
GPU concurrency

Weak behaviours and programming assumptions

Jade Alglave1,2 Mark Batty3 Alastair F. Donaldson4 Ganesh Gopalakrishnan5

Jeroen Ketema4 Daniel Poetzl6 Tyler Sorensen1,5 John Wickerson4

1 University College London 2 Microsoft Research 3 University of Cambridge
4 Imperial College London 5 University of Utah 6 University of Oxford

Abstract

Concurrency is pervasive and perplexing, particularly on

graphics processing units (GPUs). Current specifications of

languages and hardware are inconclusive; thus programmers

often rely on folklore assumptions when writing software.

To remedy this state of affairs, we conducted a large em-

pirical study of the concurrent behaviour of deployed GPUs.

Armed with litmus tests (i.e. short concurrent programs), we

questioned the assumptions in programming guides and ven-

dor documentation about the guarantees provided by hard-

ware. We developed a tool to generate thousands of litmus

tests and run them under stressful workloads. We observed

a litany of previously elusive weak behaviours, and exposed

folklore beliefs about GPU programming—often supported

by official tutorials—as false.

As a way forward, we propose a model of Nvidia GPU

hardware, which correctly models every behaviour wit-

nessed in our experiments. The model is a variant of SPARC

Relaxed Memory Order (RMO), structured following the

GPU concurrency hierarchy.

Categories and Subject Descriptors B.3.0 [Memory struc-

tures]: General

Keywords memory consistency, GPU, Nvidia PTX, OpenCL,

litmus testing, test generation, formal model

1. Introduction

GPUs have cemented their position in computer systems: no

longer restricted to graphics, they appear in critical applica-

tions, e.g. [29]. Thus programming them correctly is crucial.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Yet GPU concurrency is poorly specified. The vendors’

documentation and programming guides suffer from signif-

icant omissions and ambiguities, which force programmers

to rely on folklore assumptions when writing software.

To distinguish assumptions from ground truth, we ques-

tioned the hardware guarantees and the assumptions made

in programming guides. Thus we conducted a large empiri-

cal study of deployed Nvidia and AMD GPUs (see Tab. 1).

vendor architecture chip short name year

Nvidia Tesla GTX 280 GTX 280 2008

Fermi GTX 540m GTX5 2011

Tesla C2075 TesC 2011

Kepler GTX 660 GTX6 2012

GTX Titan Titan 2013

Maxwell GTX 750 GTX7 2014

AMD TeraScale 2 Radeon HD 6570 HD6570 2011

Graphics Core
Next (GCN) 1.0

Radeon HD 7970 HD7970 2012

Table 1: The GPU chips we tested

Our methodology relies on executing short programs (lit-

mus tests), probing specific hardware behaviours [6, 7, 14,

17]. Central to the success of our method is a test harness: we

run each test thousands of times under stressful workloads,

to provoke the behaviour that the test characterises.

Our litmus tests uncovered weak GPU behaviours, sim-

ilar to those of CPUs (e.g. IBM Power [6, 7]), which “no

existing literature has been able to show how to trigger”

and have been dismissed as “infinitesimally unlikely” to oc-

cur [19].7 We observed weak behaviours on all the chips

listed in Tab. 1 except the GTX 280; we henceforth omit this

particular chip from our results tables. Moreover, our tests

exposed as false several programming assumptions made

in academic works [22, 42] and literature endorsed by ven-

dors [26, 36, 38]. We summarise our findings in Tab. 2 and

detail them in Sec. 3; we illustrate two key findings below.

7 In fairness to the authors of [19], we were unable to observe weak be-

haviours using our method on the Nvidia GTX 280 chip they used.

Weak behaviours The litmus test of Fig. 1 (written in

Nvidia’s low level language PTX) tests for read-read co-

herence coRR violations. The left thread stores 1 into the

location x, which is in global memory and initialised to 0,

and the right thread, which is in the same CTA (see Sec. 2.1),

loads twice from x. Read-read coherence violations occur for

executions ending with register r1 holding 1 and register r2

holding 0. This behaviour seems to spark debate for CPUs:

it is allowed by SPARC Relaxed Memory Order (RMO) [43,

Chap. D.4], but is considered a bug on some ARM chips [12].

Yet on several Nvidia GPUs, we observed coRR violations

several thousand times; for instance, the results reported at

the bottom of Fig. 1 show that the GTX 540m exhibited

coRR violations on 11642 out of 100k runs.

init:global x=0 final: r1=1∧ r2=0 threads: intra-CTA

0.1 st.cg [x],1 1.1 ld.cg r1,[x]

1.2 ld.cg r2,[x]

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970

11642 8879 9599 9787 0 0 0

Figure 1: PTX test for coherent reads (coRR)

Programming assumptions Fig. 2 shows a spin lock from

Nvidia’s CUDA by Example [38, App. 1]. We show exper-

imentally (see Sec. 3.2.2) that without the fences that we

added (indicated by (+), i.e. lines 3 and 5), a critical section

protected by the lock can read both stale and future values,

and that clients using the lock can produce incorrect results.

1 __device__ void lock(void) {

2 while(atomicCAS(mutex, 0, 1) != 0);

3(+) __threadfence();}

4 __device__ void unlock(void) {

5(+) __threadfence();

6 atomicExch(mutex, 0);}

Figure 2: CUDA spin lock of [38, p. 253] with added fences

After we reported this issue, Nvidia published an erratum

stating that their code “did not consider [weak behaviours]

and requires the addition of __threadfence() instructions

[. . .] to ensure stale values are not read” [33].

On AMD, an OpenCL analogue of Fig. 2 (see [1]) allows

stale values to be read on TeraScale 2 and GCN 1.0.

Hardware vs. language We emphasise that this paper fo-

cuses on hardware behaviours. Our figures show either PTX

litmus tests (i.e. Fig. 1, 3,4, 7, 8, 9, 11), or CUDA programs

(i.e. Fig. 2, 6, 10). For the CUDA programs, we extracted a

snippet that was susceptible to weak memory behaviours and

translated it to PTX by using the mapping in Tab. 5. We then

compiled the PTX litmus test to machine code, and checked

that the PTX assembler did not reorder or remove memory

accesses (see Sec. 4.4). Executing the litmus test on a GPU

thus reveals the hardware behaviour.

As a way forward, we propose a model of Nvidia GPU

hardware. Our model is based on SPARC RMO, and is

stratified according to the thread hierarchy found on GPUs.

We validated it against 10930 litmus tests on the Nvidia

chips of Tab. 1, each executed 100k times, to confirm that

it accounts for every observed behaviour.

affected litmus tests comment sec.

Nvidia

Fermi/Kepler

architectures

coRR sparks debate for CPUs 3.1.1

Fermi

architecture

mp-L1,

coRR-L2-L1

fences do not restore

orderings

3.1.2

PTX ISA [36] mp-volatile volatile documentation

disagrees with testing

3.1.2

GPU

Computing

Gems [26]

dlb-lb,

dlb-mp

fenceless deque allows

items to be skipped

3.2.1

CUDA by

Example [38]

cas-sl fenceless lock allows

stale values to be read

3.2.2

Stuart–Owens

lock [42]

exch-sl fenceless lock allows

stale values to be read

3.2.2

He–Yu lock [22] sl-future lock allows future values

to be read

3.2.3

CUDA 5.5 [32] coRR compiler reorders volatile

loads

4.4

AMD

GCN 1.0 mp compiler removes fences

between loads

3.1.2

TeraScale 2 dlb-lb compiler reorders load

and CAS

3.2.1

Table 2: Summary of the issues revealed by our study

Contributions In essence, we present:

1. a framework for generating and running litmus tests to

question memory consistency on GPU chips (see Sec. 4);

2. a set of incantations: heuristics for provoking weak be-

haviour during testing (see Sec. 4);

3. an extensive empirical evaluation across seven GPUs

from Nvidia and AMD (see Tab. 1, Sec. 3 and Sec. 5);

4. details of ten correctness issues in GPU hardware, com-

pilers and public software (see Tab. 2 and Sec. 3); and

5. a formal model of Nvidia GPUs, informed by our eval-

uation, providing a foundation on which to build more

reliable chips, compilers and applications (see Sec. 5).

Online material We give our complete experimental re-

ports online [1], along with extra examples and explanations.

2. Background on GPUs

A GPU (graphics processing unit) features streaming multi-

processors (SMs; compute units on AMD), each with multi-

ple cores [36, Chap. 2–3] [34, App. G] [11, Chap. 1].

2.1 Execution hierarchy

Programs map to hardware in a hierarchical way. A thread

(work-item in OpenCL) executes instructions on a core. A

warp (wavefront on AMD) is a group of 32 threads (64 on

AMD), which execute following the “single instruction mul-

tiple threads” model (SIMT). Thus threads in a warp exe-

cute in lock step, i.e. run the same code and share a pro-

gram counter. A cooperative thread array (CTA; block in

CUDA and work-group in OpenCL) consists of a config-

urable number of warps, all executing on the same SM. A

grid (NDRange in OpenCL) can consist of millions of CTAs.

A kernel refers to a GPU program executed by a grid.

We focus on thread interactions either in the same CTA

but different warps, or in the same grid but different CTAs.

We do not test inter-grid or inter-GPU interactions as we did

not find any example using these features in the literature.

Additionally we do not test intra-warp interactions; this

would require threads in the same warp to execute different

instructions; several of our incantations (see Sec. 4) require

that all threads in a warp execute the same instructions.

2.2 Memory hierarchy

Global memory is shared between all threads in a grid, and

may be cached in L1 or L2 caches. The SMs each have their

own L1, and share an L2. There is also one region of shared

memory per SM, shared only by threads in the same CTA.

GPUs also provide read-only regions (e.g. CUDA con-

stant and texture memory [34, Chap. 3.2.11]). We ignore

these as they are uninteresting from a weak memory perspec-

tive: reads from a constant location all yield the same result.

2.3 Parallel Thread Execution (PTX) and OpenCL

To test hardware, we run assembly litmus tests. Nvidia’s

assembly, SASS, is largely undocumented, except for a list

of instructions [35, Chap. 4] which does not describe their

semantics. Moreover, there is no openly available assembler

from SASS to binary. The AMD TeraScale 2 and GCN 1.0

architectures use the Evergreen [9] and Southern Islands [10]

instruction set architectures (ISAs), respectively. These ISAs

are documented but assemblers are not openly available.

Below we explain how we circumvent these challenges.

Nvidia: PTX For Nvidia chips, we write our tests in

Nvidia’s Parallel Thread Execution (PTX) low-level inter-

mediate language [36]. PTX abstracts over the ISAs of

Nvidia GPUs. Sec. 4.4 explains how we relate our PTX

tests to the hardware behaviours that we observe, using our

optcheck tool based on Nvidia’s cuobjdump [35, Chap. 2]:

we inspect the SASS code and check that it has not intro-

duced reorderings w.r.t. the initial PTX code that would alter

the intention of our tests.

Our formal model of PTX (see Sec. 5) includes the fol-

lowing instructions: loads (ld), stores (st), ALU operations

(add, and), fences (membar), unconditional jumps (bra), set-

ting a predicate register if two operands are equal (setp.eq),

and predicated instructions that only execute if a predicate

register is set (@p1 ...) or unset (@!p1 ...). Fences are pa-

rameterised by a scope: membar.cta (resp. .gl or .sys) pro-

vides ordering within a CTA (resp. within the GPU or with

the host). Other instructions bear a cache operator: for exam-

ple, load instructions may be annotated with the cache opera-

tor .ca (resp. .cg) which specify that the load targets the L1

(resp. L2) cache. Several instructions bear a type specifier in-

dicating their bit width and signedness [36, Chap. 5.2]. For

brevity, we omit the type specifier in our examples and use

the signed single word size (i.e. .s32) for all instructions.

Some of our examples use compare-and-swap (atom.cas),

exchange (atom.exch), and volatile instructions (which in-

form the compiler that the value in memory “can be changed

or used at any time by another thread” [34, p. 170] in CUDA,

and “inhibit optimization” [36, p. 131] in PTX), but these in-

structions are not included in our model.

AMD: OpenCL AMD intermediate language (AMD IL) [8]

is analogous to Nvidia PTX; but AMD does not provide com-

pilation tools for it, so we cannot use the same approach as

for Nvidia. To test AMD chips we write our tests in OpenCL,

relying on the AMD OpenCL compiler to translate them into

Evergreen [9] and Southern Islands [10] code. Our testing is

thus constrained by the compiler; we can inspect the gener-

ated code, but unlike in the case of Nvidia PTX we cannot

issue memory accesses to specific caches, apply scopes to

fences, or prevent the insertion of fences by the compiler. We

discuss the impact of these constraints in Sec. 3, and explain

how we guard against compiler optimisations in Sec. 4.4.

We give mappings that reflect how the AMD tools translate

OpenCL into Evergreen and Southern Islands online [1].

3. A plea for rigour

Our testing uncovered weak behaviours, and exposed sev-

eral programming assumptions as false. Tab. 2 summarises

our findings; we detail them below, and discuss their impli-

cations. In essence, this litany of examples is a plea for more

rigour in vendor documentation and programming guides.

Otherwise, we are bound to find issues in our hardware, com-

pilers and software, such as the ones that we present below.

The behaviours that we expose correspond to classic litmus

idioms, gathered in Tab. 3, together with a brief description

and the figures where the idiom appears.

name description figures

coRR coherence of read-read pairs 1, 4

mp message passing (viz. handshake) 3, 5, 7, 9

lb load buffering 8, 11

sb store buffering 12

Table 3: Glossary of idioms

Experimental setup For each test, we give the memory re-

gion and initial value of each location (see init in Fig. 3)

and the placement of threads in the execution hierarchy

(threads), and we report the number of times the final con-

dition (final) is observed (obs) on our chips during 100k

executions of the test using the most effective incantations

(Sec. 4.3). The complete histogram of results for each test

can be found in the online material [1]. We conducted our

Nvidia experiments on four machines running Ubuntu 12.04,

and our AMD experiments on a single machine running Win-

dows 7 SP1. In the Nvidia case, Tab. 4 lists the CUDA SDK

and driver versions we used, and gives the PTX architecture

specification, i.e. the argument of the -arch compiler option.

In the AMD case, Tab. 4 lists the AMD Accelerated Paral-

lel Processing SDK and Catalyst driver versions. The SDKs

include the compilation tools for the respective platforms.

Nvidia AMD

GTX5 TesC GTX6 Titan GTX7

SDK 5.5 5.5 5.0 6.0 6.0 2.9

driver 331.20 334.16 331.67 331.62 331.62 14.4

options sm_21 sm_20 sm_30 sm_35 sm_50 default

Table 4: Compilers and drivers used

3.1 Weak behaviours

3.1.1 Sequential Consistency (SC) per location

This principle ensures that the values taken by a memory

location are the same as if on SC [28]. Nearly all CPU mod-

els guarantee this [7], except SPARC RMO [43, Chap. D.4],

which allows the weak behaviour of coRR (Fig. 1). As dis-

cussed in Sec. 1, this behaviour seems to spark debate for

CPUs: indeed, it has been deemed a bug on some ARM

chips [12]. Fig. 1 shows that we observed coRR on Nvidia

Fermi and Kepler. We did not observe coRR on AMD TeraS-

cale 2 or GCN 1.0 chips.

3.1.2 Cache operators

Message passing mp On Nvidia we test mp with the loads

bearing the cache operator which targets the L1 cache, i.e.

.ca, (mp-L1, see Fig. 3) and all threads in different CTAs.

The stores bear the cache operator .cg because our reading

of the PTX manual implies that there is no cache operator for

stores that target the L1 cache [36, p. 122]. We instantiate the

fence at different PTX levels [36, p. 169]: cta, gl, and sys,

and also report our observations when the fence is removed.

We observe the weak behaviour on the Tesla C2075, no

matter how strong the fences are. Note that .ca is the default

cache operator for loads in the CUDA compiler. [36, p. 121].

Thus no fence (i.e. membar or CUDA equivalent in Tab. 5)

is sufficient under default CUDA compilation schemes (i.e.

loads targeting the L1 with the .ca cache operator) to com-

pile mp correctly for Nvidia Tesla C2075 (e.g. the example

in the CUDA manual [34, p. 95]).

We experimentally fix this issue by setting cache op-

erators to .cg (using the CUDA compiler flags -Xptxas

-dlcm=cg -Xptxas -dscm=cg) and using membar.gl fen-

ces (see test mp+membar.gls online [1]).

init:

(

global x=0

global y=0

)

final: r1=1∧ r2=0 threads: inter-CTA

0.1 st.cg [x],1

0.2 fence

0.3 st.cg [y],1

1.1 ld.ca r1,[y]

1.2 fence

1.3 ld.ca r2,[x]

obs/100k fence GTX5 TesC GTX6 Titan GTX7

no-op 4979 10581 3635 6011 3

membar.cta 0 308 14 1696 0

membar.gl 0 187 0 0 0

membar.sys 0 162 0 0 0

Figure 3: PTX mp w/ L1 cache operators (mp-L1)

On AMD we cannot directly test mp-L1, because we

do not have direct access to the caches when working with

OpenCL (as explained in Sec. 2.3). Instead, we revert to

the classic mp test, with threads in distinct OpenCL work-

groups, all variables in global memory, and OpenCL global

fences (mem_fence(CLK_GLOBAL_MEM_FENCE)) between

the loads and between the stores. Without the fences, we

observe mp on AMD GCN 1.0 (obs: 2956) and TeraScale 2

(obs: 9327). With the fences we do not observe mp on TeraS-

cale 2. On GCN 1.0 we still observe mp when fences are in-

serted; inspection of the Southern Islands ISA generated by

the compiler shows that the fence between load instructions

is removed. It is not clear from the OpenCL specification

whether this is a legitimate compiler transformation. On the

one hand the specification states that “loads and stores pre-

ceding the mem_fence will be committed to memory before

any loads and stores following the mem_fence” [27, p. 277];

on the other hand it states that “There is no mechanism for

synchronization between work-groups” [27, p. 30]. We have

reported this issue to AMD.

Coherent reads coRR We tested whether using different

cache operators within the coRR test can restore SC. The

PTX manual states that after an L2 load (i.e. .cg) “existing

cache lines that match the requested address in L1 will be

evicted” [36, p. 121]. This seems to suggest that a read from

the L2 cache can affect the L1 cache.

Let us revisit coRR (see Fig. 1). We run a variant that we

call coRR-L2-L1 (see Fig. 4), where we first read from the

L2 cache via the .cg operator and then from the L1 cache

via the .ca operator. Thus the load 1.3 in Fig. 1 now holds

the .ca operator, all the others being the same.

Fig. 4 shows that on the Tesla C2075, no fence guarantees

that updated values can be read reliably from the L1 cache

even when first reading an updated value from the L2 cache.

This issue does not apply to AMD chips for which, as

discussed in Sec. 3.1.1, we did not observe coRR.

Volatile accesses PTX accesses can be marked .volatile,

which supposedly [36, p. 131 for loads; p. 136 for stores]

“may be used [. . .] to enforce sequential consistency be-

tween threads accessing shared memory”. We test whether

.volatile restores SC with shared memory with the test mp-

init:global x=0 final: r1=1∧ r2=0 threads: intra-CTA

0.1 st.cg [x],1 1.1 ld.cg r1,[x]

1.2 fence

1.3 ld.ca r2,[x]

obs/100k fence GTX5 TesC GTX6 Titan GTX7

no-op 2556 2982 2 141 0

membar.cta 1934 2180 0 0 0

membar.gl 0 1496 0 0 0

membar.sys 0 1428 0 0 0

Figure 4: PTX coRR mixing cache operators (coRR-L2-L1)

volatile (Fig. 5), a variant of mp where all accesses bear the

.volatile annotation and locations are in the shared mem-

ory region and threads are in the same CTA (but different

warps, see Sec. 2.1). We observe violations on Fermi and

Kepler; thus, contrarily to the PTX manual, the .volatile

annotation does not restore SC for shared memory.

init:

(

shared x=0

shared y=0

)

final:r1=1∧ r2=0 threads: intra-CTA

0.1 st.volatile [x],1

0.2 st.volatile [y],1

1.1 ld.volatile r1,[y]

1.2 ld.volatile r2,[x]

obs/100k GTX5 TesC GTX6 Titan GTX7

6301 4977 2753 2188 0

Figure 5: PTX mp with volatiles (mp-volatile)

3.2 Programming assumptions

This section studies the assumptions that several CUDA ex-

amples from the literature make about GPUs. Each para-

graph header is an assumption that we have encountered.

We give CUDA or PTX code snippets. We show the orig-

inal code snippets that are susceptible to undesirable be-

haviours due to weak memory effects, and how they can

be modified to prevent those behaviours. To show the dif-

ferences between the original and the modified versions, we

prefix some lines with (-) or (+). The original code con-

tains the lines without a prefix or prefixed with (-); the mod-

ified version can be obtained by removing the lines prefixed

with (-) and adding the lines prefixed with (+).

Because our framework for testing Nvidia chips tests

PTX code, we must translate CUDA to PTX. We use the

mapping summarised in Tab. 5, which we discovered by ex-

amining code generated by the CUDA compiler, release 5.5

(with the compiler flags -Xptxas -dlcm=cg -Xptxas

-dscm=cg to set cache operators to .cg, to guard against

the behaviour shown in Sec. 3.1.2).

For the examples in Sec. 3.2.1 and 3.2.2 we have also

written OpenCL litmus tests for evaluation on AMD GPUs;

this was not possible for the examples in Sec. 3.2.3 because,

as discussed in Sec. 2.3, we were unable to avoid automatic

placement of fences by the AMD OpenCL compiler.

CUDA PTX

atomicCAS atom.cas

atomicExch atom.exch

__threadfence membar.gl

__threadfence_block membar.cta

atomicAdd(...,1) atom.inc

store to global int st.cg

load from global int ld.cg

store to volatile int st.volatile

load from volatile int ld.volatile

control flow (while, if) jumps & predicated instructions

Table 5: CUDA to PTX mapping (for CUDA 5.5)

3.2.1 “GPUs exhibit no weak memory behaviours”

Several sources (e.g. [15, 26, 45]) simply omit memory

model considerations. For example, Cederman and Tsi-

gas [26, Chap. 35] describe a concurrent work-stealing

double-ended queue (deque), adapting the queue of Arora

et al. [13] to GPUs. The implementation seems to assume

the absence of weak behaviour: it does not use fences. Our

testing shows that two bugs result from the absence of fences.

1 volatile int head, tail;

2 void push(task){

3 tasks[tail] = task;

4(+) __threadfence();

5 tail++; }

6 Task steal(){

7 int oldHead = head;

8 if (tail <= oldHead.index) return EMPTY;

9(+) __threadfence();

10 task = tasks[oldHead.index];

11(+) __threadfence();

12 newHead = oldHead; newHead.index++;

13 if (CAS(&head,oldHead,newHead)) return task;

14 return FAILED; }

15 Task pop(){

16 ...

17 tail--;

18 ...

19 if(oldTail == oldHead.index)

20 if(CAS(&head, oldHead, newHead)) {

21(+) __threadfence();

22 return task; }

23(+) atomicExch(head, newHead);

24(-) head = newHead;

25 return FAILED; }

Figure 6: CUDA code for queue of [26, p. 490-491]

In the implementation of [26, Chap. 35], each CTA owns

a deque that it can push to and pop from. If a CTA’s deque

is empty then it attempts to steal a task from another

CTA. Each deque is implemented as an array with two in-

dices: tail is incremented by push and decremented by

pop, and head is incremented by steal; tail and head are

declared as volatile. Fig. 6 gives part of the implementation.

Message passing The first bug arises when executing two

threads T0 and T1 in different CTAs. T0 pushes to its deque,

writes the tasks array (Fig. 6, line 3) and then increments

tail (line 5). Assume that T1 steals from T0, sees the incre-

ment made by T0 (line 8), and reads the tasks array at index

head (line 10). Without fences, T1 can see a stale value of

the tasks array, rather than the write of T0.

init:

(

global t=0

global d=0

)

final:r0=1∧ r1=0 threads: inter-CTA

*
0.1 st.cg [d],1 3

0.2(+) membar.gl 4

0.3 ld.volatile r2,[t] 5

0.4 add r2,r2,1 5

0.5 st.volatile [t],r2 5

*
1.1 ld.volatile r0,[t] 8

1.2 setp.eq p4,r0,0 8

1.3(+) @!p4 membar.gl 9

1.4 @!p4 ld.cg r1,[d] 10

*original line in Fig. 6

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970

0 4 36 65 0 0 0

Figure 7: PTX mp from load-balancing (dlb-mp)

We distilled this execution into the dynamic-load-bal-

ancing test dlb-mp (Fig. 7) by applying the mapping of

Tab. 5 to Cederman and Tsigas’ implementation [16]. Each

instruction in Fig. 7 is cross-referenced to the corresponding

line in Fig. 6. Without fences, the load 1.1 can read 1 and

the load 1.4 can read 0, as observed on Fermi (Tesla C2075)

and Kepler (GTX 660, GTX Titan). This means reading a

stale value from the task array, and results in the deque

losing a task. Adding the lines prefixed with (+) forbids

this behaviour. We did not observe the weak behaviour on

Maxwell or AMD.

Load buffering The second bug arises again when execut-

ing T0 and T1 in different CTAs. T0 pushes to its deque, T1

steals, reads the tasks array (Fig. 6, line 10) and increments

head (line 13). T0 pops, reads the incremented head with

a compare-and-swap (CAS) instruction, resets tail and re-

turns empty. Then T0 pushes a new task t, writing to tasks

at the original index (line 3). The implementation allows

T1’s steal to read t, the second value pushed to the deque.

init:

(

global t=0

global h=0

)

final:r0=1∧ r1=1 threads: inter-CTA

*
0.1 atom.cas r0,[h],0,1 20

0.2(+) membar.gl 21

0.3 mov r2,1 3

0.4 st.cg [t],r2 3

*
1.1 ld.cg r1,[t] 10

1.2(+) membar.gl 11

1.3 atom.cas r3,[h],0,1 13

*original line in Fig. 6

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970

0 750 399 2292 0 n/a 13591

Figure 8: PTX lb from load-balancing (dlb-lb)

We distilled this execution into the dynamic-load-bal-

ancing test (dlb-lb, Fig. 8), again following Tab. 5 and Ce-

derman and Tsigas’ code [16]. Without fences, the load 1.1

can read from the store 0.4, and the CAS 0.1 can read from

the CAS 1.3, as observed on Fermi (Tesla C2075) and Kepler

(GTX 660, GTX Titan). This corresponds to the steal read-

ing from the later pop, and hence the deque losing a task.

Adding the lines prefixed with (+) forbids this behaviour.

On AMD TeraScale 2 we find that the OpenCL compiler

reorders T1’s load and CAS. We regard this as a miscom-

pilation: it invalidates code that uses a CAS to synchronise

between threads, even if the threads are in the same work-

group. Therefore we do not present the number of weak be-

haviours for HD6570 in Fig. 8 and write “n/a” instead. We

reported this issue to AMD. On AMD GCN 1.0, we observe

the weak behaviour of an OpenCL version of dlb-lb.

Adding fences (see lines prefixed with (+) in Fig. 6)

forbids the behaviours of Fig. 7 and 8 in our experiments,

on all Nvidia chips and on AMD GCN 1.0. As we explain in

Sec. 3.2.3, pop’s store to head requires an atomic exchange.

3.2.2 “Atomic operations provide synchronisation”

Several sources assume that read-modify-writes (RMW) pro-

vide synchronisation across CTAs (e.g. [30, 38, 42]). For ex-

ample, Stuart and Owens “use atomicExch() instead of a

volatile store and threadfence()because the atomic queue

has predictable behavior, threadfence() does not (i.e. it

can vary greatly in execution time if other memory opera-

tions are pending)” [42, p. 3]. Communication with the au-

thors confirms that the weak behaviour is unintentional.

Nvidia’s CUDA by Example [38, App. 1] makes similar

assumptions. Fig. 2 shows the lock and unlock from [38,

App. 1]. For now we ignore the lines prefixed with a (+),

which we added. Stuart and Owens’ implementation [42,

p. 3] is similar, but uses atomic exchange (an unconditional

RMW) instead of CAS. The lock and unlock of Fig. 2

are used in a dot product [38, App. 1.2] (a linear algebra

routine), where each CTA adds a local sum to a global sum,

using locks to provide mutual exclusion. The absence of

synchronisation in the lock permits stale values of the local

sums to be read, leading to a wrong dot product calculation.

init:

(

global x=0

global m=1

)

final: r1=0∧ r3=0 threads: inter-CTA

*
0.1 st.cg [x],1

0.2(+) membar.gl 5

0.3 atom.exch r0,[m],0 6

*
1.1 atom.cas r1,[m],0,1 2

1.2 setp.eq r2,r1,0 2

1.3(+) @r1 membar.gl 3

1.4 @r1 ld.cg r3,[x]

*original line in Fig. 2

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970

0 47 43 512 0 508 748

Figure 9: PTX compare-and-swap spin lock (cas-sl)

In Fig. 9, we show the lock and unlock functions of

Fig. 2, distilled into a variant of the mp test called cas-sl

(“spin lock using compare-and-swap”), using the mapping in

Tab. 5. We ignore the additional fences (lines 0.2 and 1.3) for

now. Lines 0.1 and 1.4 correspond to a store and a load inside

a critical section; the other lines cross-reference Fig. 2.

Location m holds the mutex, which is initially locked (i.e.

m = 1), and x is the data accessed in the critical section.

The left thread stores to x and then releases the mutex with

an atomic exchange. The right thread attempts to acquire

the lock with a CAS instruction (1.1), and if the lock was

acquired successfully (1.2), loads from x (1.4). The final

constraint checks whether the lock is successfully acquired

(i.e. r1 = 0), yet a stale value of x is read (i.e. r3 = 0).

Fig. 9 gives the outcome for threads in different CTAs

using global memory. On Fermi and Kepler we observed

stale values, violating the lock specification of [42], and

showing the implementation from [38, App. 1] is wrong.

Our reading of the PTX manual implies that the .gl

fences (prefixed with a (+) in Fig. 9) forbid the weak be-

haviour [36, Chap. 8.7.10.2], and with them, we no longer

observe it during testing. As pointed out in the introduction,

our findings prompted Nvidia to publish an erratum [33] con-

firming the false programming assumptions of [38, App. 1].

On AMD TeraScale 2 and GCN 1.0, we observe stale

values for an OpenCL version of cas-sl (see [1]). Thus re-

placing CUDA atomics with their OpenCL counterparts in

the dot product of [38, App. 1] would result in an incorrect

implementation. This weak behaviour is not observed exper-

imentally by inserting OpenCL global memory fences.

3.2.3 “Only unlocks need fences”

He and Yu [22] describe how to execute transactions for

databases stored in global memory. They aim to guaran-

tee the isolation property [21], i.e. the database state re-

sulting from a concurrent execution of transactions should

match some serial execution of the transactions. We distill

litmus tests to experimentally validate the locks used by the

database operations.

Spin lock Fig. 10 shows the CUDA spin lock of [22,

p. 322]. For now, we ignore the lines marked (+). The lock-

ing is handled by the CAS on line 3, the critical section is on

line 7, and the write on line 10 implements the unlock.

1 bool leaveLoop = false;

2 while(!leaveLoop) {

3 int lockValue = atomicCAS(lockAddr,0,1);

4 if(lockValue == 0) {

5 leaveLoop = true;

6(+) __threadfence();

7 // critical section

8(+) __threadfence();

9(+) atomicExch(lockAddr, 0);

10(-) *lockAddr = 0;}

11(-) __threadfence();}

Figure 10: CUDA spin lock implementation of [22, p. 322]

To investigate the correctness of the lock, we distilled the

sl-future test, given in Fig. 11, from the CUDA code of

init:

(

global x=0

global m=1

)

final: r0=1∧ r2=0 threads: inter-CTA

*
0.1 ld.cg r0,[x] 7

0.2(+) membar.gl 8

0.3(+) atom.exch r1,[m],0 9

0.4(-) st.cg [m],0 10

0.5(-) membar.gl 11

*
1.1 atom.cas r2,[m],0,1 3

1.2 setp.eq p,r2,0 4

1.3 @p mov r3,1 5

1.4(+) @p membar.gl 6

1.5 @p st.cg [x],1 7

*original line in Fig. 10

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970

0 99 41 58 0 n/a n/a

Figure 11: PTX spin lock future value test (sl-future)

Fig. 10. We assume that the threads are in different CTAs.

Again, we first ignore the lines marked (+). The test checks

whether a thread in the critical section can read a value

from the future, i.e. written by the next critical section. The

left thread reads a value within a critical section (line 0.1)

then releases the lock (line 0.4). The right thread attempts to

acquire the lock (line 1.1), and if successful, writes 1 to x in

another critical section (line 1.5). The final condition checks

whether the left thread can read the value written by the right

thread when the right thread acquires the lock. Fig. 11 shows

that this behaviour can be observed. This effect can lead to a

violation of the isolation property described above.

The bugs arise because the CAS at the entry of the crit-

ical section (Fig. 10, line 3) does not provide any order-

ing nor does the release of the lock (line 10). As is, the

__threadfence() does not help, because it appears after

the release of the lock: this does not prevent the lock release

(line 10) from being reordered with the accesses in the criti-

cal section (line 7). The fence would need to be placed before

the release of the lock.

A possible fix for Fig. 10 is to remove the lines prefixed

with (-), and add the lines prefixed with (+). The corrected

version has fences both at the entry and exit points of the

critical section. The spin lock uses CAS before entering the

critical section in an attempt to provide mutual exclusion,

but PTX annuls the guarantees afforded to atomic operations

if other stores access the same location [36, p. 170], so we

replace the normal store that releases the lock (the only other

access to lockAddr) with an atomic exchange operation. We

applied the equivalent transformations to the distilled test in

Fig. 11, and did not observe the weak behaviour anymore.

4. Our testing methodology

Our testing tool takes a litmus test (as given in the previous

sections) and produces a CUDA or OpenCL executable that

runs the test many times while stressing the memory system,

and produces a histogram of all observed outcomes.

4.1 Writing and generating litmus tests

Fig. 12 illustrates the GPU litmus format. Parts of it come

from CPU litmus tests [5, 6]; others are specific to GPUs.

We focus on the PTX case, the AMD case being similar.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

memory stress

general bank conflicts

thread synchronisation

thread randomisation

Nvidia

GTX

Titan

coRR (intra-CTA) 0 0 0 0 0 1235 0 9774 161 118 847 362 632 3384 3993 9985

lb (inter-CTA) 0 0 0 0 0 0 0 0 181 1067 1555 2247 4 37 83 486

mp (inter-CTA) 0 0 0 0 0 621 0 2921 315 1128 2372 4347 7 94 442 2888

sb (inter-CTA) 0 0 0 0 0 0 0 0 462 1403 3308 6673 3 50 88 749

AMD

Radeon

HD 7970

coRR (intra-CTA) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lb (inter-CTA) 10959 8979 31895 29092 13510 12729 29779 26737 5094 9360 37624 38664 5321 10054 32796 34196

mp (inter-CTA) 212 31 243 158 277 46 318 247 473 217 1289 563 611 339 2542 1628

sb (inter-CTA) 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

Table 6: Observations out of 100k executions for combinations of incantations (all tests target global memory)

1 GPU_PTX SB

2 {0:.reg .s32 r0; 0:.reg .s32 r2;

3 0:.reg .b64 r1 = x; 0:.reg .b64 r3 = y;

4 1:.reg .s32 r0; 1:.reg .s32 r2;

5 1:.reg .b64 r1 = y; 1:.reg .b64 r3 = x;}

6 T0 | T1 ;

7 mov.s32 r0,1 | mov.s32 r0,1 ;

8 st.cg.s32 [r1],r0 | st.cg.s32 [r1],r0 ;

9 ld.cg.s32 r2,[r3] | ld.cg.s32 r2,[r3] ;

10 ScopeTree(grid(cta(warp T0) (warp T1)))

11 x: shared, y: global

12 exists (0:r2=0 /\ 1:r2=0)

Figure 12: GPU PTX litmus test sb

Line 1 states the architecture (here GPU_PTX) and test

(here SB for “store buffering”, the typical x86-TSO sce-

nario [37]). Lines 2–5 declare and initialise registers; note

that PTX registers are typed (see [36, Chap. 5.2]).

Lines 6–9 list the test program with each column describ-

ing the sequential program to be executed by a thread. Each

sequential program starts with an identifier (e.g. T0), fol-

lowed by a sequence of PTX instructions. The list of sup-

ported instructions is described in Sec. 2.3.

The test ends with an assertion about the final state of

registers or memory. In Fig. 12, line 12 asks if T0’s register

r2 and T1’s register r2 can both hold 0 at the end.

Execution hierarchy A test specifies the location of its

threads in the concurrency hierarchy (see Sec. 2.1) through

a scope tree (borrowing the term scope from [24, 25]).

In Fig. 12, we declare the scope tree on line 10: T0 and

T1 are in the same CTA but different warps.

Memory hierarchy A test specifies a region for each loca-

tion (viz. shared or global, see Sec. 2.2) in a memory map,

immediately after the scope tree: e.g. line 11 in Fig. 12 spec-

ifies that x is in shared memory and y is in global memory.

Automatic test generation We extended diy—a tool for

systematically generating CPU litmus tests (see [6] and

http://diy.inria.fr)—to generate GPU tests. The diy

tool assumes an axiomatic modelling style (see Sec. 5.1),

where non-SC executions are encoded as cyclic graphs. It

takes as input a set of edges, enumerates the possible cycles

that can be formed with those edges, and generates a litmus

test from each cycle. The main challenge in extending diy

from CPUs to GPUs was the need for a much larger set of

edges, to accommodate for GPU features such as scope trees

and memory maps. Additionally, because we write our tests

in an intermediate language, registers must be declared be-

fore use (see lines 2–5, Fig. 12), and dependencies must be

protected against compiler optimisations (see Sec. 4.5).

4.2 Running litmus tests

Our tool generates code that is split into two parts: the CPU

code and the GPU kernel code.

Testing locations The tests’ memory locations (viz. testing

locations) are either in the global or shared memory region.

Global testing locations are allocated and freed by the CPU

while shared testing locations are statically allocated. For

incantations (see Sec. 4.3), we allocate an array of global

memory, distinct from the testing locations.

Testing threads In GPU programming, threads have access

to their CTA id, CTA size and thread id (within the CTA) [34,

p. 92]. These values can be combined to give each thread a

unique global id within the grid. These ids differ from CPU

affinity since they are part of the programming model, e.g.

the semantics of CUDA’s __syncthreads() and OpenCL’s

barrier() differs for threads in the same or distinct CTAs.

The kernel function, executed by all threads, switches

based on the global id of a thread. A set of testing threads

runs the test and records register values into a global array

that the CPU can copy and record. Unused threads either exit

the kernel or participate in incantations (see Sec. 4.3).

Scope tree Our tool computes global ids of the testing

threads matching the scope tree specified in the litmus test: if

the scope tree requires T0 and T1 to be in different CTAs, we

compute T0’s and T1’s global id so that their CTA ids differ.

Unless the thread randomisation incantation (Sec. 4.3.3) is

enabled, global ids are assigned in ascending order.

4.3 Incantations

The setup of Sec. 4.2 only witnessed weak behaviours in

combination with incantations on Nvidia chips; these incan-

tations also influenced the incidence of weak behaviours on

AMD chips. We benchmarked them on a subset of our lit-

mus tests (see complete results online [1]). Tab. 6 gives a

selection of results for the GTX Titan and Radeon HD 7970,

highlighting for each test the column (i.e. combination of in-

cantations) with the greatest incidence of weak behaviours.

We write intra-CTA (resp. inter-CTA) for tests with threads

in the same CTA (resp. different CTAs).

We present absolute numbers of observations over 100k

runs to demonstrate the extent to which our incantations

provoke weak behaviour during testing; we emphasise that

for correct GPU programming the possibility, not probability

of weak behaviours is what matters.

4.3.1 Memory Stress

Hypothesis Stressing caching protocols might trigger weak

behaviours. For example, a bus may be more likely to trans-

fer data out of order when it is under heavy stress than when

it is only servicing a few requests.

Implementation All non-testing threads branch to a code

block and repeatedly access non-testing memory locations.

Efficacy Tab. 6 shows that we did not observe sb and lb

on Titan without this incantation. Combined with thread ran-

domisation (column 12), this incantation provokes the most

weak behaviours for inter-CTA tests (lb, mp and sb). For

AMD HD7970 we did not need memory stress to observe

weak behaviour, although we observe mp consistently more

when this incantation is enabled.

4.3.2 General bank conflicts

Hypothesis GPUs access shared memory through banks,

which can handle only one access at a time. Bank conflicts

occur when multiple threads in a warp seek simultaneous

access to locations in the same bank. Hardware might handle

accesses out of order to hide the latency of bank conflicts.

Implementation Bank conflicts apply only within a warp,

so this incantation is performed only by threads in the same

warp as a testing thread. The non-testing threads perform

the same actions as the testing thread, but on locations that

are offset from the testing locations. These offsets can be

calculated either to produce bank conflicts or to avoid them,

and we randomly oscillate between these on each iteration

of the test. For warps that do not contain a testing thread, the

threads either exit as in the basic testing setup (see Sec. 4.2),

or perform the memory stress incantation (see Sec. 4.3.1).

Efficacy Tab. 6 shows that for intra-CTA tests (coRR), this

incantation combined with all others (column 15) provokes

the most weak behaviours on Titan. However, general bank

conflicts alone do not expose any weak behaviours (see col-

umn 5), and even consistently reduce the number of inter-

CTA weak behaviours when combined with memory stress:

comparing columns 12 and 16 (which differ only by general

bank conflicts), the number of weak behaviours for lb de-

creased from 2247 to 486. On HD7970 we only observed sb

when bank conflicts were enabled, but this weak behaviour

is still notably infrequent; we observe mp consistently more

often when the incantation is enabled.

4.3.3 Thread randomisation

Hypothesis Varying the layout, e.g. the thread ids of test-

ing threads and the number of threads per kernel, of a test in

the execution hierarchy, in a way that is consistent with the

scope tree of the test, might exercise different components

and paths through the hardware and hence, increase the like-

lihood of weak behaviours

Implementation We randomly select the ids of testing

threads and the number of non-testing threads, while respect-

ing the scope tree, on each test execution.

Efficacy Tab. 6 shows that for all tests, thread randomi-

sation contributes to the columns yielding the most weak

behaviours on Titan. In intra-CTA tests (coRR) thread ran-

domisation increases the number of weak behaviours ob-

served dramatically: comparing columns 15 and 16 (which

differ only by thread randomisation), the number of weak

behaviours for coRR increased from 3993 to 9985. On

HD7970, thread randomisation consistently decreases the

extent to which we observe mp, but consistently increases

observations of lb when combined with memory stress.

4.3.4 Thread synchronisation

Hypothesis Synchronising testing threads immediately be-

fore running the test pomotes interactions while values are

actively moving through the memory system, which might

increase the likelihood of weak behaviours.

Implementation Testing threads synchronise immediately

before running the test by atomically incrementing a counter

and busy-waiting until the counter reaches the number of

threads participating in the test. Compared with a similar

incantation used in CPU testing [5] we had to take care to

avoid deadlock due to the lack of progress guarantees across

CTAs [34, p. 12] and within warps [20].

Efficacy Tab. 6 records the most weak behaviours on Titan

when thread synchronisation is enabled. In inter-CTA tests

(lb, mp, and sb) thread synchronisation increases the num-

ber of weak behaviours dramatically: comparing columns 10

and 12 (which differ only by thread synchronisation), the

number of weak behaviours observed for sb increased from

1403 to 6673. For HD7970, thread synchronisation consis-

tently increases observations of lb and mp.

4.4 Checking for optimisations

We now discuss how we guard against unwanted compiler

optimisations in the case of Nvidia and AMD.

For Nvidia, recall from Sec. 2.3 that we write our tests in

PTX. We compile this to SASS machine-level assembly with

the ptxas assembler, which optimises the code for efficiency.

If we invoke the assembler with minimal optimisations

(-O0), we find that although each PTX load or store has a

corresponding SASS load or store, instructions that were ad-

jacent in the PTX code are separated by several instructions

in the SASS code. This is undesirable for testing: it can make

the difference between observing weak behaviours or not.

If we invoke the assembler with maximal optimisations

(-O3), most intermediate instructions are optimised away.

However, we found that on rare occasions some instructions

were reordered. For example, testing coRR on Maxwell

uncovered cases where the CUDA 5.5 compiler reordered

volatile loads to the same address; we did not observe this

for CUDA 6.0. This is again harmful for testing, as we could

attribute weak behaviours to the hardware, when in fact they

were introduced by the compiler. In fact, such optimisations

can occur at any optimisation level, in principle even at -O0

(which does not fully disable optimisations).

To overcome these challenges, we developed the optcheck

tool that detects whether SASS code has been optimised. To

do this, we first add instructions to the PTX code of a lit-

mus test that specify certain properties of the test, such as

the order of instructions within a thread. The compiled code

thus contains both the litmus test code and the specification.

Our optcheck tool takes a binary, obtains the corresponding

SASS code using cuobjdump [35, Chap. 2], and then checks

whether the SASS code and the specification are consistent.

A specification (in PTX) consists of a sequence of xor

instructions, placed at the end of each thread, for example:

xor.b32 r2, rb, 0x07f3a001

register used

constant position

instruction type

Each xor instruction corresponds to exactly one memory ac-

cess instruction. The integer literal of an xor instruction (last

operand) specifies several properties of the corresponding ac-

cess: which register it uses, what type of instruction it is (e. g.

00 for a load with cache operator .cg), and its position in the

order of memory access instructions. The constant serves to

distinguish these specification instructions from any xor in-

structions that appear in the code. In the litmus tests we gen-

erate, the accesses within a thread use different registers, so

we can always create a one-to-one correspondence between

memory accesses and xor instructions.

Our optcheck tool was essential in checking the data

which informs our model of PTX (Sec. 5); this data comes

from running 10930 tests on the Nvidia chips of Tab. 1. Our

AMD testing is for now more modest: 12 distinct litmus tests

to assess weak behaviours and programming assumptions in

Sec. 3 and 14 tests to evaluate the incantations of Sec. 4.3.

For all these tests we checked the generated Evergreen

(for TeraScale 2) and Southern Islands (for GCN 1.0) ISA

files by hand to guard against unwanted compiler optimisa-

tions. We observed that multiple loads from the same loca-

tion (e.g in Fig. 1) get optimised into a single load. We ex-

plain online [1] how to suppress this optimisation. We also

explain how to check whether the order of loads and stores

is consistent with the original litmus test.

4.5 Manufacturing dependencies

We also want to test whether dependencies between memory

accesses have an effect on memory consistency. For CPUs,

such litmus tests use false dependencies [6]: ones that have

no effect on the computed values. For example, in the PTX

code snippet in Fig. 13a, there is an address dependency

between the load in line 1 and the load in line 5, since

the result of the first load is used to compute the address

of the memory location accessed by the second load. The

dependency is a false dependency as the result of the xor is

always 0, so the subsequent add never changes the value of

the address register r4.

1 ld.s32 r1, [r0]

2 xor.b32 r2, r1, r1

3 cvt.u64.u32 r3, r2

4 add.u64 r4, r4, r3

5 ld.s32 r5, [r4]

(a) Optimised by ptxas (-O3)

1 ld.s32 r1, [r0]

2 and.b32 r2, r1, 0x80000000

3 cvt.u64.u32 r3, r2

4 add.u64 r4, r4, r3

5 ld.s32 r5, [r4]

(b) Not optimised by ptxas (-O3)

Figure 13: Load-load address dependencies

Since we compile our litmus tests with the highest opti-

misation settings (cf. Sec. 4.4), the PTX assembler would

recognise that the result of the xor is always 0, and hence

remove lines 2–4, thereby removing the dependency. There-

fore, we use a different scheme for testing dependencies, ex-

emplified in Fig. 13b. It is based on and-ing with a constant

that has just the high bit set. The result of this operation will

always be 0, since in our litmus tests all memory locations

are initialised to 0 and the store instructions only write small

positive values (with the high bit being 0). However, deter-

mining that the result is 0 would require an inter-thread anal-

ysis (which the PTX assembler does not perform). Thus, the

dependency is left intact.

5. A model of Nvidia GPUs

Sec. 3 illustrates some difficulties faced by GPU program-

mers. One crucial issue is to reliably predict the possible be-

haviours of concurrent GPU programs. As a step forward,

we present a formal model for a fragment of PTX. We also

propose a simulation tool that determines the allowed be-

haviours of PTX litmus tests w.r.t. our formal model.

5.1 Axiomatic models

Our model is axiomatic (see e.g. [6, 7]), thus discriminates,

for a given program, its candidate executions. Given a PTX

program we build a set of candidate executions which our

model partitions into executions that are allowed (the pro-

gram may behave in this manner) or forbidden (the program

cannot behave in this manner).

init:

(

global x=0

global y=0

)

final:r0=1∧ r2=0 threads: intra-CTA

0.1 st.cg [x],1

0.2 membar.cta

0.3 st.cg [y],1

1.1 ld.cg r0,[y]

1.2 membar.gl

1.3 ld.cg r2,[x]

a : W . c g x = 1

b : W . c g y = 1

m e m b a r . c t a , p o

c : R . c g y = 1
rf

d : R . c g x = 0

 m e m b a r . g l , p o

rf

Figure 14: An execution of the mp test, similar to Fig. 3

5.1.1 Candidate executions

Informally, a candidate execution is a graph (see e.g. Fig. 14),

which consists of a set of memory events for each thread,

and relations over these events. These relations describe the

program order within a thread, the communications between

threads, and specifically for GPUs, the scopes of threads

along the memory hierarchy.

Memory events give a semantics to instructions (we omit the

formal instruction semantics for brevity). Essentially, loads

give rise to reads, and stores to writes.

For example in the test of Fig. 14, the first thread issues

two stores, the first one to memory location x and the second

one to location y, separated by a fence (membar.cta). In the

execution graph of Fig. 14, we have two corresponding write

events, bearing the same cache operator (cg), and mention-

ing the same locations and values as the store instructions.

The second thread issues two loads from y and x, separated

by a fence (membar.gl). In the execution graph, we have

two corresponding read events, bearing the same cache op-

erator (cg), and mentioning the same locations as the load

instructions. The values of the reads are given by the final

state of the litmus test.

Scope relations link events from threads in the same CTA

(cta), same grid (gl) and anywhere in the system (sys).

Note that the sys relation is simply the universal relation

between all events.

The program order relation (po) totally orders events in a

thread, and does not relate events from different threads.

The dependency relation dp, included in po, relates events

in program order whose instructions are separated by an

address (addr), data (data) or control (ctrl) dependency.

Similarly, the membar fence relations, included in po,

relate events whose instructions are separated by a fence.

There is one relation per strength of fence, sys, gl and cta.

In Fig. 14 the fence on the first thread corresponds to the

membar.cta relation between the writes a and b.

Communication relations The read-from relation (rf) as-

sociates every read r with a unique corresponding write that

agrees with r on variable and value components. In Fig. 14,

the load of y on the second thread reads from the store of y

on the first thread, as indicated by the final state (r0=1). Thus

we have a read-from between the two corresponding events

b and c. The load of x on the second thread reads from the

initial state (since r2=0 in the final state), which is depicted

as a rf arrow with no source pointing to the read d.

Writes to a single location are totally ordered by coher-

ence co, i.e. the order in which they hit the memory.

5.1.2 From a PTX litmus to its candidate executions

Recall that a PTX litmus test (see Sec. 4.1 and Fig. 12) spec-

ifies the shared variables, with initial values, the sequence of

instructions for each thread, and a scope tree describing how

the threads are organised into warps and CTAs.

We can enumerate the candidate execution graphs of a

litmus test by unwinding the body of each thread: this gives

us the program order po for each thread, as well as the

dependency and fence relations, which are included in po.

The scope relations come directly from the scope tree. Once

these relations are established, any choice for the read-from

and coherence relations respecting the above definitions

yields a candidate execution graph.

5.2 Defining our model

Given a candidate execution graph, originating from a PTX

litmus test, we seek to answer the question of whether the ex-

ecution is allowed or not. As mentioned earlier, we achieve

this through an axiomatic model. Essentially, an axiomatic

model lists a set of constraints over execution graphs, built

from the primitive relations described above, such that an

execution is allowed if and only if it satisfies the constraints.

5.2.1 Derived relations over events

The following derived relations are useful in defining the

constraints of our model.

The relation po-loc is the program order po restricted to

events having the same memory location.

The relation rfe is the rf relation restricted to external

events, i.e. events coming from different threads. For exam-

ple in Fig. 14 the read-from relation between b and c is in

fact an rfe relation, as b and c belong to distinct threads.

The from-read relation fr relates a read r to all the writes

overwriting the value r reads from. Formally, (r, w) relates

by fr when r reads from a write w′ (i.e. (w′, r) is in rf)

such that w′ hits the memory before w (i.e. (w′, w) is in co).

In Fig. 14, the read of x on the second thread reads from

the initial state. By convention the initial state for a given

location hits the memory before any update to this location;

thus the read d of x is in fr with the update a of x.

1 let com = rf | co | fr

2 let po-loc-llh =

3 WW(po-loc) | WR(po-loc) | RW(po-loc)

4 acyclic (po-loc-llh | com) as sc-per-loc-llh

5 let dp = addr | data | ctrl

6 acyclic (dp | rf) as no-thin-air

7 let rmo(fence) = dp | fence | rfe | co | fr

Figure 15: RMO .cat file

5.2.2 The .cat format illustrated on Sparc RMO

The .cat format of [7] uses a small language that allows

the user to describe an axiomatic model in a succinct way. A

.cat file, together with a litmus test, can be given to the herd

tool (see [7] and http://diy.inria.fr/herd). Given an

instruction semantics module (i.e. a way to translate a pro-

gram into a set of candidate executions) for the language un-

der scrutiny (in our case PTX), the tool takes a .cat file (e.g.

the one in Fig. 16) to produce a simulator that enumerates all

the valid executions of a litmus test.

Syntax of .cat files In Fig. 15 and 16, we use several syn-

tactic constructs that we list here. One declares new relations

with let. The union of relations is written |, and their in-

tersection is &. One can obtain a subrelation of a relation

r using various filters: for example WW(r) returns only the

pairs of write events related by r; RW(r) returns the read-

write pairs related by r. One can enforce the acyclicity of

a relation r by declaring the check acyclic r. One can

give a name to such a check with the keyword as; for ex-

ample acyclic (po | com) as sc declares a new check

sc, that enforces the acyclicity of the union of program order

and communication relations.

Our model resembles Sparc’s Relaxed Memory Order

(RMO) [43], factoring in the GPU concurrency hierarchy. As

an introduction to the .cat syntax, we present here the .cat

transcription of Sparc RMO as formalised in [3].

Intuitively, RMO allows any pair of memory accesses to

different locations to be reordered, unless separated by a

dependency or a fence. For example, RMO allows the non-

SC behaviour of mp (see Fig. 14). To forbid this behaviour,

one can use a fence between instructions 0.1 and 0.3 and a

dependency between instructions 1.1 and 1.3. Additionally,

RMO allows the test coRR of Fig. 1.

Formally, RMO relies on three principles, detailed below.

SC PER LOCATION WITH LOAD-LOAD HAZARD Most

CPU hardware guarantees what we call SC PER LOCATION,

explained in Sec. 3.1.1. RMO relaxes this constraint, as it

allows coRR (Fig. 1). As shown in Fig. 1, Nvidia chips

exhibit this behaviour; thus our model allows it.

Formally, following [3, 4, 7], this corresponds to the con-

straint sc-per-loc-llh on line 4 of Fig. 15, which builds

on the definitions on lines 1 and 3. More precisely, line 1 de-

fines the relation com (for communication) as the union of

8 let sys-fence = membar.sys

9 let gl-fence = membar.gl | sys-fence

10 let cta-fence = membar.cta | gl-fence

11 let rmo-cta = rmo(cta-fence) & cta

12 let rmo-gl = rmo(gl-fence) & gl

13 let rmo-sys = rmo(sys-fence) & sys

14 acyclic rmo-cta as cta-constraint

15 acyclic rmo-gl as gl-constraint

16 acyclic rmo-sys as sys-constraint

Figure 16: RMO per scope

rf, co and fr. Line 3 defines po-loc-llh: program order

over single locations without read-read pairs. We require on

line 4 that communications do not contradict po-loc-llh.

The weak behaviour of coRR is allowed by our model,

because we excluded the read-read pairs from the sc-per-

loc-llh check at line 3.

NO THIN AIR prevents causal loops: where the dependency

and reads-from, that intuitively suggest causation, form a

cycle. Load buffering tests, e.g. dlb-lb (Fig. 8), check for

violations of this principle. Formally, following [3, 4, 7],

this corresponds to lines 5-6. Line 5 defines the relation dp

(for dependencies), made of the union of address, data, and

control dependencies. Line 6 declares the check no-thin-

air, which requires that the union of dp and rf is acyclic.

The rmo relation declared at line 7 collects the orderings

due to dependencies dp, inter-thread communication rfe,

co and fr, and fences fence, where the behaviour of fences

is left parametric. Constraints over rmo can be used to forbid

the weak behaviour of idioms such as message passing mp

or store buffering sb, when using the appropriate ordering,

e.g. fences between writes and dependencies between reads.

Such constraints are at the heart of our PTX model.

5.3 Our PTX model

Our model is the concatenation of Fig. 15 and 16, and im-

plements RMO per scope. In contrast to RMO for CPUs, for

which Fig. 15 suffices, our PTX model duplicates the rmo

relation at each scope (see lines 11, 12 and 13).

More precisely, lines 8–10 declare the relations sys-

fence, gl-fence and cta-fence, which provide order-

ing within the named scopes. Lines 11–13 then instantiate

the generic rmo relation (see Fig. 15, line 7) for each scope

of fence, using the intersection operator (&) to restrict to the

appropriate scope. Lines 14–16 enforce the acyclicity of the

three rmo relations; this implements RMO at each scope.

In Fig. 14, the execution of mp exhibits a cycle in the

union of membar.cta, rfe, fr and membar.gl, i.e. a cycle

in rmo-cta. Our model forbids this execution by the con-

straint cta-constraint at line 14.

5.4 Validating our model

We developed a PTX simulator as part of the herd tool [7]:

it enumerates, for a litmus test, its candidate executions

(see Sec. 5.1.1), then discriminates them following our PTX

model (see Fig. 15 and 16). We automatically generated

10930 tests with our extension of the diy tool (see Sec. 4.1).

We supplied all our tests to herd, and our PTX .cat

model: our model is experimentally sound w.r.t. our 10930

tests for the Nvidia chips of Tab. 1. This means that when-

ever the hardware exhibits a behaviour, our model allows it.

We provide all experimental data for all chips online [1].

5.5 Limitations of our model

Our model reflects the hardware behaviour of a PTX pro-

gram, compiled in the setup given in Tab. 1, in which ac-

cesses of shared data have not been reordered or optimised,

as checked by our optcheck tool (see Sec. 4.4). The limita-

tions of our model are as follows: we only handle the instruc-

tions listed in Sec. 2.3, and we assume that all accesses use

the .cg cache operator (which targets the L2 cache).

The reason for choosing .cg is that our observations

on Fermi (see 3.1.2) show that it is not possible to restore

ordering between accesses marked .ca (targeting the L1).

6. Related work

Testing and modelling Our method follows the work of

Alglave et al. [4–7] for CPUs, which follows the steps of

Collier [17]. More precisely, in [17] Collier presents the

ARCHTEST tool for CPUs, which runs a small number of

fixed tests to check for discrepancies with Lamport’s Se-

quential Consistency [28], e.g. coRR (see Fig. 1). Using few

handwritten tests has limitations, as rich sets of litmus tests

were required to inform the formalisation of weak architec-

tures such as IBM Power [6, 7, 39]. Alglave et al. [6] de-

veloped a method to automatically generate litmus tests for

CPUs based on the axiomatic framework of [4, 6], and im-

plemented their approach in the diy toolsuite (see [5–7] and

http://diy.inria/fr). The toolsuite generates and runs

systematic families of litmus tests, and collects their out-

comes. As detailed in Sec. 4, we implemented several novel

extensions to make these tools suitable for GPUs.

Microbenchmarking is loosely related to our approach.

While we are concerned with semantics, microbenchmark-

ing gathers performance data. The GPUBench [2] suite gath-

ers statistics such as memory bandwidth and instruction

throughput of AMD and Nvidia GPUs. Wong et al. [44]

developed a test suite to reveal microarchitectural aspects

of Nvidia GeForce GT200 and GTX280 GPUs: they draw

conclusions about the latency of memory accesses, or the

structure of the caches. Feng and Xiao [19] analyse the over-

head of barrier synchronisation.

Checking for optimisations Our checking whether a lit-

mus test has been optimised (see Sec. 4.4) is related to test-

ing of compiler optimisations for concurrent programs.

Eide and Regehr check whether accesses to C volatile

variables are compiled correctly [18]. They compile a test

case both with and without optimisations (e.g. -O3 and -O0),

then run both versions with the same input while logging the

accesses to volatile variables. If the traces of the two versions

differ, an invalid optimisation has been detected. Morisset et

al. extend this work to a subset of C++11 [31].

Our approach differs from these in that we do not make

use of an unoptimised version of the code, but instead embed

a specification of the expected instruction sequence into the

optimised version. Moreover, we statically check whether

the compiled code conforms to the specification. Finally, the

methods have different aims: our aim is not to find compiler

bugs but to detect unwanted reorderings due to compilation.

GPU models Hower et al. proposed several models for

GPUs [24, 25]. All of these models are “SC-for-DRF” mod-

els, i.e. only concern data race free programs, and ensure that

such programs have an SC semantics. Somewhat relatedly,

Hechtman and Sorin show that weak memory has negligible

performance benefits on their set of benchmarks, thus argue

that SC is an attractive model for GPUs [23]. By contrast,

and since we are concerned with hardware, we give seman-

tics to race free and racy programs alike.

Sorensen et al. [40, 41] proposed an operational model

of Nvidia hardware, based on reading the Nvidia docu-

mentation and communication with Nvidia representatives;

they provide intuition about their model using GPU litmus

tests similiar to the ones we present (e.g. Fig. 1). How-

ever, this model is unsound w.r.t. hardware: the inter-CTA

lb+membar.ctas test, i.e. a variant of dlb-lb (Fig. 8) without

atomics and with membar.cta fences between all accesses, is

forbidden by the model, but observed 586 times on GTX Ti-

tan and 19 times on GTX 660 out of 100k iterations (see [1]).

7. Perspectives

The present work uncovered weak behaviours, and exposed

several programming assumptions as false, summarised in

Tab. 2. We use these examples to plead for clarity and rigour

in vendor documentations. We believe that formal models,

such as the one we propose in Sec. 5, can help remedy this

situation, providing a rigorous basis on which to build our

systems. Further steps towards that goal include building lan-

guage level models (e.g. for OpenCL), and sound compila-

tion mappings from language to hardware.

Acknowledgments We thank Luc Maranget for feedback

on extending litmus and diy, Mary Hall for lending us her

group’s machines, Tom Stellard for feedback on setting up

our AMD testbed, Matt Arsenault and Brad Beckmann for

clarification on the AMD OpenCL compiler behaviour, and

Benedict Gaster, Peter Sewell, Tatiana Shpeisman and our

reviewers for their feedback.

Support EPSRC grants EP/{H005633, H008373, K008528,

K011499, K039431}, EU FP7 project CARP (287767),

NSF CCF Awards 1346756 and 1302449, and SRC project

2269.002.

References

[1] Online companion material. http://virginia.cs.ucl.ac.

uk/sunflowers/asplos15/.

[2] GPUBench, June 2014. http://graphics.stanford.

edu/projects/gpubench.

[3] J. Alglave. A Shared Memory Poetics. PhD thesis, Université

Paris 7, 2010.

[4] J. Alglave. A formal hierarchy of weak memory models.

Formal Methods in System Design (FMSD), 41(2):178–210,

2012.

[5] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus:

Running tests against hardware. In Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), pages 41–

44, 2011.

[6] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in

weak memory models (extended version). Formal Methods in

System Design (FMSD), 40(2):170–205, 2012.

[7] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats:

Modelling, simulation, testing, and data mining for weak

memory. ACM Transactions on Programming Languages and

Systems (TOPLAS), 36(2):7, 2014.

[8] AMD. AMD intermediate language (IL), version 2.4, Oct.

2011.

[9] AMD. Evergreen family instruction set architecture: Instruc-

tions and microcode, revision 1.1a, Nov. 2011.

[10] AMD. Southern Islands series instruction set architecture,

revision 1.1, Dec. 2012.

[11] AMD. AMD accelerated parallel processing OpenCL pro-

gramming guide, Nov. 2013.

[12] ARM. Cortex-A9 MPCore, programmer advice notice, read-

after-read hazards ARM reference 761319, Sept. 2011.

[13] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread

scheduling for multiprogrammed multiprocessors. In Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA),

pages 119–129, 1998.

[14] H. Boehm and S. V. Adve. Foundations of the C++ concur-

rency memory model. In Programming Language Design and

Implementation (PLDI), pages 68–78, 2008.

[15] D. Cederman and P. Tsigas. On dynamic load balancing on

graphics processors. In SIGGRAPH/Eurographics, pages 57–

64, 2008.

[16] D. Cederman and P. Tsigas. Dynamic load balancing on graph-

ics processors, Feb. 2014. http://www.cse.chalmers.se/

research/group/dcs/gpuloadbal.html.

[17] W. Collier. Reasoning About Parallel Architectures. Prentice-

Hall, 1992.

[18] E. Eide and J. Regehr. Volatiles are miscompiled, and what

to do about it. In Embedded software (EMSOFT), pages 255–

264, 2008.

[19] W. Feng and S. Xiao. To GPU synchronize or not GPU

synchronize? In International Symposium on Circuits and

Systems (ISCAS), pages 3801–3804, 2010.

[20] A. Habermaier and A. Knapp. On the correctness of the

SIMT execution model of GPUs. In European Symposium

on Programming (ESOP), pages 316–335, 2012.

[21] T. Härder and A. Reuter. Principles of transaction-oriented

database recovery. Computing Survey (CSUR), 15(4):287–

317, 1983.

[22] B. He and J. X. Yu. High-throughput transaction executions

on graphics processors. The Proceedings of the VLDB Endow-

ment (PVLDB), 4(5):314–325, 2011.

[23] B. A. Hechtman and D. J. Sorin. Exploring memory consis-

tency for massively-threaded throughput-oriented processors.

In International Symposium on Circuits and Systems (ISCA),

pages 201–212, 2013.

[24] D. R. Hower, B. M. Beckmann, B. R. Gaster, B. A. Hechtman,

M. D. Hill, S. K. Reinhardt, and D. A. Wood. Sequential

consistency for heterogeneous-race-free. In Memory Systems

Performance and Correctness (MSPC), 2013.

[25] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,

M. D. Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous-

race-free memory models. In Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

pages 427–440, 2014.

[26] W.-m. W. Hwu. GPU Computing Gems Jade Edition. Morgan

Kaufmann Publishers Inc., 2011.

[27] Khronos OpenCL Working Group. The OpenCL specification

(version 1.2, revision 19), Nov. 2012.

[28] L. Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Transactions

on Computers, 28(9):690–691, 1979.

[29] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing webpages

rendered on your browser by exploiting GPU vulnerabilities.

In Symposium on Security and Privacy (SP), pages 19–33,

2014.

[30] P. Misra and M. Chaudhuri. Performance evaluation of con-

current lock-free data structures on GPUs. In International

Conference on Parallel and Distributed Systems, (ICPADS),

pages 53–60, 2012.

[31] R. Morisset, P. Pawan, and F. Z. Nardelli. Compiler testing

via a theory of sound optimisations in the C11/C++11 mem-

ory model. In Programming Language Design and Implemen-

tation (PLDI), pages 187–196, 2013.

[32] Nvidia. CUDA C programming guide, version 5.5, July 2013.

[33] Nvidia. CUDA by example — errata, June 2014. http://

developer.nvidia.com/cuda-example-errata-page.

[34] Nvidia. CUDA C programming guide, version 6, July 2014.

[35] Nvidia. CUDA binary utilities, Aug. 2014. http://docs.

nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf.

[36] Nvidia. Parallel thread execution ISA: Version 4.0, Feb. 2014.

[37] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory

model: x86-tso. In Theorem Proving in Higher Order Logics

(TPHOLs), pages 391–407, 2009.

[38] J. Sanders and E. Kandrot. CUDA by Example: An Intro-

duction to General-Purpose GPU Programming. Addison-

Wesley Professional, 2010.

[39] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.

Understanding POWER multiprocessors. In Programming

Language Design and Implementation (PLDI), pages 175–

186, 2011.

[40] T. Sorensen. Towards shared memory consistency models for

GPUs. Bachelor’s thesis, University of Utah, 2013.

[41] T. Sorensen, G. Gopalakrishnan, and V. Grover. Towards

shared memory consistency models for GPUs. In Interna-

tional Conference on Supercomputing (ICS), pages 489–490,

2013.

[42] J. A. Stuart and J. D. Owens. Efficient synchroniza-

tion primitives for GPUs. Computing Research Repository

(CoRR), abs/1110.4623, 2011. http://arxiv.org/pdf/

1110.4623.pdf.

[43] D. L. Weaver and T. Germond. The SPARC Architecture

Manual Version 9. SPARC International Inc., 1994.

[44] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and

A. Moshovos. Demystifying GPU microarchitecture through

microbenchmarking. In Performance Analysis of Systems

Software (ISPASS), pages 235–246, 2010.

[45] S. Xiao and W. Feng. Inter-block GPU communication via

fast barrier synchronization. In International Symposium on

Parallel and Distributed Processing (IPDPS), pages 1–12,

2010.

