
On Adding Replies to Publish-Subscribe

Gianpaolo Cugola
Dip. Elettronica e

Informazione
Politecnico di Milano, Italy
cugola@elet.polimi.it

Matteo Migliavacca
Dip. Elettronica e

Informazione
Politecnico di Milano, Italy
migliava@elet.polimi.it

Alessandro Monguzzi
Dip. Elettronica e

Informazione
Politecnico di Milano, Italy

alessandro@monguzzi.org

ABSTRACT
Recently, the publish-subscribe communication model has
attracted the attention of developers as a viable alternative
to traditional communication schemas, like request/reply,
for the flexibility it brings to the architecture of distributed
applications, by allowing components to be easily added or
removed at run-time. At the same time, first experiences in
building complex distributed applications using such model
point out how it is often hard to live without a request/reply
facility.

We started from this consideration to introduce replies
into the publish-subscribe model in a way that could mini-
mize the impact on the positive characteristics of the model.
In this paper we describe the resulting model and present
four protocols to implement it, comparing them through the
analysis of the results we gathered in running a large testbed
on the PlanetLab network.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems

General Terms
Algorithms, Performance, Measurement

Keywords
Publish-subscribe, Replies, Content-Based Routing

1. INTRODUCTION
Publish-subscribe applications are organized as a set of

distributed components, which interact by publishing mes-
sages and by subscribing to the messages they are interested
in. A component of the architecture, the message dispatcher,
usually part of a publish-subscribe middleware infrastruc-
ture, is in charge of collecting subscriptions and routing
messages from publishers to the interested subscribers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20–22, 2007 Toronto, Ontario, Canada

Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

The communication and coordination model that results
from this schema is inherently asynchronous, because pub-
lishers and subscribers operate in parallel without synchro-
nizing during communication; multi-point, because messages
are sent to all the interested components; anonymous, be-
cause publishers do not need to know the identity of sub-
scribers, and vice versa; implicit, because the set of message
recipients is determined by the subscriptions, rather than
being explicitly chosen by the publisher; and stateless, be-
cause messages do not persist in the system, rather they are
sent only to those components that have subscribed before
the messages are published. This results in a strong decou-
pling between publishers and subscribers, which greatly re-
duces the effort required to modify the application architec-
ture at run-time by adding or removing components. A very
positive result from a software engineering point of view,
which justifies the popularity of this style of communica-
tion.

At the same time, every developer who tried to use a
publish-subscribe middleware to build complex distributed
applications, has experimented how it is often hard to imple-
ment complex interactions among a large set of distributed
components by using publish-subscribe alone [2, 3, 5, 11].
Not only it is often useful to explicitly address a single com-
ponent, but also the asynchronous and unidirectional nature
of publish-subscribe reduces its applicability.

If the first limitation can be easily overcome by using one
among the many unicast communication facilities available
(e.g., RPC, RMI, or Internet sockets), the other is harder
to remove. More specifically, in many situations publishers
need a reply from the recipients of their messages, while
other times it is useful to be acknowledged when messages
have been received and processed, e.g., when it is known that
new components, which must be part of future interactions,
will be instantiated during the processing of those messages.

In this paper we focus on this issue by proposing an ex-
tension to the publish-subscribe model to allow subscribers
to reply to the messages they receive. Our proposal differs
from existing ones, such as JMS [6], because it is better inte-
grated into the publish-subscribe model and easier to use for
application developers. It results in a model that joins the
typical benefits of the publish-subscribe model with those
of the request-reply model. At the same time, the major
contribution of this work is not in the proposed extension
but in the thorough analysis we provide about the differ-
ent mechanisms that can be used to introduce replies into a
publish-subscribe middleware that adopts a distributed mes-
sage dispatcher.

Indeed, current research on publish-subscribe has focused
on improving scalability by distributing the message dis-
patcher. A distributed dispatcher is organized as a set of
brokers, connected in an overlay network, which cooperate
to collect subscriptions and route messages. In our work we
assume this architecture as a starting point and define four
different protocols that can be used to route replies back
to publishers. These protocols differ in the performance
they can offer and in the guarantees they can provide to
the application programmer. We studied both aspects by
implementing the four protocols within the publish-subscri-
be middleware REDS [4] and deploying it on the PlanetLab
network [1], building a large distributed testbed.

The remainder of this document describes the outcomes
of our study. In particular, Section 2 describes the com-
munication model that results by adding replies to publi-
sh-subscribe and how this model can be implemented in a
distributed scenario. Section 3 compares four different pro-
tocols to route replies back to publisher. Section 4 places
our contribution in the context of related work. Finally,
Section 5 provides some conclusions and identifies possible
future work.

2. REPLIES: MODEL AND IMPLEMENTA-
TION

Adding replies to publish-subscribe involves two steps:
defining the communication model we want to realize and
implementing it. At the modelling level we focus on how to
add replies to the publish-subscribe model of communication
without changing its nature. At the implementation level we
focus on the algorithms and protocols to route replies back
to publishers, keeping in mind that we are interested in a
specific scenario, that of a distributed dispatcher. The next
section explores the former issue, while Sections 2.2 to 2.4
explore the latter.

2.1 The communication model
If we look at the various models of communication as a

spectrum ranging from pure point-to-point message passing
as enabled by Internet sockets, to RPC/RMI, up to the most
advanced models, like message queuing or those based on
shared data spaces, we may observe that the publish-subscri-
be model occupies an extreme of this spectrum, more or less
at the opposite side with respect to RPC/RMI. While the
latter is synchronous, point-to-point, enables a bidirectional
exchange of information, and requires the caller to explic-
itly know the identity of the callee, the publish-subscribe
model is asynchronous, multi-point, unidirectional, state-
less, anonymous, and adopts an implicit addressing schema,
where the destination of messages is determined solely by
the subscriptions issued before the message was published.

Everyone having good experience in using the publish-
subscribe model acknowledges that they are precisely these
characteristics that provide the strong decoupling among
communicating parties that is fundamental to cope with the
dynamism of modern distributed applications. The compo-
nents of an application adopting a publish-subscribe model
of communication may be easily added, removed, or even
moved from host to host at run-time with a minimal impact
on the other components. Starting from this consideration,
our goal is to introduce replies into the publish-subscribe
model in a way that would maintain as many of those char-

acteristics as possible.
Our proposal consists of extending the publish-subscribe

model by adding a reply operation and two special mes-
sages: Repliable and Reply. Every subscriber that receives
a Repliable message is expected to provide a (single) Reply
back to the publisher through the reply operation. At the
publisher side, we introduce two different primitives to col-
lect replies: one to get them one by one as they arrive, the
other to collect them all at once. A further primitive, the
hasMoreReplies, allows to know when new replies are al-
ready available at the publisher’s side. These operations are
summarized in Figure 1.

The resulting model is still multi-point, stateless, anony-
mous, and uses an implicit addressing schema based on sub-
scriptions. The added primitives support a bidirectional flow
of information: from publishers to subscribers and back to
publishers. Moreover, depending on the operation used to
receive replies back, the new model supports both a syn-
chronous and an asynchronous style of interaction. In par-
ticular, the getReplies operation allows the publisher to
synchronize with the subscribers, waiting until all of them
receive the published message, process it, and reply back.
Conversely, by combining the getNextReply and the has-

MoreReplies operations, it is possible to implement an asyn-
chronous style of interaction, without the need of suspending
the publisher waiting for replies. Even in this asynchronous
case, it is possible to know when the last reply has been
received, i.e., when the call to the getNextReply operation
returns null.

As a final remark, we observe that reasoning at the model
level, we do not considered the issue of reliability. The im-
plementation of the model must put in place appropriate
mechanisms to cope with lost replies. We will come back on
this issue in the remainder of the paper.

2.2 Managing replies as out-of-band messages:
The OBU and OBT protocols

The simplest approach to implement the model we out-
lined above is to introduce reply management on top of an
existing middleware, sending replies back to the publisher
as out-of-band messages, i.e., as UDP packets or opening a
TCP connection.

This approach does not require to modify the publish-sub-
scribe middleware and, in principle, can be applied to any
existing system1. This explains why it is the approach usu-
ally adopted by developers who need to implement a bidi-
rectional interaction in a publish-subscribe application.

For our own purposes, we choose REDS as the underlying
publish-subscribe middleware. It is an open-source system
featuring a modular design: something not particularly rel-
evant at this stage, but important when reply management
has to be introduced into the routing kernel, as described in
Section 2.4.

REDS provides a distributed dispatcher built as an over-
lay network of interconnected brokers. Application com-
ponents access the publish-subscribe services provided by
REDS using an object that implements the Dispatching-

Service interface. It acts as a proxy to the REDS dispatch-
ing network, hiding all the details about routing and distri-
bution. Figure 2 shows the main methods provided by the

1Another approach that does not require to modify the
publish-subscribe middleware uses standard publications as
replies. It will be explored in the next section.

Operation Description
void reply(Repliable m, Reply r) Replies to the previously received Repliable message m.
Reply getNextReply(Repliable m) Returns next reply available for m. Returns null if all replies have

been already returned. Suspends the caller if no replies are available,
yet.

boolean hasMoreReplies(Repliable m) Returns true if there is one or more replies already available for m,
false in the other cases.

Reply[] getReplies(Repliable m)
Returns the whole set of replies sent back in response to m. Suspends
the caller until all replies have been collected.

Figure 1: Main operations added to the publish-subscribe model to send and receive replies.

Figure 2: An overview of REDS from an application
developer’s point of view.

DispatchingService interface.
To add replies on top of REDS, we built a ReplyEnabledDis-

patchingService interface, which extends the Dispatching-
Service by adding the operations to send and receive replies
listed in Figure 1. Being interested in experimenting with
out-of-band replies, we provided two different implemen-
tations of the ReplyEnabledDispatchingService interface,
one using UDP packets to route replies back to the publish-
ers, the other using TCP connections. In the following we
refer to the resulting protocols as OBU (Out-of-Band Udp)
and OBT (Out-of-Band Tcp), respectively. In both cases
the replier needs the IP address of the publisher, which is
added to the Repliable message.

The most critical point we had to solve in implement-
ing our model with the OBU and OBT protocols, was how
to detect that all replies for a given message have been col-
lected. A fundamental problem to implement the getNextReply
and getReplies methods. In fact, in a publish-subscribe
middleware, only the dispatcher knows the number and iden-
tity of the components subscribed to each message. The
publisher ignores this information. Consequently, we were
forced to adopt an indirect mechanism based on a timeout
to estimate when all replies have been collected.

Our prototype is parameterized by this timeout τ , repre-
senting the time (in milliseconds) to wait for new replies. If
the publisher does not receive any reply for τ milliseconds
it decides that no more replies will arrive. This approach
assumes that each subscriber processes incoming Repliable

messages, replying immediately. The smallest value for τ

can be determined by taking into consideration the expected
time for routing messages, processing them, and sending

replies back, and it is a compromise between the need of
keeping this timeout as short as possible and the need of
not loosing replies.

Observe also how the use of a timeout accounts for the
case of loosing replies due to failures at the networking or
application level. In fact, it avoids the publisher to block
forever waiting for replies that were lost during their travel
back. We will come back on this issue in Section 3.2.

2.3 Managing replies as standard messages:
The PUB protocol

An alternative approach to implement our model on top
of an existing publish-subscribe middleware uses standard
messages as replies, hence the name PUB for the resulting
protocol. The idea is to take advantage of special subscrip-
tions to guarantee that replies are routed to the right com-
ponent (i.e., the publisher of the original message the replies
refers to) and only to it.

The precise mechanism used to route replies back depends
on the type of publish-subscribe middleware in use. In gen-
eral, each component requiring a reply to the messages it
publishes has to issue a special subscription which uniquely
identifies itself. This special subscription has to be per-
formed prior to issuing any message that requires a reply
e.g., at startup. The nature of such subscription varies de-
pending on the nature of the publish-subscribe middleware,
i.e., topic (or subject) based and content based [5, 11].

• In the former case, a component C willing to receive
a reply to some of the messages it publishes, creates a
globally unique topic t (e.g., by using its own identifier,
if available) and subscribes to it. When a distributed
dispatcher is used, this step has to complete before the
first Repliable message can be published. That is, the
publish-subscribe middleware must configure its rout-
ing tables to correctly route messages addressed to the
new topic before it can process the replies. When C

needs to publish a Repliable message m, it adds t’s
identifier to the message and publishes it. A compo-
nent C1 receiving m publishes its reply as a message
addressed to t, being guaranteed that it will be routed
by the dispatcher to the right component, i.e., C.

• In the latter case, C generates a globally unique iden-
tifier id and subscribes to the messages that include
such identifier in their body. When C needs to pub-
lish a Repliable message m, it adds the identifier id

to m (e.g., as a special field). Components receiving
m extract the identifier id, add it to their replies, and
publish them. It is dispatcher’s responsibility to ad-
dress such replies to the only subscriber available, i.e.,
C.

Based on these considerations, we implemented a reply
management layer on top of REDS in a way similar to what
done before. We provided a new implementation for the
ReplyEnabledDispatchingService interface, using the sec-
ond approach above, the one tailored to content-based sys-
tems like REDS, to implement the correct routing of replies.
In particular, we used the identifier of the publisher, which
was already provided by REDS, as the special content to be
added to replies in order for REDS to correctly route them
back to the publisher.

As in the previous case, we had to overcome a limitation
that is typical of any solution built “on top” of an existing
publish-subscribe middleware: the fact that the number of
recipients of a message (and consequently the number of
expected replies) is hidden to the publisher. We adopted
the same approach described before, using a timeout τ .

If we compare the resulting PUB protocol with those using
out-of-band messages, we notice that PUB requires each
component to subscribe to a different, unique, filter, if it
wants to receive replies to the messages it publishes. This
increases the total number of subscriptions up to a level that
could be hard to manage for the underlying publish-sub-
scribe middleware, especially in an Internet-wide scenario,
with millions of potential components requiring replies to
the messages they publish. We will provide more details on
this issue in Section 3.

2.4 Managing replies into the routing kernel:
The KER protocol

The three protocols we described so far are characterized
by the impossibility of precisely determining when all replies
have been collected. To overcome this limitation it is nec-
essary to add the reply management layer into the routing
kernel of the publish-subscribe middleware in use. This way,
the module in charge of managing replies can cooperate with
the module in charge of routing messages to determine the
exact number of recipients of each message and consequently
the number of expected replies. Clearly, this require full ac-
cess to the internals of the publish-subscribe middleware in
use.

In our case, this was not a problem: not only REDS is
an open source project, but it also adopts a modular archi-
tecture that simplifies the job of adding new functionalities
into the routing kernel of each broker. Thus we added a new
module to each REDS broker, which implements a converge-
cast [10] routing schema for replies. It tracks Repliable

messages while they flow along the REDS overlay network,
from publishers to subscribers, and uses this soft state to
route replies back and to determine the exact number of
replies to wait for. It uses the unique identifier of each
Repliable message, which is copied by the reply opera-
tion into replies, to correlate them with the message they
refer to.

More specifically (see Figure 3), the new ReplyManager

module we added to REDS is in charge of routing replies
back to the publisher. When a Repliable message msg

reaches a broker B, it is processed by the Overlay compo-
nent (which hides all the details about distribution) and sent
to the Router. The Router invokes the RoutingStrategy,
which forwards the message along the REDS overlay to-
ward the subscribers and returns an integer n: the num-
ber of neighbors the message was forwarded to. This key
information, together with the identifier idmsg of msg and

Figure 3: A high level view of the internal architec-
ture of a REDS broker: In grey the new components
added to manage replies.

the identifier idsrc of the neighbor msg comes from (i.e.,
the publisher at the first hop or another broker at further
hops) is passed to the ReplyManager, which stores it into a
ReplyTable.

When a subscriber replies to msg, the idmsg is copied, by
the reply operation, into the Reply object, which is then
sent to the broker the replier is attached to. When this
Reply rpl reaches the broker B, it flows from the Overlay

to the Router, which this time invokes the ReplyManager di-
rectly. The ReplyManager uses the message identifier idmsg

saved into rpl to determine, from the ReplyTable, the neigh-
bor that has to receive the reply. Moreover, it checks if rpl

was tagged as last. This is a flag used by each broker to
inform the next one along the route toward the publisher
about the fact that all replies coming from downstream
components have been collected. Accordingly, when the
ReplyManager receives a reply rpl tagged as last it decreases
the number of expected replies stored into the ReplyTable

for that particular message. If the resulting value is greater
than zero it removes the flag before forwarding rpl, other-
wise it leaves it there and deletes the corresponding record
from the ReplyTable.

At the publisher site and particularly into the getNextReply
and getReplies operations of the ReplyEnabledDispatch-

ingService, the presence of the last flag determines when
the last reply for each message arrives. Without requiring
approximate solutions based on timeouts, like those used in
the previous protocols.

The case of replies that got lost due to faults at the net-
working or application layers is solved by taking advantage
of the mechanisms offered by REDS brokers to detect when a
neighbor has failed. When this happens the ReplyManager

is informed and acts as if the last reply from that neigh-
bor had arrived, reporting the fault upstream through an
appropriate empty reply flagged as last and failed. Both
flags continue to propagate upstream up to the publisher
where the ReplyEnabledDispatchingService checks if the
last reply is also flagged as failed and in this case returns an
exception to the publisher waiting for replies.

de

us

usus

us

us

us

us

us

us

us

us

us

us

us

us

us

us

us

us

us

us

ca

us

us

us

us

us

us kr

jp tw

de

de

de

de

hu

de

de

de

de

ch
it

uk

uk

fi

se

fi

9.443
16.981

8.997

40.508

36.312

1.141

81.107
62.086

5.132

0.602

0.509

0.519

51.417

51.545

48.477

39.956

40.095

118.803

102.781

10.701

0.828

0.574
0.657

42.017

0.661

48.266

48.002

42.369
10.99

6.325

65.116

0.436

0.436

20.594

0.815

66.605

65.756

64.532
33.701

73.907

73.829
190.14

208.881240.106

40.422

40.316

us

pt

uk
50.4

45.199

22.4

Figure 4: The dispatching network used for the tests.

3. EVALUATION
In this section we evaluate and compare the four proto-

cols described above both looking at the raw performance
they offer in Section 3.1, and examining other qualitative
properties in Section 3.2.

3.1 Performance analysis
To compare the four protocols described above from a per-

formance standpoint we took advantage of the PlanetLab [1]
network, which allows to replicate the same situations that
can be found in real, large scale, publish-subscribe scenarios.

In particular, we selected 50 nodes from PlanetLab that
we found being stable enough to complete our tests, and
installed a REDS broker on each node, connecting them in
an overlay network, which was never changed for all the ex-
periments. In defining such overlay we tried to match the
topology of the physical network as much as possible, by
directly connecting those nodes that exhibited the lowest
latencies. The resulting topology is shown in Figure 4. For
each node it shows the country where the node is located
together with the average latencies with its neighbors, mea-
sured by S3 [14] in the same week of our final tests.

To test the four protocols, we attached a single “pub-
lisher” to the broker at the root of the dispatching network,
which sends messages and waits for replies, measuring the
time elapsed from the publishing to the arrival of each reply.
Each node also runs ten “repliers” attached to the broker
running on the same node. Each replier may use any of the
four protocols described above to reply and it is subscribed
to different messages to allow for six different interaction
scenarios: a single or ten repliers attached to the broker
shown in gray in Figure 4, a single or ten repliers for each

of the ten brokers highlighted using a thick line in Figure 4,
a single or ten repliers for each of the 50 brokers. In the fol-
lowing we refer to these scenarios as “1x1”, “10x1”, “1x10”,
“10x10”, “1x50”, and “10x50”, respectively.

To test the different protocols under traffic, each node
also runs an additional client, the “loader”, attached to the
broker running on the same node, which generates random
traffic towards the other nodes. The loads we tested were
0, 0.5, and 1 message per second per loader (i.e., per node),
with each message going, on average, to 5% of the other
loaders.

At each run we choose the interaction scenario and the
load to test and let the publisher send 200 messages for each
of the four protocols OBT , OBU , PUB , and KER. To ensure
that a transient slow down of the PlanetLab network, or of
the Internet as a whole, impact equally on all the protocols,
we interleaved them by first sending a message to be replied
through the OBU protocol and waiting for all the replies to
come, then sending the same message but this time to be
replied through the OBT protocol, and so on for the four
protocols, repeating this cycle 200 times.

As a final remark, we warn the reader that different runs
testing different interaction scenarios or loads, should not be
compared directly. Indeed, each run lasts from minutes to
hours: the conditions of the PlanetLab network could have
changed greatly in such interval.

3.1.1 Non-congested scenarios
The first characteristic we evaluate is the round trip time

(rtt) required to publish a message and receive the corre-
sponding replies. To exclude possible saturation effects we
present the data measured in scenarios free from any addi-
tional traffic (i.e., with load=0) and with a maximum num-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

KER
PUB
OBT
OBU

(a) Scenario 1x1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

KER
PUB
OBT
OBU

(b) Scenario 10x1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

KER
PUB
OBT
OBU

(c) Scenario 1x10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

KER
PUB
OBT
OBU

(d) Scenario 1x50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

KER
PUB
OBT
OBU

(e) Scenario 10x10.

Figure 5: Cumulative distribution of rtt (percentage
of replies vs rtt in ms), load=0.

ber of 100 repliers. We will examine the most congested
scenarios in Section 3.1.2.

To have a precise view of the behavior of the different pro-
tocols, each graph depicts the cumulative distribution of the
rtt over the entire set of 200 messages sent by the publisher
for each run. Accordingly, the x-axis reports the values of
rtt, while the y-axis reports the percentage of replies re-
ceived. Each point of a curve represents the percentage of
replies received (read on the y-axis) whose rtt was less than
or equal the value read on the x-axis.

Figure 5(a) shows the rtt measured for the case of a single
replier. The OBU protocol is the fastest one, followed by
PUB and KER, which almost coincide, and then by OBT ,
which is the slowest protocol.

Besides these raw differences, the figure also shows many
interesting facts that help us understanding the general be-
havior of the four protocols. First of all, the values measured
for the PUB and KER protocols are almost identical in this
scenario and also very similar in all the other scenarios that
we examined. Three facts contribute to this: first, replies
in both approaches experience exactly the same network la-
tencies as they are routed through the same overlay links;
second, both protocols require brokers along the route to
process the replies, incurring in a further delay at the appli-
cation layer; third, the processing at each broker is similar,
with the KER protocol looking at the reply table while the
PUB protocol uses the subscription table.

With respect to the last observation, the informed reader
could observe that in principle the reply table should be
much smaller than the subscription table. Moreover, while
the former allows a direct access (indexed through the mes-
sage identifier), the latter requires a slower, content-based
matching. This should allow the KER protocol to outper-
form the PUB one. While this is true in theory, in practice
we run our tests in a conservative situation, with a few sub-
scriptions, which results in the two protocols perform simi-
larly. As a further note related with this issue, in Section 2.3
we mentioned that the PUB protocol requires additional
special subscriptions to guarantee correct routing of replies
toward the publishers, which is very likely to have a negative
impact on performance. Again, this is true in theory but in
our scenarios we have a single publisher and consequently
a single additional subscription. Notice that we could have
introduced more publishers but the need of interleaving the
tests of the four protocols on each run would not have al-
lowed us to test the impact of such additional subscriptions
on the PUB protocol taken in isolation.

By looking at the graphs we may also observe that the
fastest PUB reply arrived 92ms after the publication, after
103ms we received half of the replies, and almost all of them
(97%) after 150ms. By halving the second of these numbers
we may estimate the average time each message takes to
go from the publisher to the replier: approximately 50ms.
This time is the same for each protocol. Accordingly, the
OBU protocol, whose first reply arrived after 64ms, while
half of the replies are delivered before 70ms, reaching 97%
at 90ms, takes approximately 20ms to route replies back to
the publisher. This is a much shorter time than that mea-
sured for the PUB and KER protocols, which is reasonable
if we consider that the OBU protocol experiences a shorter
network latency as its replies does not follow the overlay,
and, most importantly, they are not processed by the inter-
mediate brokers. Finally, the estimate of 20ms for the OBU

replies to come back is coherent with the times measured
for the OBT protocol, whose first reply arrived after 104ms,
while half of them arrived after 111ms, reaching 97% of the
replies after 140ms. In fact, on average OBT should require
50ms to reach the replier, plus 3 times the network latency,
i.e., 20∗3 = 60ms, to open the TCP connection and deliver,
in a single packet, the reply, which totals 110ms; a number
very close to that measured.

Figure 5(b) shows the rtt distribution in the scenario with
10 repliers attached to the same gray node of Figure 4. Here
we start seeing the first queuing effects: for OBU and OBT
we observe a slight increase in the median and a relevant
increase on the rtt for the late replies due to queuing. The
same effect, but in a more severe form, affects the PUB and
KER protocols. This can be explained by observing that
in those cases queuing occurs not only at the network and
operating system layers, but also at the application layer,
within the brokers that have to process the replies to route
them back. This effect is exacerbated by the particular con-
dition of the gray node where the replier is located, which
is relatively close to the publisher in terms of network la-
tency (approximately 20ms, as we saw before), but far in
terms of number of hops on the overlay: five. This explains
why in this scenario, where the throughput of REDS brokers
becomes a bottleneck, the OBT protocol performs slightly
better than PUB and KER.

Figure 5(c) depicts what happens when a single replier is
placed on each of the ten, thick nodes of Figure 4. The graph
shows some interesting insights. In particular, the OBU line
is not as steep as in the case of a single replier, showing small
plateaux corresponding to intervals of time where (almost)
no messages arrived. Noticing that these plateaux are placed
around multiples of 10% of delivery (that corresponds to one
reply, since in this scenario each message fires 10 replies) and
correlating them with the latencies measured on PlanetLab,
it is possible to conclude that each step following a plateaux
corresponds to the instant in which the reply from a certain
node arrives. The same behavior affects the OBT protocol
but with higher rtts due to the handshake required to open
the TCP connection. Moreover, as time progresses the OBT
performance get worse with respect to OBU . This can be
explained by observing that nodes that are reached later on
the overlay, if this matches the physical network like in our
case, are also further away (in network latency term) from
the publisher, thus the opening of the TCP connection takes
longer.

If we look at the PUB and KER protocols we may ob-
serve that in this case they perform better than OBT . This
can be explained by looking at the test topology. The ten
thick nodes where repliers are located are, on average, at less
hops on the overlay than the single gray node used in the
previous scenario, thus incurring in less processing time at
the application layer. They are instead further away from
the publisher latency-wise, thus making the handshake of
the underlying TCP transport more expensive. As in the
previous scenarios, PUB and KER are very close together.

Figure 5(d) graphs the rtts measured in the scenario with
a single replier on each node, showing a behavior similar to
that exhibited in the 1x10 scenario; while the behavior of the
four protocols in the 10x10 scenario, shown in Figure 5(e), is
a combination of the trends of the 1x10 and 10x1 scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

KER
PUB
OBT
OBU

Figure 6: Cumulative distribution of rtt (percentage
of replies vs rtt in ms) in the 10x50 scenario, load=0.

3.1.2 Congested scenarios
All the scenarios presented so far were not affected by

problems of congestion, as the total number of replies to
manage was limited and they were spread temporally in
small bursts occurring when the test message reaches each
replier. The situation changes dramatically in the 10x50 sce-
nario, where at each hop traveled by the test message along
the dispatching overlay 10 replies for each of the reached
nodes are fired back, overloading the publisher.

The impact of such behavior on the distribution of the rtt
measured for the different protocols is shown in Figure 6. As
expected, the trends it shows are quite different with respect
to those measured in the previous scenarios.

The OBU protocol confirms its lead converging in about
500ms. Unfortunately, it also shows its unreliability: the
storm of replies toward the publisher cause massive drop-
ping of packets at the networking layer, with a final delivery
limited to 78% of the total number of expected replies. No-
tice that this behavior, while not evident by looking at the
graphs, was also present in the previous scenarios. The OBU
protocol missed 226 replies in the 10x10 scenario, 46 in the
1x50, 9 in the 1x10, and one in the 1x1 scenario.

The behavior of the OBT protocol is also quite character-
istic. At the beginning the delivery grows straight, meaning
that the number of replies delivered at each time interval is
constant up to reaching 73% of delivery, only slightly below
the OBU result. At this point very few replies are received
for about 1.5 seconds when (at 3s from the beginning) the
TCP timeout elapses and retransmission of lost packets be-
gins. During this retransmission phase other collisions oc-
cur and the delivery does not reach 100%, reaching 97%
after 4.5s from the beginning and stopping there up to 9s
(as TCP doubles the timeout for each unsuccessful retry)
when a second retransmission phase starts. This sequence
of retransmission-collision-timeout is repeated many times:
the last OBT reply arrived almost one minute after the ini-
tial publication.

The PUB and KER protocols exhibit the best perfor-
mance in this scenario. The figure shows a smooth growth
of the delivery with almost 100% of replies delivered in 4.5s
for both.

In the scenarios we considered so far, the only messages
flowing through the dispatching network were the test mes-
sages sent by the publisher and the corresponding replies.
In Figure 7 we analyze how additional traffic flowing on the
REDS overlay affects the performance of the four protocols
we consider.

In particular, Figures 7(a) and 7(b) describe what hap-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

KER
PUB
OBT
OBU

(a) Scenario 1x1, load=0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

KER
PUB
OBT
OBU

(b) Scenario 1x1, load=1.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

KER
PUB
OBT
OBU

(c) Scenario 1x10, load=0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

KER
PUB
OBT
OBU

(d) Scenario 1x10, load=1.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

KER
PUB
OBT
OBU

(e) Scenario 10x50, load=0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

KER
PUB
OBT
OBU

(f) Scenario 10x50, load=1.0.

Figure 7: Cumulative distribution of rtt (percentage of replies vs rtt in ms) in loaded scenarios.

pens in the 1x1 scenario with a load set to 0.5 and 1 messages
per seconds (per loader), respectively. Here we see that the
PUB and KER protocols are most influenced by this addi-
tional traffic, losing their second position in favor of OBT .
This is natural as both protocols require replies to be pro-
cessed by brokers along the route toward the publisher. The
more these brokers are loaded the worse they perform. We
may also notice how the KER protocol gains a little with
respect to PUB . This trends, which is confirmed by the mea-
surements we performed in other scenarios, is a result of the
fact that REDS brokers use a different queue for messages
and replies, thus inherently privileging the KER protocol,
which explicitly uses replies, over the PUB protocol, which
uses standard messages as replies.

While the 10x1 scenario is quite similar to the 1x1 one,
and it is not shown here, the 1x10 scenario at load 0.5 and 1,
shown in Figures 7(c) and 7(d), respectively, shows some pe-
culiarities. In particular, we observe that the small plateaux
present in the unloaded chart disappear. This can be ex-
plained by observing that under load there is a greater vari-
ance in the time required by messages to reach the repliers
and consequently it is no more possible to clearly isolate
the replies coming from each node. By comparing the two

figures we may also observe how the load affects the PUB
and KER protocols, which are still ahead of OBT when
load=0.5, while loose the lead at load=1. As in the previ-
ous scenarios, the KER protocol is less affected than PUB
by the traffic.

The last scenario we consider involves 10 repliers for each
node. With a load of 0.5 messages per second the KER
protocol shows its benefits, taking the lead and delivering
most replies in less than 3s. At 1 message per second the
things changes. By looking at the PUB graph, we may
observe how in this situation the REDS middleware reaches
its limits. The few CPU cycles guaranteed to each slice
on the PlanetLab network do not allow REDS brokers to
provide enough throughput to cope with such traffic. This
considerably affects the performance of the PUB protocol,
but also negatively affects the KER protocol, which is know
surpassed by OBT .

3.1.3 The impact of τ on delivery
All the graphs presented so far, were captured by adopting

a timeout τ of 30s: a value unbearable for most application
settings. Consequently, our next goal was to analyze how
the delivery is influenced by the choice of τ , a fundamental

step to decide the minimum value of τ that provides a given
delivery.

Figure 8(a) plots the delivery of OBU (y-axis) varying τ

(x-axis) in the different scenarios we consider. It shows the
expected behavior for an unreliable protocol, either it deliv-
ers replies quickly or it drops them. From a certain point
of view this is a nice behavior. It allows to easily deter-
mine a value of τ working in most situations, which in our
case equals 200ms. This is fundamental, as in publish-sub-
scribe the publisher usually has no idea about the number
of subscribers that will receive the messages it publishes.
The value chosen for τ must be able to accommodate most
scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

1x1
10x1
1x10
1x50

10x10
10x50

(a) The OBU protocol.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

1x1
10x1
1x10
1x50

10x10
10x50

(b) The OBT protocol.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

1x1
10x1
1x10
1x50

10x10
10x50

(c) The PUB protocol.

Figure 8: Delivery versus τ (in ms), load=0.

Figure 8(b) shows the behavior of the OBT protocol. Here
we see a different situation. Indeed, it is quite difficult to
find a value for τ that works nicely in all the different sce-
narios we consider. For the non-congested scenarios a value
of 200ms is fine, but this value does not account the 10x10
scenario, which requires at least 400ms to reach a good de-
livery. Even worse is the case of the most congested scenario,
the 10x50, which needs a value of τ in the order of seconds
to provide a good delivery.

The last protocol we consider is PUB (KER does not use
timeouts to decide when the last reply has been collected),
which combines the positive aspects of the two protocols
above, minimizing their weaknesses. Its behavior, shown
in Figure 8(c), allows to determine a reasonable value of τ

(i.e., approximately 600ms) working in all the scenarios we
consider, while providing good delivery ratios.

The considerations developed so far for the unloaded sce-
narios also apply under load, with OBT and PUB requiring
progressively a larger τ to provide the same performance.
For the sake of brevity, we do not report these graphs here.

3.2 Qualitative analysis
In the previous section we compared the four protocols

with respect to their performance, here we analyze them
with respect to other, non-quantitative qualities they show.

First consideration we can do is related with the guaran-
tees offered by the different protocols. In particular, KER
is the only protocol that is capable of precisely notifying
the publisher when all replies have been collected. All the
other protocols have to rely on a timeout to decide when to
stop waiting for new replies. This, not only reduces the re-
sponsiveness of the system, obliging publishers that want to
synchronize with the recipients of their messages (i.e., using
the getReplies primitive) to wait the entire timeout, but
also does not allow to determine when faults occur. The
KER protocol is the only one being able to determine when
the process of collecting replies has ended and to determine
if this process has encoutered a fault that resulted in loosing
one or more replies.

Another difference among the four protocols has to do
with the mutual ordering between replies and subscriptions.
Some publish-subscribe middleware, in fact, guarantee that
if a component C subscribes to a filter f at time t, it will
receive any message matching f that was causally related
with messages C sent after t. This temporally correlates
the action of subscribing with the action of publishing. Now
consider a situation in which a component C2 receives a
Repliable message from C1 and reacts by first subscribing
to a filter f then replying. If the reply is routed using the
PUB protocol implemented on top of a system that satisfy
the property above, then C1 is guaranteed that after receiv-
ing the reply from C2 it can publish a message matching
f sure that C2 will receive it. The same behavior can be
offered by a proper implementation of the KER protocol.
Unfortunately, none of the two out-of-band protocols, OBU
and OBT , can provide the same guarantee without intro-
ducing complex ordering mechanisms.

The consideration above can be generalized by observing
that the two protocols PUB and KER usually inherit all the
properties offered by the publish-subscribe middleware they
integrate into. In particular, some publish-subscribe middle-
ware offer advanced mechanisms to deal with mobile com-
ponents or to operate in very complex and dynamic scenar-
ios like mobile ad-hoc networks (MANETs) [12] or wireless
sensor networks [13]. In similar scenarios it is much easier
to implement the PUB and KER protocols, leveraging the
routing mechanisms already offered by a publish-subscribe
middleware developed expressly for such scenarios, than to
implement the OBU and OBT protocols with the need of
explicitly managing the complexity characterizing point-to-
point routing on such scenarios.

As a final remark, we may observe that the KER pro-

tocol is the only one that could be profitably extended to
include mechanisms to aggregate replies while they route
back toward the publisher. This aggregating function could
be hard-wired, e.g., by collecting replies in blocks to be com-
pressed and routed back as a single message, or it could be
provided by the publisher. As an example of the latter case,
we could have a component publishing a Repliable message
to notify its interest in receiving information about the cur-
rent temperature. In this case the publisher could provide a
function to aggregate replies, sending back only the average
temperature measured.

3.3 Concluding remarks
From the quantitative and qualitative evaluations pro-

vided in the previous sections we may draw some conclusions
about the different protocols we examined.

First of all we may observe that OBU is the fastest proto-
col among the four we considered, while providing very few
guarantees. At the same time, its simple behavior, which
either delivers replies in a short time or drops them, sim-
plifies the choice of τ . Waiting more than a certain (short)
interval does not pay off. If replies have not been delivered
after a short interval they will never be.

The OBT protocol has opposite characteristics: it is reli-
able but the mechanism of retransmission, which is part of
TCP, makes it hard to estimate a good value for τ .

The two in-bound approaches perform equally nicely. In
our testbed they are limited by the overhead introduced by
the specific publish-subscribe middleware used and by the
fact that the PlanetLab nodes are usually very loaded, leav-
ing few CPU cycles to each user. In more controlled sce-
narios, with nodes entirely dedicated to running the REDS
brokers, they would perform much better. At the same time,
even if it was not possible to explicitly measure this behavior
in our testbed, the performance of the PUB protocol are ex-
pected to degrade when the size of the network grows, with
larger subscription tables and more components requiring
replies to their messages.

With respect to the estimation of τ , the PUB protocol
shows a nice behavior, with a slow variance in the time re-
quired to deliver replies under very different loads (see Fig-
ure 8(c)). Clearly, KER is the only protocol that is not
affected by the problem of finding a good estimate to τ ,
also offering the possibility of processing replies as they are
collected.

Finally, in complex scenarios characterized by a strong
dynamism at the networking layer, as in MANETs, the PUB
and KER protocols may benefit of the mechanisms provided
by a publish-subscribe middleware appositely developed for
such scenarios to easily route replies back to the publisher.

4. RELATED WORK
The usefulness of replies even in the context of a publish-

subscribe model of interaction has been originally noticed
in [3]. Since then many distributed applications (if not
most) have coupled a publish-subscribe communication fa-
cility with a point-to-point one (mainly some form of RPC)
but, to the best of our knowledge, very few research pa-
pers have reported about the tentative of integrating reply
management into publish-subscribe.

In [7] authors describe how to develop a query-advertise
system functionally equivalent to Gnutella, the popular peer
to peer search engine, starting from a publish-subscribe mid-

dleware. Query-advertise systems are a sort of dual with
respect to publish-subscribe systems, in which subscriptions
carry advertisement of resources, while publications allow to
query for matching resources. These systems obviously need
some way of returning back the results of queries. In [7],
authors propose an algorithm very similar to PUB , while
in [8], they cite the possibility of using either PUB or OBT .
In both cases no performance numbers are given as the focus
of the papers is on the modifications to the matching system
required to provide the query-advertise style of interaction.

JMS [6] was the first, largely available publish-subscribe
infrastructure, to provide a concept of reply. On the other
hand, it does not provide a fully integrated reply mecha-
nism as we propose here, while it merely defines the basic
mechanisms to send replies back to the publisher. In par-
ticular, JMS messages include two standard fields in their
header: the JMSCorrelationID can be used in replies to
specify the identifier of the original message, while the JMS-

ReplyTo field can be used to specify the Destination where
replies are supposed to be addressed to. A common pattern
to manage replies using such fields involves creating a (tem-
porary) destination for replies and adding its reference into
the JMSReplyTo field of the published message. Depending
on weather the destination is a queue or a topic the resulting
machinery ends up being similar to OBT or PUB , respec-
tively.

A more integrated approach to extend publish-subscribe
with replies is presented in [9]. There the authors provide a
fully asynchronous reply primitive. At publishing time, the
publisher of a message m obtains a handler to a reply view.
Through such handler it can query the publish-subscribe
system to get the replies to m collected up to that time. It
may also obtain an aggregate of all the replies collected that
far. Subscribers receiving m may reply one or more times
to m, or they may completely ignore it. The publisher is
also allowed to destroy the reply view associated with m

when it is no longer interested in collecting replies. The re-
sult is a model very different to that we presented here. The
fact that the same subscriber may reply more than once and
that a reply view remains active until the publisher explicitly
removes it, make this model more similar to long running
queries than to a reply management service as we had in
mind. Moreover, this way of modelling replies does not try
to close the gap between the asynchronous publish-subscri-
be model and a more traditional, synchronous interaction.
Indeed, the fact that nodes are free to choose if replying
or not makes the middleware unable to provide any indica-
tion about the fact that all replies have been collected. Fi-
nally, this model requires the publish-subscribe middleware
to keep the state used to route replies back for a unbounded
time, something that our approach does not require.

5. CONCLUSION
In this paper we presented an analysis of the alternatives

to extend the publish-subscribe model with a reply mech-
anism. This need was motivated by our own experience in
building applications with publish-subscribe and it was al-
ready expressed by the publish-subscribe user community as
demonstrated by the appearance of patchy, ad-hoc solutions,
often without any performance evaluation.

The contribution put forth in this paper includes a precise
modelling of a reply-enabled publish-subscribe style, the de-
scription of four possible protocols to implement this model

in a fully decentralized way, completed by a throughly char-
acterization of their performance obtained through extensive
measurements on PlanetLab.

This integrates nicely with our long term goal of increasing
the applicability of the publish-subscribe model in building
complex distributed applications by augmenting it with new
primitives and mechanisms, as soon as they do not interfer
with the positive features it provides.

Acknowledgements
This work was partially supported by the italian National
Research Council (CNR) under the IS-MANET project, and
by the European Community under the IST-034963 WASP
project.

6. REFERENCES
[1] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,

M. Wawrzoniak, and M. Bowman. Planetlab: an
overlay testbed for broad-coverage services.
SIGCOMM Computer Communication Review,
33(3):3–12, 2003.

[2] G. Cugola. Tolerating deviations in process support
systems via flexible enactment of process models.
IEEE Transactions on Software Engineering, 24(11),
Nov 1998.

[3] G. Cugola, E. D. Nitto, and A. Fuggetta. The jedi
event-based infrastructure and its application to the
development of the opss wfms. IEEE Transaction on
Software Engineering, 27(9):827–850, September 2001.

[4] G. Cugola and G. Picco. REDS: A Reconfigurable
Dispatching System. In Proc. of the 6th Int. Workshop
on Software Engineering and Middleware (SEM06),
pages 9—16, Portland, Oregon, USA, nov 2006. ACM
Press. Available at
www.elet.polimi.it/upload/cugola.

[5] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 2(35), June 2003.

[6] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java message service specification, April
2002.

[7] D. Heimbigner. Adapting publish/subscribe
middleware to achieve gnutella-like functionality. In
Selected Areas in Cryptography, 2001.

[8] J. C. Hill. An efficient implementation of
query/advertise. Technical report, University of
Colorado at Boulder, Boulder, Colorado, USA, 2003.

[9] J. C. Hill, J. C. Knight, A. M. Crickenberger, and
R. Honhard. Publish and subscribe with reply.
Technical report, University of Virginia,
Charlottesville, VA, USA, 2002.

[10] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, San Mateo, CA, 1996.

[11] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer, 2006.

[12] C. E. Perkins. Ad hoc networking. Addison Wesley,
2001.

[13] C. Raghavendra, K. Sivalingam, and T. Znati, editors.
Wireless Sensor Networks. Springer, 2006.

[14] P. Yalagandula, P. Sharma, S. Banerjee, S.-J.Lee, and
S. Basu. S3: A scalable sensing service for monitoring

large networked systems. In Proc. of the Workshop on
Internet Network Measurement, Pisa, 2006.

