direct rf to the context write it pointed to in X . �is must still exist by

history inclusion.

– If the action is a duplicate-read, direct rf to the write read by its representative. �e origin for the

representative write must exist by validity of Y ′.

It now remains to show that that Y ∈ JL2,A,SK↓d and histE (X) vE histE (Y).

• To show that Y ∈ JB2,A,SK↓d , we only need to show that Y is valid. Adding new atomic context reads to

a valid execution is guaranteed to preserve validity, as long as they are equipped with valid origin writes

in rf.
• To show that histE (X) vE histE (Y), we have two obligations: hbL(Y) ⊆ hbL(X), and denyL(Y) ⊆
denyL(X). �e former is a trivial consequence of the way we construct Y .

For the la�er, we reason by contradiction for each of the deny shapes:

– HBvsMO-d and Acyc-d: As context reads are terminal in hb, the only case we need to consider

is the one where u ∈ AR and the remainder of the shape is not removed. Otherwise the deny is

entirely replicated in Y ′, and thus in X . If u is a duplicate-read, the deny is replicated in Y using its

representative. If u is a context-read, a deny edge exists w1

d
−→ v . In either case, it is easy to see that

the deny u
d
−→ v must be replicable in X , contradicting the assumption.

– Cohere-d and Init-d: Similarly, the cases we need to consider are (1) u ∈ AR , (2) v = r and r ∈ AR ,

and (3) both. In the �rst case, the same argument applies as with HBvsMO. In the second, we can

replace r with its representative. In both cases, it’s straightforward to replicate the deny u
d
−→ v is

replicated in X . �e third case just combines the arguments from the other two.

– CoNA-d and CoNA-d2: Ruled out as actions in AR must be hb-terminal. �is precludes any such

action participating in one of these non-atomic shapes.

• Finally, we need to show that any �nal NA action in X is replicated in Y , and that Y is complete if X is

complete. Both properties are inherited trivially from Y ′.
�

Lemma 14 (Atomic write cutting). B1 v
2

c B2 =⇒ B1 v
1

c B2

Proof. • Pick an X ∈ JB1,A,SK↓d such that cutR(X) holds.

• Now we build an X ′ such that X ′ ∈ JB1,A,SKd and cutR(X) ∧ cutW′(X) holds. First identify the set of

non-visible write actions for each location z:

Az = {a ∈ A | loc(a) = z ∧ a ∈ (Write ∩ Atomic) ∧ ¬visible(a)}

Partition this set into maximal disjoint nonempty subsets Bz
1

, Bz
2

. . . such that:

Bz
i ⊆ A

z ∧ (∀a1,a2 ∈ B
z
n .¬∃w < B

z
n . a1

mo
−−→ w

mo
−−→ a2)

In other words, each set B is a maximal set of non-visible writes so that there is no intervening write

in mo. �us, either a set B is mo-minimal / maximal, or it has a visible action which is its immediate

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:33

mo-predecessor / successor. We call these actionswBp andwBs respectively. (�e cases where B is minimal

/ maximal are ignored as they are simpler versions of the case where wBp and wBs exist.

Note that due to Coherence, if there is a LL-SC in B, it must either read from a write in B, or from

wBp . Similarly, if wBs is a LL-SC, it must read from a write in B.

To build X ′, replace each B with a single LL-SC pair wBn (as above, call this a representative). Take as

the value that is read the value of wBp , and take as the wri�en value the mo-�nal value wri�en in B. We

modify the rest of the execution as follows:

– As each set B is mo-contiguous in X , we don’t need to modify mo other than to insert the new

LL-SC pair.

– As the execution satis�es cutR, we have already kicked out all the context reads. We direct rf so that

wBp
rf
−→ wBn . If wBs is a LL-SC, we direct rf so that wBn

rf
−→ wBs .

– Introducing wBn may generate new hb edges, so we regenerate hb according to HBdef’.

• We now need to show that X ′ is valid. �is is simple for most of the axioms because the writes that

are removed can only be read by their immediate mo-successor. However, if wBs is a LL-SC, then we

might generate an hb-edge wBp
hb
−−→ wBs which did not previously exist. We therefore need to show that

Acyclicity, HBvsMO, Coherence, CoherNA still hold in X ′.
– HBvsMO, Acyclicity: �e two writes w1,w2 responsible must be on a di�erent location from wBp

and wBs : otherwise the violation would be an HBvsMO violation in X . Any hb-path between two

actions on di�erent locations must pass through the code. If the wBp and wBs are not themselves in

the code, we can replicate the violation immediately using the hb-adjacent internal actions ap/as .

– Coherence, CoherNA: Again, the responsible writes / reads must be to a di�erent location fromwBp
and wBs . Otherwise we can generate a violation using the LL-SC wBs , and the fact that mo follows

hb. Apply the same reasoning as the previous point to replicate the violation in X .

We also need to show that cutR(X ′) ∧ cutW(X ′) holds. It’s obvious that cutR(X ′) still holds – we

have introduced no extra reads. cutW(X ′) holds because each new write wBn is separated in mo by a

visible action.

• Apply the assumption to give an execution Y ′ ∈ JL2,A,SK such that X ′ vE Y
′
.

Now build the execution Y . To do this, replace each representative LL-SC wBn in Y ′ with the corre-

sponding actions in B. In other words, for any pair of actions in a single set B, take mo the same as in

mo(X). For an action in B and some other action, relate it in mo as in mo(Y ′) for the set representative.

We need to show that (1) Y is valid, (2) histE (X) vE histE (Y).
• Validity. Modifying Y ′ to Y alters rf, mo, and hb.

RFwf, RFval, MOwf, Atom are obvious by construction.

Acyclicity holds because hb edges are only removed between existing writes, and introduced between

actions represented in B, which are by de�nition unrelated to context actions aside from at wBp and wBs .

�erefore any cycle would exist inside B, and thus in X .

HBvsMO holds because actions in B are introduced at a single point in mo represented by wBn . Any

hb-edges inside B must be consistent with mo, or a similar violation could be replicated in X .

Coherence, CoherNA holds because any violation for non-B reads/write could be replicated in Y ′

using the representative LL-SC wBn . A violation inside B could immediately be replicated in X .

RFHBNA holds because any hb-path in Y ′ that is broken in Y must pass through the code. �erefore,

the path must be replicable through sb, which contradicts the violation.

Publication date: January 2017.

1:34 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

• hbL(Y) ⊆ hbL(X). Actions in B in X are only related to each other and wBp / wBs in hb. For paths in hb
outside some B, it must be that hbL(X) = hbL(X ′) ⊆ hbL(Y ′) = hbL(Y). As paths inside B are identical

between X and Y , any hb-path can be replicated.

• guarNA(Y) ⊆ guarNA(X). Trivial by the previous argument, and the fact B-sets only cover atomic

actions.

• denyL(Y) ⊆ denyL(X). Prove by contradiction: assume a deny shape in Y that is not in X .

– HBvsMO-d / Acyc-d: Suppose a deny shape involving writes w1/w2.

∗ w1/w2 not in any B. As actions in B are not read/wri�en in the code, any hb path which

includes actions in B and which passes through the code, must enter and exit B through other

context actions, a,b. �ere is a deny a
d
−→ b in Y ′ by construction, and thus in X . hb-paths

inside B are identical in X and Y . Combining this gives us a deny in X .

∗ w1/w2 entirely inside B: reproducible trivially as mo/hb are identical between Y and X .

∗ w1 outside B,w2 inside. In this case, there must be a deny in Y ′ and X ′ with the representative:

wBp
d
−→ b (using the same argument as above). Substituting B for the representative in X builds

the violation.

∗ w2 outside B, w1 inside. Symmetrical to previous case.

– Cohere-d / Init-d: the deny shape involves writes w1/w2/r .

∗ w1, w2, r all in B: replicated trivially.

∗ w1, w2, r all outside B: replicated trivially.

∗ w1, w2 in B, r outside: r can only be wBs , shape ruled out by construction.

∗ w1 in B, w2, r outside: deny replicated in Y ′ / X ′ using representative. Rebuild the violation

when reintroducing B in X .

∗ All three outside B: trivial.

∗ w2, r in B, w1 outside: w1 can only be wBp , shape ruled out by construction.

∗ w2 in B, w1, r outside: deny replicated in Y ′ using representative, rebuild in X when adding B.

∗ r in B, w1, w2 outside: w1 can only be wBp , shape ruled out by construction.

– CoNA-d2: similar argument to Cohere-d, exept that some cases are ruled out by the fact that elements

in B are necessarily atomic.

• denyNA(X) ⊆ denyNA(Y). Similar argument to CoNA-d2 above.

• �e Final NA and completeness properties are satis�ed for the same reason as in the previous proof.

�

Lemma 15 (NA read cutting). B1 v
3

c B2 =⇒ B1 v
2

c B2

Proof. • Pick an X ∈ JB1,A,SK↓ such that cut2 (X) holds. Build X ′ using the same approach as in

atomic read cu�ing: X ′ is a maximal sub-execution such that NAcutR(X) holds.

From the structure of NAcutR, the actions AR removed from X must all be non-atomic reads. Just as

before, removed reads have a representative that remains in X ′ and that reads from the same write. Unlike

in the atomic case, reads from context writes also have representatives. �is is necessary to detect new

writes that might violated CoNA-d2 (which in turn is needed because NA writes are not ordered in mo).

X ′ is valid because the axioms are invariant under read removal.

• We then apply the assumption to build an execution Y ′ ∈ JB2,A,SK↓vr . Finally we build Y by restoring

the cut actions, with rf (Y ′) built in the same way as for the atomic cu�ing case.

Almost-validity is preserved trivially because the inserted reads are not part of hb. Deny inclusion is

ensured by the fact that the inserted reads are placed at the same position as their representatives: any

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:35

violation would immediately be replicated by the representative. �e FinalNA and completion property

are una�ected from Y ′.
�

Lemma 16 (NA write cutting). B1 vc B2 =⇒ B1 v
3

c B2

Proof. • Pick an X ∈ JB1,A,SK↓ such that cut3 (X) holds.

• AsNAcutWdoesn’t discriminate on the basis ofmo, we can replace the set of all context writes to a location

with a single representative write. We build X ′ as a maximal sub-execution such that NAcutWholds,

and ‘orphan’ context reads are removed. As NAcutRholds, each NA write has at most one context read.

Note that as the execution is maximal, if at least one write to a location had an associated read, then the

representative will have an associated read.

• Validity for X ′ is trivial as the removed writes cannot participate in hb, or be read in the code. We

then build Y ′ by applying the theorem to give an almost-valid execution of B2. Finally, we build Y
by re-inserting the removed reads and writes. �e only relation that needs to be updated is rf, which

associates removed reads with their origin write.

Preservation of almost-validity follows from the fact that the inserted writes are disjoint from all other

actions in the execution relations. Deny inclusion holds because any deny shape in Y that involves a

removed write / read can be easily replicated using the representative.

�

Theorem 17 (Cut adeqacy). B1 vc B2 =⇒ B1 v
NA
d B2

Proof. Prove this as a sequence of implications:

B1 vc B2 =⇒ B1 v
3

c B2 =⇒ B1 v
2

c B2 =⇒ B1 v
1

c B2 =⇒ B1 v
NA
d B2

Each implication step is proved in a lemma above. �

E PROOFS OF THEOREMS 2 AND 6 (FULL ABSTRACTION)
Context construction. �e full context construction including LL/SC is included in Figure 11. �e key di�erence

from Figure 9 is that successful context LL/SC pairs in X are arranged on a single thread, allowing the store

conditional to suceed in CX .

Proof of �eorem 6. We now prove �eorem 6: full abstraction of vNAq for programs and contexts that do not

use read-modify-write accesses, B1 4
NA
bl B2 =⇒ B1 v

NA
q B2. Note that this implies �eorem 2.

Proof. • Start by choosing an arbitrary R, S and X ∈ JB1,A,R,SKNAv . It remains to show that:

∃Y ∈ JB2,A,R,SKNAv .
(safe(Y) =⇒ safe(X) ∧ hist(X) vh hist(Y)) ∧
(¬safe(Y) =⇒ ∃X ′

1
∈ (X)↓. ∃X ′

2
∈ (Y)↓.¬safe(X ′

2
) ∧ hist(X ′

1
) vh hist(X ′

2
))

(11)

Publication date: January 2017.

1:36 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

CX = (;(m1,m2)∈at a(m1);a(m2)) ‖ (‖m\ |at | a(m))

a(m) = Racqm (Nrelm ; check(m) (Nacqm (Rrelm)))

Rrelm = Rrelret(m),v1
; . . . ; Rrelret(m),vn ,

where {v1, . . . ,vn } = {v | (ret(m),v) ∈ R}

Rrelu,v = store(hu,v ,1)

Racqm (N) = Racqu1,call(m) (. . . Racqun,call(m) (N) . . .),

where {u1, . . . ,un } = {u | (u,call(m)) ∈ R}

Racqu,v (N) = if (load(hu,v)) N else store(e,1)

Nrelm = Nrelcall(m),v1
; . . . ; Nrelcall(m),vn ,

where {v1, . . . ,vn } = {v | (call(m),v) ∈ H }

Nrelu,v = store(дu,v)

Nacqm (N) = Nacqu1,ret(m) (. . . Nacqun,ret(m) (N) . . .),

where {u1, . . . ,un } = {u | (u,ret(m)) ∈ H }

Nacqu,v (N) = if (¬load(дu,v)) N else store(e,1)

Fig. 11. Context construction:m ranges over context actions A and a code-block B′.

• Apply the construction lemma (Lemma 18, below) to B1, R, S and X to �nd a contextCX , and an execution

Z :

Z ∈ JCX (B1)KNAv ∧
code(Z) = X ∧
hbC(Z) = R ∧ atC(Z) = S ∧
∀B′.∀Z ′ ∈ JCX (B

′)KNAv .
((A(contx(Z)) = A(contx(Z ′))) =⇒ (hist(Z) vh hist(Z ′)) ∧ at(contx(Z)) = at(contx(Z ′)))∧
(¬safe(Z ′) =⇒ ∃X ′ ∈ X ↓. ∃W ∈ (JB′,A,R,SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W))

(12)

• Specialise observation with the context CX and the set of all variables used in CX , VCX , to get:

(¬safe(CX (B2)) ∨
(safe(CX (B1)) ∧
∀X ∈ JCX (B1)KNAv . ∃Y ∈ JCX (B2)KNAv .
A (X |VCX) = A (Y |VCX))) ∧

hb(X |VCX) ⊆ hb(Y |VCX)))

(13)

and then case split on safe(CX (B2)).
• Case 1: safe(CX (B2)).

– By 13, there is an execution, Z ′ of CX (B2) with:

hb(Z |VCX) = hb(Z ′ |VCX) ∧ A (Z |VCX) = A (Z ′ |VCX)

– By construction of CX , the variables VCX cover all context variables, so we have:

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:37

hb(contx(Z)) = hb(contx(Z ′)) ∧A(contx(Z)) = A(contx(Z ′))

– Appealing to 12, we have:

hist(Z) vh hist(Z ′)

– Now apply the decomposition lemma to Z ′ to get the execution Y :

Y ∈ JB2,A,hbC(Z ′),atC(Z ′)KNAv ∧ code(Z ′) = Y

– Now simplify using the de�nition of hbC and atC.

Y ∈ JB2,A,R,SKNAv ∧ hbC(Z ′) = R = hbC(Z) ∧ atC(Z ′) = S = atC(Z)

– Choose Y as the witness for our goal 11. Note that the presence of a safety violation in X or Y would

contradict the safety of CX (B2) and CX (B1). It is le� to show that:

hist(X) vh hist(Y)

– Unfolding the de�nition of vh, we have:

A(Z) = A(Z ′) ∧ hbL(Z ′) ⊆ hbL(Z)

and it is le� to show that,

A(X) = A(Y) ∧ hbL(Y) ⊆ hbL(X)

– Note that X and Y are the code-block projections of Z and Z ′ respectively, and we are done.

• Case 2: ¬safe(CX (B2)).
– Identify an unsafe valid execution of CX (B2), Z

′
, and specise the �nal conjunct of 12 with B2 and Z ′

to get:

X ′ ∈ X ↓ ∧W ∈ (JB2,A,R,SKNAv)↓ ∧ ¬safe(W) ∧ hist(X ′)↓ vh hist(W)

�en by the de�nition of
↓
, there exists aW ′ ∈ JB2,A,R,SKNAv such thatW ∈W ′↓

, and this case is

completed by noting thatW ′
andW satisfy 11.

�

E.1 Context construction
Lemma 18 (Construction Lemma).

∀BA,R,S .∀X ∈ JB,A,R,SKNAv .
∃CX . ∃Z ∈ JCX (B)KNAv .

(code(Z) = X) ∧
(hbC(Z) = R) ∧ (atC(Z) = S) ∧
∀B′.∀Z ′ ∈ JCX (B

′)KNAv .
((A(contx(Z)) = A(contx(Z ′))) =⇒ hist(Z) vh hist(Z ′) ∧ at(contx(Z)) = at(contx(Z ′))) ∧
(¬safe(Z ′) =⇒ ∃X ′ ∈ X ↓. ∃W ∈ (JB′,A,R,SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W))

Proof. • Start by choosing an arbitrary B, A, R, S and X ∈ JB,A,R,SK.

Publication date: January 2017.

1:38 • Mike Dodds, Mark Ba�y, and Alexey Gotsman

• Construct the client CX as speci�ed in Figure 9 with one minor change: have check halt the thread if the

error variable is wri�en.

It remains to show that there exists Z ∈ JCX (B)KNAv such that:

(1) (code(Z) = X) ∧ (hbC(Z) = R) ∧ (atC(Z) = S)
(2) ∀B′.∀Z ′ ∈ JCX (B

′)KNAv .
((A(contx(Z)) = A(contx(Z ′))) =⇒ hist(Z) vh hist(Z ′) ∧ at(contx(Z)) = at(contx(Z ′))) ∧
(¬safe(Z ′) =⇒ ∃X ′ ∈ X ↓. ∃W ∈ (JB′,A,R,SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W))

• We �rst establish 1.

– Appealing to the thread local semantics and the structure of CX (B), choose Zp , a pre-execution of

CX (B) that does not write the error variable, and whose code projecion matches X .

– Note that at is generated from the thread-local semantics matching X , and for the context part, each

LL/SC pair is in its own thread, so there is only one way to link them.

– Consructmo as follows: for code actions choose these edges to match X , and for the context part,

note that there is no choice: at each location there is only one write a�er the initialisation.

– Construct rf as follows: for code actions choose these edges to match X , and for that context actions

set rf to be coincident with an R edge in the case of Racq or from the initialisation write in the case

of Nacq. Note that the context projection of happens-before matches R by construction.

– Let Z be the combination of Zp , mo and rf. Show that Z is valid.

∗ �e only axioms that could fail are Acyclicity over some Racq or Coherence over some Nacq.

∗ In the �rst case, any cycle would be made up of code hb and R edges, and would also be a cycle

in X , a contradiction.

∗ A Coherence violation over some Nacq implies the existence of a hb edge from the associated

Nrel to the Nacq. �is violates the rules used to construct CX , and is a contradiction.

• Now establish 2.

– Start by choosing arbitrary B′ and Z ′ ∈ JCX (B
′)KNAv .

– First, show that (A(contx(Z)) = A(contx(Z ′))) =⇒ hist(Z) vh hist(Z ′) ∧ at(contx(Z)) =
at(contx(Z ′))
∗ Z does not write e , so neither does Z ′ (they have an equal context projection).

∗ By construction ofCX , the histories of Z abstract the histories of Z ′ and the at relations match.

– Now suppose Z ′ is unsafe. It remains to show:

∃X ′ ∈ X ↓. ∃W ∈ (JB′,A,R,SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W)

∗ CX uses only atomic and local variables that cannot exhibit safety violations: each violation

must be amongst the actions of A and the actions generated by B′.
∗ Identify a safety violation in Z ′ and consider the pre�x Z ′p containing only hb∪ rf predecessors

of the actions of the violation.

∗ �ere are no writes to e in Z ′p : a�er any such write, the thread is stopped, so it cannot appear

in the pre�x Z ′p .

∗ Below, we establish that for every thread of Z ′p except those that contain the safety violation

from which it is constructed, the error variable is not wri�en in the corresponding thread of

Z ′.
· Consider the hb ∪ rf edges that draw actions into the pre�x Z ′p from some thread t , there

are two cases: the edge arises from a Rrel/Racq pair, or it is created by a read, from write

w , in the code block or a context action.

· In the �rst case e is not wri�en in check or Nacq on t , because that would halt the thread

before the call to Rrel.

Publication date: January 2017.

Compositional Verification of Relaxed-Memory Program Transformations • 1:39

· In the second case, no call to Nacq writes e , and calls of commit only write to e in the case

of a failing store conditional, contradiciting the existence of write w in Z ′, so w is only

performed in threads that never write to e .

∗ From Z ′p , we constructW by applying the decomposition lemma Z ′p to get an executionW ,

completing this to an execution in JB′,A,R,SKNAv , and observing thatW is in (JB′,A,R,SKNAv)↓.
W is unsafe by construction.

∗ Take A to be the set of all context actions inW together with the call and ret actions present

inW . Let X ′ be the projection of X to the hb ∪ rf predecessors of A, so that X ′ ∈ X ↓.
∗ It remains to show that there is no edge in hb(W) between the actions of A that is not present

in the guarantee of X ′p , G ′. By construction ofW , any extraneous hb(W) edge must end at

one of the threads hosting the violation. �ere is only one code block, so at least one of the

threads has to be executing a context action. �ere is no single action that both creates an

incomming hb edge and causes a safety violation, so any additional hb(W) edge must end at

the code block. In that case,W does not include the ret action following the racy action in hb,

and neither does X ′, and there can be no new edge in G ′.
�

Publication date: January 2017.

	Abstract
	1 Introduction
	2 Observation and Transformation
	3 Target Language and Core Memory Model
	3.1 Differences from C11

	4 Denotations of Code-Blocks
	5 A Finite Denotation
	6 Prototype Verification Tool
	7 Transformations with Non-Atomics
	8 Full Abstraction
	9 Related Work
	10 Conclusions
	Acknowledgments
	References
	A Collected Definitions
	B Proof of Theorem 1
	C Non-atomics and Denies
	D Proof of Theorems 3 and 5
	E Proofs of Theorems 2 and 6 (full abstraction)
	E.1 Context construction

