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Abstract
Web applications are increasingly popular victims of se-
curity attacks. Injection attacks, such as Cross Site
Scripting or SQL Injection, are a persistent problem.
Even though developers are aware of them, the suggested
best practices for protection are error prone: unless all
user input is consistently filtered, any application may be
vulnerable. When hosting web applications, administra-
tors face a dilemma: they can only deploy applications
that are trusted or they risk their system’s security.

To prevent injection vulnerabilities, we introduce
PHP Aspis: a source code transformation tool that ap-
plies partial taint tracking at the language level. PHP As-
pis augments values with taint meta-data to track their
origin in order to detect injection vulnerabilities. To im-
prove performance, PHP Aspis carries out taint propaga-
tion only in an application’s most vulnerable parts: third-
party plugins. We evaluate PHP Aspis with Wordpress,
a popular open source weblog platform, and show that
it prevents all code injection exploits that were found in
Wordpress plugins in 2010.

1 Introduction

The most common types of web application attacks in-
volve code injection [4]: Javascript that is embedded into
the generated HTML (Cross Site Scripting, or XSS), SQL
that is part of a generated database query (SQL Injection,
or SQLI) or scripts that are executed on the web server
(Shell Injection and Eval Injection). These attacks com-
monly exploit the web application’s trust in user-provided
data. If user-provided data are not properly filtered and
sanitised before use, an attacker can trick the applica-
tion into generating arbitrary HMTL responses and SQL
queries, or even execute user-supplied, malicious code.

Even though web developers are generally aware of
code injection vulnerabilities, applications continue to
suffer from relevant exploits. In 2010, 23.9% of the total
reported vulnerabilities to the CVE database were classi-

fied as SQLI or XSS [12]. Morover, injection vulnera-
bilities are often common in third-party plugins instead of
the well-tested core of a web application: in 2010, 10 out
of 12 reported Wordpress injection exploits in the CVE
database involved plugins and not Wordpress itself.

Such vulnerabilities still remain because suggested so-
lutions often require manual tracking and filtering of
user-generated data throughout the source code of an ap-
plication. Yet, even a single unprotected input chan-
nel in an application is enough to cause an injection
vulnerability. Thus, less experienced and therefore less
security-conscious developers of third-party plugins are
more likely to write vulnerable code.

Past research has suggested runtime taint tracking [19,
18, 14] as an effective solution to prevent injection ex-
ploits. In this approach, the origin of all data within
the application is tracked by associating meta-data with
strings. When an application executes a sensitive opera-
tion, such as outputting HTML, these meta-data are used
to escape potentially dangerous values. The most effi-
cient implementation of taint tracking is within the lan-
guage runtime. Runtime taint tracking is not widely used
in PHP, however, because it relies on custom runtimes
that are not available in production environments. Thus,
developers are forced to avoid vulnerabilities manually.

We show that injection vulnerabilities in PHP can be
addressed by applying taint tracking entirely at the source
code level without modifications to the PHP language
runtime. To reduce the incurred performance overhead
due to extensive source code rewriting, we introduce par-
tial taint tracking, which limits taint tracking only to
functions of the web application in which vulnerabilities
are more likely to occur. Partial taint tracking effectively
captures the different levels of trust placed into different
parts of web applications. It offers better performance
because parts of the application code remain unchanged.

We demonstrate this approach using PHP Aspis1, a

1An Aspis was the circular wooden shield carried by soldiers in an-
cient Greece.
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tool that performs taint tracking only on third-party plug-
ins by rewriting their source code to explicitly track and
propagate the origin of characters in strings. PHP Aspis
augments values to include taint meta-data and rewrites
PHP statements to operate in the presence of taint meta-
data and propagate these correctly. PHP Aspis then
uses the taint meta-data to automatically sanitise user-
provided untrusted values and trasparently prevent injec-
tion attacks. Overall, PHP Aspis does not require modifi-
cations to the PHP language runtime or to the web server.

Our evaluation shows that, by using partial taint track-
ing, PHP Aspis successfully prevents most XSS and
SQLI exploits reported in public Wordpress plugins since
2010. Page generation time is significantly reduced com-
pared to tracking taint in the entire Wordpress codebase.

In summary, the contributions of this paper are:

• a taint tracking implementation for PHP that uses
source code transformations only;

• a method for applying taint tracking only to parts of
a web application, in which exploits are more likely
to occur;

• an implementation of a code transformation tool and
its evaluation with real-world exploits reported in
the Wordpress platform.

The next section provides background on code injec-
tion vulnerabilities and introduces partial taint tracking as
a suitable defence. In §3, we describe our approach for
achieving taint propagation in PHP based on code rewrit-
ing, and we show how to limit the scope of taint tracking
to parts of a codebase. Finally, we evaluate our approach
by securing Wordpress in §4 and conclude in §5.

2 Preventing Injection Vulnerabilities

2.1 Injection Vulnerabilities
Consider a weblog with a search field. Typically, input to
the search field results in a web request with the search
term as a parameter:

http://goodsite.com/find?t=spaceship

A response of the web server to this request may contain
the following fragment:
<p> The te rm ` ` s p a c e s h i p ' ' was n o t found . < / p>

The important element of the above response is that the
user-submitted search term is included as is in the output.
This can be easily exploited by an attacker to construct an
XSS attack. The attacker first creates the following URL:

http://goodsite.com/find?t=<script\%20
src='http://attack.com/attack.js'/>

When an unsuspecting user clicks on this link, the fol-
lowing HTML fragment is generated:
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Figure 1: Historical percentage of XSS and SQLI in all CVE
vulnerabilities

Num. of Occurrences
Type Wordpress Drupal

Cross Site Scripting 9 28
SQL Injection 3 1

Information Leakage 1 0
Insufficient Access Control 1 9

Eval Injection 0 1
Cross Site Request Forgery 1 0

Table 1: Web application vulnerabilities in 2010

<p> The te rm ` `<s c r i p t s r c = ' h t t p : / / a t t a c k . com /
a t t a c k . j s ' /> ' ' was n o t found . < / p>

The victim’s browser then fetches the malicious
Javascript code and executes it. Since the HTML doc-
ument originated from goodsite.com, the script is ex-
ecuted with full access to the victim’s web browser ses-
sion. If the user has an account with this weblog and is al-
ready logged on, their cookies can be sent to the attacker.
In general, the script can issue any unverified operations
on behalf of the user.

SQL Injection attacks are analogous: they take advan-
tage of applications that process user input to form an
SQL query to a database. Similarly, Eval and Shell In-
jection attacks target PHP’s eval() and exec() state-
ments respectively. Since these statements execute arbi-
trary code at runtime, such an attack can easily compro-
mise the host machine.

Figure 1 shows the percentage of reported SQLI and
XSS vulnerabilities in recent years, as classified in the
CVE database. Both problems continue to affect appli-
cations despite an increase of developer awareness. Ta-
ble 1 shows our classification of vulnerabilities for two
popular open source web platforms, Wordpress and Dru-
pal. Code injection vulnerabilities are the most common
type in both, with higher percentages compared to tradi-
tional applications across all programming languages in
Figure 1. By relying on prepared statements, an auto-
mated way to avoid SQLI (see §2.2), the Drupal platform
has comparatively few such exploits.
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2.2 Existing Practices
The traditional approach to address injection vulnerabil-
ities is to treat all information that may potentially come
from the user as untrusted—it should not be used for sen-
sitive operations, such as page generation or SQL queries,
unless properly sanitised or filtered. In the previous ex-
ample, a proper sanitisation function would translate all
characters with special meaning in HTML to their dis-
play equivalents (e.g. “<” to “&lt;”). Sanitisation func-
tions such as htmlentities() or escapeshellarg()
are part of the PHP language. After sanitisation, the
string can safely be echoed to the client because it can
no longer change the semantics of the output. SQLI fil-
tering functions operate similarly but they also check for
user-provided SQL keywords in the query [13, 19].

Unfortunately, sanitisation functions are difficult to ap-
ply in practice. Each sensitive operation requires a differ-
ent sanitisation function. For example, if the same string
is echoed to the user and used as part of an SQL query,
two different strings must be generated based on the orig-
inal value. Centralised filtering of input data when they
are received is impractical because there is no single data
representation that is both meaningful and secure in all
possible contexts. For example, the string “WHERE” is
safe in HTML but not in an SQL query. Therefore, de-
velopers have to propagate the original user data and only
sanitise them before being used.

In addition, sanitisation assumes that developers can
effectively track the origin of data and enforce that user-
generated data always pass through their respective sani-
tisation function. In practice, left-out checks by inexperi-
enced developers or unforeseen interactions that result in
unexpected data flow (e.g. assuming that a script cannot
be called from an external user) are likely to occur.

2.2.1 Static Approaches

Past research has suggested static analysis tools that de-
tect injection vulnerabilities in PHP scripts. Pixy [11] and
WebSSARI [10] rely on data flow analysis to detect sen-
sitive functions that may receive user data without sani-
tisation and produce warnings. Wassermann and Su [16]
model string values and operations as grammars and then
inspect them before query operations to reduce the false
positive rate for SQLI detection. Xie and Aiken [17] use
symbolic execution to support PHP’s dynamic features
and report a low false positive rate.

Although static analysis tools do not introduce a run-
time overhead, they are not fully automated, cannot sup-
port all PHP features and do not always achieve a low
false positive rate. In addition, they cannot handle vul-
nerabilities that involve the file system or the database.
As a result, such tools are not widely used for PHP devel-
opment.

Prepared statements are a way to avoid SQLI exploits.
Instead of concatenating queries, an application defines
static placeholder queries with parameters filled in at
runtime. Parameters passed to the placeholders cannot
change the semantics of the query, as its structure is de-
termined in advance when the statement is prepared. In
practice, many PHP applications do not use them because
they were not traditionally supported by PHP or MySQL
and instead manually sanitise SQL queries.

2.2.2 Dynamic Taint Tracking

A dynamic approach to addressing injection vulnerabil-
ities in existing applications when they occur is runtime
taint tracking [19, 6]. It automates the tracking of the
origin of data and enforces that data pass through their
respective sanitisation functions. Runtime taint tracking
involves three different steps:

1. Data entry points. All data entering the application
that may originate from the user are transparently
augmented with taint meta-data. The form of these
meta-data may vary: from one bit that marks that a
particular string is user-provided (or tainted) [14] to
a pointer that links to arbitrary policy objects [19].

2. Taint propagation. As the application processes
data, the runtime system transparently propagates
the associated taint meta-data. For example, when
a tainted string is concatenated with another string,
the result must be marked as tainted.

3. Guarded sinks. Every operation that can be used in
an injection vulnerability (e.g. echo() and eval())
is intercepted. The interceptor examines the corre-
sponding taint meta-data and calls the relevant sani-
tisation function or aborts the operation.

Taint tracking has been shown to be effective in secur-
ing existing web applications [19, 18, 9, 14, 6]. Com-
pared to static approaches, it does not require either de-
bugging or refactoring an existing codebase. Perl and
Ruby support it in some form (through Perl’s taint mode
and Ruby’s safe levels) but not PHP. Taint tracking can
be applied to PHP by modifying the core of the PHP run-
time [19]. Typically, it has been implemented by aug-
menting the interpreter’s zval struct with taint data. Sim-
ple approaches [13, 14] assign one bit of taint meta-data
per string character and propagate that meta-data to sinks
independently of the sanitisation efforts of the applica-
tion.

Later systems stored more meta-data per character in
order to provide more fine-grained guarantees. Neme-
sis [7] uses two taint bits to automatically infer authen-
tication and enforce access control. Resin [19] uses a
pointer to arbitrary policy objects that can be also used
to prevent injection vulnerabilities.
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Xu et al. [18] suggest that a taint tracking implemen-
tation in C can be used to compile the PHP runtime and
transparently add taint tracking support. Their approach
ignores sanitisation efforts of the hosted PHP applica-
tion and therefore suffers from false positives. Also, it
does not support different policies for different applica-
tions running in the same runtime, a common scenario
for many PHP deployments.

However, unless taint tracking is considered part of
PHP and is officially adopted, third party implementa-
tions are impractical. As the PHP manual puts it:

“modifications to the Zend2 engine should be
avoided. Changes here result in incompati-
bilities with the rest of the world, and hardly
anyone will ever adapt to specially patched
Zend engines. Modifications can’t be detached
from the main PHP sources and are overridden
with the next update using the “official” source
repositories. Therefore, this method is gener-
ally considered bad practice”

In the past, taint tracking support has been suggested
as a feature to the PHP community but it has not been
adopted, partly because of fears that it may lead to a false
sense of security [15].

2.3 Partial Taint Tracking
PHP is the most popular web development language, as
indicated by web surveys [2], and its gentle learning
curve often attracts less experienced developers. Inexpe-
rienced developers are more likely to extend web appli-
cations through third-party code in the form of plugins.

Such extensibility is frequently a popular feature for
web applications but leads to a significant security threat
from plugins. In 2009, the CVE database reported that the
Wordpress platform suffered from 15 injection vulnera-
bilities, out of which 13 were introduced by third-party
plugins and only 2 involved the core platform. In 2010,
the breakdown was similar: 10 vulnerabilities were due
to plugins and only 2 due to Wordpress itself.

As a result, not all application code is equally prone to
injection vulnerabilities. For example, Wordpress spends
much of its page generation time in initialisation code,
setting up the platform before handling user requests.
This involves time-consuming steps such as querying the
database for installed plugins, setting them up, and gen-
erating static parts of the response involving theme-aware
headers and footers.

Injection vulnerabilities, on the other hand, tend to ap-
pear in code that handles user-generated content: CVE-
2010-4257, an SQLI vulnerability, involved a function
that handles track-backs after a user published a post;

2Zend is the name of the official PHP scripting engine
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Figure 2: Partial taint tracking using PHP Aspis

CVE-2009-3891, an XSS vulnerability, involved a func-
tion that validates uploaded files; and CVE-2009-2851
and CVE-2010-4536, again XSS vulnerabilities, involved
multiple functions that display user comments.

We exploit this observation by introducing partial taint
tracking, which only transforms the source code of the
most vulnerable parts of an application in order to sup-
port taint tracking. By relying on source-level transfor-
mations, partial taint tracking does not require the de-
velopment and maintenance of a modified version of the
PHP runtime.

We use a simple approach to decide when to track taint:
we focus on parts of third-party plugins that handle user-
generated data. This restricts source code transforma-
tions to a small fraction of the codebase of a web appli-
cation. As a consequence, we mitigate the large perfor-
mance penalty that exhaustive taint tracking at the source
level would incur.

3 PHP Aspis

We describe the design and implementation of PHP As-
pis, a PHP source code transformation tool for partial
taint tracking. Figure 2 presents an overview of how
PHP Aspis transforms applications. First, it modifies
code that receives data from users and marks the data as
user-generated (label 1). Second, it divides the applica-
tion’s codebase in two different categories: tracking and
non-tracking code. Instead of tracking taint uniformly, it
focuses on parts of the codebase that are more likely to
contain code injection vulnerabilities (label 2). In track-
ing code, PHP Aspis records the origin of data at the
character level and filters data at output statements when
an injection vulnerability could exist (label 3). For non-
tracking code, it does not perform taint tracking, trusting
the code not to be vulnerable (label 4).

Next we introduce the representation of taint meta-data
used to record the origin of the data in each variable. In
§3.2, we describe the transformations that can be applied
to PHP source code to (a) ensure its correct operation in
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Sanitisation htmlentities()

functions htmlspecialchars()

Guarded sinks
echo()⇒ AspisAntiXss()

print()⇒ AspisAntiXss()

. . .

Table 2: Excerpt of the definition of the XSS taint category

the presence of taint meta-data; (b) propagate taint meta-
data correctly; and (c) attach checks that inspect taint
meta-data before each “sensitive” operation. Finally, we
discuss how the untracked code can interact with the parts
of the application that have been transformed to track
taint in §3.3.

3.1 Taint Representation
PHP Aspis uses character-level taint tracking, i.e. tracks
the taint of each string character individually [19]. Tradi-
tional variable-level taint tracking implementations (e.g.
Ruby’s safe levels) require the developer to explicitly un-
taint values before they are used. Instead, PHP Aspis pre-
vents injection attacks transparently, and for this, it needs
to know the exact characters that originate from the user.
Consider for example an application that concatenates a
user-provided value with a static HTML template, stores
the result in $v and then returns $v to the client as a re-
sponse. Inferring that the variable $v is tainted is of little
use as $v also contains application-generated HTML. In-
stead, PHP Aspis uses character-level taint meta-data and
only sanitises the parts of $v that originate from the user.

3.1.1 Taint Categories

PHP Aspis can track multiple independent and user pro-
vided taint categories. A taint category is a generic way
of defining how an application is supposed to sanitise data
and how PHP Aspis should enforce that the application
always sanitises data before they are used.

Each taint category is defined as a set of sanitisation
functions and a set of guarded sinks. Sanitisation func-
tions can be PHP library functions or can be defined
by the application. A sanitisation function is called by
the application to transform untrusted user data so that
they cannot be used for a particular type of injection
attack. Commonly, sanitisation functions either trans-
form unsafe character sequences to safe equivalents (e.g.
htmlentities) or filter out a subset of potentially dan-
gerous occurrences (e.g. remove <script> but not <b>).
Calls to sanitisation functions by the application are inter-
cepted and PHP Aspis untaints the corresponding data to
avoid sanitising them again.

Guarded sinks are functions that protect data flow to
sensitive sink functions. When a call to a sink function
is made, PHP Aspis invokes the guard with references to

the parameters passed to the sink function. The guard
is a user-provided function that has access to the rele-
vant taint category meta-data and typically invokes one
or more sanitisation functions for that taint category.

For example, Table 2 shows an excerpt of an XSS
taint category definition. It specifies that a user-provided
string can be safely echoed to the user after either
htmlentities or htmlspecialchars has been in-
voked on it. The second part exhaustively lists all func-
tions that can output strings to the user (e.g. echo,
print, etc.) and guards them with an external filter-
ing function (AspisAntiXss). The guard either aborts
the print operation or sanitises any remaining characters.
The administrator can change the definitions of taint cat-
egories according to the requirements of the application.

By listing all the sanitisation functions of an applica-
tion in the relevant taint category, PHP Aspis can closely
monitor the application’s sanitisation efforts. When ap-
plied to a well designed application, PHP Aspis untaints
user data as they get sanitised by the application, before
they actually reach the sink guards. Thus, sink guards
can apply a simple, application agnostic, sanitisation op-
eration (e.g. htmlentities) acting as a “safety net”.

On the other hand, an application may not define ex-
plicit sanitisation functions or these functions may be
omitted from the relevant taint category. In such cases,
sink guards have to replicate the filtering logic of the ap-
plication. In general, however, sink guards lack contex-
tual information and this prevents them from enforcing
context-aware filtering, e.g. guards cannot enforce saniti-
sation that varies according to the current user.

A different taint category must be used for each type of
injection vulnerability. PHP Aspis tracks different taint
categories independently from each other. For example,
when a sanitisation function of an XSS taint category is
called on a string, the string is still considered unsanitised
for all other taint categories. This ensures that a sanitisa-
tion function for handling one type of injection vulnera-
bility is not used to sanitise data for another type.

3.1.2 Storing taint meta-data

It is challenging to represent taint meta-data so that it sup-
ports arbitrary taint categories and character-level taint
tracking. This is due to the following properties of the
PHP language:

P1 PHP is not object-oriented. Although it supports
objects, built-in types such as string cannot be
augmented transparently with taint meta-data. This
precludes solutions that rely on altered class li-
braries [6].

P2 PHP does not offer direct access to memory. Any so-
lution must track PHP references because variables’
memory addresses cannot be used [18].
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String Taint meta-data
$s='Hello' array(0=>false)
$n='John' array(0=>true)
$r=$s.$n array(0=>false, 5=>true)

Table 3: Representation of taint meta-data for a single taint
category

P3 PHP uses different assignment semantics for objects
(“by reference”) compared to other types including
arrays (“by copy”). This does not allow for the sub-
stitution of any scalar type with an object without
manually copying objects to avoid aliasing.

P4 PHP is a dynamically typed language, which means
that there is no generic method to statically identify
all string variables.

Due to these properties, our solution relies on PHP ar-
rays to store taint meta-data by enclosing the original val-
ues. Table 3 shows how PHP Aspis encodes taint meta-
data for a single taint category. For each string, PHP As-
pis keeps an array of character taints, with each index
representing the first character that has this taint. In the
example, string $s is untainted, $n is tainted and their
concatenation, $r, it untainted from index 0 to 4, and
tainted from index 5 onwards. Numerical values use the
same structure for taint representation but only store a
common taint for all digits.

Taint meta-data must remain associated with the value
that they refer to. As shown in Table 4, we choose to store
them together. First, all scalars such as 'Hello' and 12

are replaced with arrays (rows 1 and 2). We refer to this
enclosing array as the value’s Aspis. The Aspis contains
the original value and an array of the taint meta-data for
all currently tracked taint categories (TaintCats). Sim-
ilarly, scalars within arrays are transformed into Aspis-
protected values.

According to P4, PHP lacks static variable type in-
formation. Moreover, it offers type identification func-
tions at runtime. When scalars are replaced with ar-
rays, the system must be able to distinguish between
an Aspis-protected value and a proper array. For this,
we enclose the resulting arrays themselves in an Aspis-
protected value, albeit without any taint (false in rows 3
and 4). The original value of a variable can always be
found at index 0 when Aspis-protected. Objects are han-
dled similarly. Aspis-protected values can replace origi-
nal values in all places except for array keys: PHP arrays
can only use the types string or int as keys. To cir-
cumvent this, the key’s taint categories are attached to
the content’s Aspis (KeyTaintCats) and the key retains
its original type (row 5).

Overall, this taint representation is compatible with the
language properties mentioned above. By avoiding stor-

Original value Aspis-protected value

1. 'Hello'
array(

'Hello',TaintCats
)

2. 12 array(12,TaintCats)

3. array()
array(

array()
,false)

4. array('John')

array(

array(
array(

'John',TaintCats
)

)
,false)

5. array(13=>20)

array(

array(13=>
array(

20,ContentTaintCats,
KeyTaintCats

)

)
,false)

Table 4: Augmenting values with taint meta-data

ing taint inside objects, we ensure that an assignment can-
not lead to two separate values referencing the same taint
category instances (P3). By storing taint categories in
place, we ensure that variable aliasing correctly aliases
taints (P2). Finally, by not storing taint meta-data sep-
arately, the code transformations that enable taint prop-
agation can be limited to correctly handling the origi-
nal, Aspis-protected values. As a result, the structure
of the application in terms of functions and classes re-
mains unchanged, which simplifies interoperability with
non-tracking code as explained in § 3.3.

3.2 Taint-tracking Transformations
Based on this taint representation, PHP Aspis modifies
an application to support taint tracking. We refer to these
source code transformations as taint-tracking transfor-
mations. These transformations achieve the three steps
described in §2.2.2 required for runtime taint tracking:
data entry points, taint propagation and guarded sinks.

3.2.1 Data Entry Points

Taint-tracking transformations must mark any user-
generated data as fully tainted, i.e. all taint meta-data for
every taint category in an Aspis-protected value should
be set to true. Any input channel such as the incoming
HTTP request that is not under the direct control of the
application may potentially contain user-generated data.
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Original expression Transformed expression
$s.$t concat($s,$t)

$l = &$m $l=&$m

$j = $i++ $j=postincr($i)

$b+$c add($b,$c)

if ($v) {} if ($v[0]) {}
foreach foreach

($a as $k=>$v) ($a[0] as $k=>$v)

{...} {restoreTaint($k,$v)...}

Table 5: Transformations to propagate taint and restore the
original semantics when Aspis-protected values are used

In each transformed PHP script, PHP Aspis inserts
initialisation code that (1) scans the superglobal arrays
to identify the HTTP request data, (2) replaces all sub-
mitted values with their Aspis-enclosed counterparts and
(3) marks user submitted values as fully tainted. All con-
stants defined within the script are also Aspis-protected,
however, they are marked as fully untainted (i.e. all taint
meta-data for every taint category have the value false).
As a result, all initial values are Aspis-protected in the
transformed script, tainted or not.

3.2.2 Taint Propagation

Next all statements and expressions are transformed to
(1) operate with Aspis-protected values, (2) propagate
their taint correctly and (3) return Aspis-protected values.

Table 5 lists some representative transformations for
common operations supported by PHP Aspis. Functions
in the right column are introduced to maintain the original
semantics and/or propagate taint. For example, concat
replaces operations for string concatenating in PHP (e.g.
double quotes or the concat operator “.”) and returns
an Aspis-protected result. Control statements are trans-
formed to access the enclosed original values directly.
Only the foreach statement requires an extra call to
restoreTaint to restore the taint meta-data of the key
for subsequent statements in the loop body. The meta-
data is stored with the content in KeyTaintCats, as
shown in row 5 of Table 4.

PHP function library. Without modification, built-in
PHP functions cannot operate on Aspis-protected values
and therefore do not propagate taint meta-data. Since
these functions are commonly compiled for performance,
PHP Aspis uses interceptor functions to intercept calls to
them and attach wrappers for taint propagation.

By default, PHP Aspis uses a generic interceptor for
built-in functions. The generic interceptor reverts Aspis-
protected parameters to their original values and wraps
return values to be Aspis-protected again. This default
behaviour is acceptable for library functions that do not

propagate taint based on their semantics (e.g. fclose).
However, the removal of taint from result values may lead
to false negatives in taint tracking. PHP Aspis therefore
provides custom interceptor functions for specific built-in
functions. By increasing the number of intercepted func-
tions, we improve the accuracy of taint tracking and re-
duce false negatives.

The purpose of a custom interceptor is to propagate
taint from the input parameters to the return values. Such
interceptors rely on the well defined semantics of the li-
brary functions to correctly propagate taint. When possi-
ble, the interceptor calculates the taint of the return value
only based on the taints of the inputs (e.g. substr). It
then removes the taint meta-data from the input values,
invokes the original library function and attaches the cal-
culated taint to the result value. Alternatively, the inter-
ceptor compares the result value to the passed parameter
and infers the taint of the result. As an example, the in-
terceptor for stripslashes compares the original and
the result string and calculates the result’s taint according
to the slashes that are actually stripped from the original
string. In total, 66 provided interceptors use this method.

For other functions, the interceptor can use the original
function to automatically obtain a result with the correct
taint. For example, usort sorts an array according to a
user-provided callback function and thus can sort Aspis-
protected values without changes. If the callback is a li-
brary function, the function is unable to compare Aspis-
protected elements and calls to usort would fail. When
callbacks are used, custom interceptors introduce a new
callback replacing the old. That new callback calls the
original callback after removing taint from its parame-
ters. In total, 21 provided interceptors used this method.

In cases in which the result taint cannot be determined,
such as for sort, an interceptor provides a separate, taint-
aware version of the original PHP library function. We
had to re-implement 19 library functions in this way.

Overall, our prototype currently intercepts 106 library
functions. These functions include most of the standard
PHP string library that, as we show in §4, are enough to
effectively propagate taint in Wordpress.

Dynamic features. PHP has many dynamic features
such as variable variables, variable function calls and the
eval and create function functions. These are not
compatible with Aspis-protected values, but PHP Aspis
must nevertheless maintain their correct semantics.

Variable variables only require access to the enclosed
string. A dynamic access to a variable named $v is
transformed from $$v to ${$v[0]}. Variable func-
tion calls that use variables or library functions (e.g.
call user func array) allow a script to call a func-
tion that is statically unknown. PHP Aspis transforms
these calls and inspects them at runtime. When a library
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call is detected, PHP Aspis generates an interceptor, as
described in the previous section, at runtime.

The functions eval and create function are used
to execute code generated at runtime. Since application
generated code does not propagate taint, PHP Aspis must
apply the taint-tracking transformations at runtime. To
avoid a high runtime overhead, PHP Aspis uses a caching
mechanism such as Zend Cache when available.

3.2.3 Guarded Sinks

PHP Aspis can protect code from injection vulnerabili-
ties using the taint meta-data and defined taint categories.
As described in §3.1.1, guard functions specified as part
of active taint categories are executed before the calls
to their respective sensitive sink functions. Guards use
PHP’s sanitisation routines (e.g. htmlentities) or de-
fine their own operations. For example, we use an SQL
filtering routine that rejects queries with user-provided
SQL operators or keywords [13].

3.3 Partial Taint Tracking
The taint tracking transformations used by PHP Aspis re-
quire extensive changes to the source code, which has an
adverse impact on execution performance. To preserve
program semantics, transformations often involve the re-
placement of efficient low-level operations by slower,
high-level ones (see Table 5).

Partial taint tracking aims to improve execution per-
formance by limiting taint tracking to the parts of the
application in which injection vulnerabilities are more
likely to exist. Partial taint tracking can be applied at the
granularity of contexts: functions, classes or the global
scope. The administrator can assign each of these to be
of the following types: tracking or non-tracking.

Next we discuss how the presence of non-tracking code
reduces the ability of PHP Aspis to prevent exploits. We
also present the additional transformations that are done
by PHP Aspis to support partial taint tracking.

3.3.1 Missed Vulnerabilities

When partial taint tracking is used, all code must be clas-
sified into tracking or non-tracking code. This decision is
based on the trust that the application administrator has
in the developers of a given part of the codebase. When
parts of the codebase are classified as non-tracking, injec-
tion vulnerabilities within this code cannot be detected.
On the other hand, PHP Aspis must still be able to detect
vulnerabilities in tracking code. However, in the presence
of non-tracking code, tracking code may not be the place
where an exploit manifests itself and thus can be detected.

For example, a non-tracking function n in Figure 3
calls a tracking function t (step 1). It then receives a user-
provided value $v from function t (step 2) and prints this

PHP Aspis Transformed Application

Taint-Tracking Code

Non Tracking Code

<script .../>

Taint

Input
HTTP request

1 2

Data altering

Guarded
Source

HTML output
<script ... />

t()

n()
3

Figure 3: XSS vulnerability manifesting in non-tracking code

value (step 3). If t fails to escape user input, n is un-
able to sanitise the data transparently. This is because, in
non-tracking code, taint meta-data are not available and
calls to sensitive sinks such as print are not intercepted.
From the perspective of n, t acts as the source of user
generated data that must be sanitised before they leave
the tracking context.

To address this issue, PHP Aspis takes a conserva-
tive approach. It can sanitise data at the boundary be-
tween tracking and non-tracking code. PHP Aspis adds
source guards to each taint category to provide sanitisa-
tion functions for this purpose. A source is a tracking
function and the guard is the sanitisation function applied
to its return value when called from non-tracking code.
In the above example, the tracking function t can act as
a source of user generated data when called from n. A
guard for t would intercept t’s return value and apply
htmlentities to any user-generated characters. Source
guards ensure that user data are properly sanitised before
they can be used in non-tracking code.

Note though that this early sanitisation is an additional
operation introduced by PHP Aspis. Thus, if the non-
tracking context that received the data attempts to sanitise
them again, the application would fail. Moreover, there is
no generic sanitisation routine that can always be applied
because the final use of the data is unknown. Instead,
this solution is only suitable for cases when both the fi-
nal use of the data is known and the application does not
perform any additional sanitisation. This is often the case
for third-party plugin APIs.

3.3.2 Compatibility Transformations

The taint-tracking transformations in §3.2 generate code
that handles Aspis-protected values. For example, a
tracking function that changes the case of a string pa-
rameter $p expects to find the actual string in $p[0].
Such a function can no longer be called directly from
non-tracking code with a simple string for its parame-
ter. Instead, PHP Aspis requires additional transforma-
tions to intercept this call and automatically convert $p
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to an Aspis-protected value, which is marked as fully un-
tainted. We refer to these additional transformations for
partial taint tracking as compatibility transformations.

Compatibility transformations make changes to both
tracking and non-tracking code. These changes alter the
data that are exchanged between a tracking context and a
non-tracking context, i.e. data exchanged between func-
tions, classes and code in the global scope. They strip
Aspis-protected values when passed to non-tracking con-
texts and restore Aspis protection for tracking contexts.

Function calls. A function call is the most common
way of passing data across contexts. PHP Aspis trans-
forms all cross-context function calls: a call from a
tracking to a non-tracking context has its taint removed
from parameters and the return value Aspis-protected
again. The opposite happens for calls from non-tracking
to tracking contexts. This also applies to method calls.

Adapting parameters and return values is similar to us-
ing the default interceptor function from §3.2. User code,
however, can share objects of user-defined classes. In-
stead of adapting every internal object property, PHP As-
pis uses proxy objects that decorate passed values. Con-
sider an object $o of class c and assume that c is a track-
ing context. When $o is passed to the non-tracking con-
text of function f, f is unable to access $o’s state directly
or call its methods. Instead, it receives the decorator $do
that points to $o internally. $do is then responsible for
adapting the parameters and the return values of method
calls when such calls occur. It also handles reads and
writes of public object properties.

PHP also supports call-by-reference semantics for
function parameters. Since changes to reference param-
eters by the callee are visible to the caller, these param-
eters effectively resemble return values. Compatibility
transformations handle reference parameters similarly to
return values—they are adapted to the calling context af-
ter the function call returns.

This behaviour can lead to problems if references to a
single variable are stored in contexts of different types,
i.e. if a tracking class internally has a reference to a vari-
able also stored in a non-tracking class. In such cases,
PHP Aspis can no longer track these variables effectively
across contexts, forcing the administrator to mark both
contexts as tracking or non-tracking. Since shared refer-
ences to internal state make it hard to maintain class in-
variants, they are considered bad practice [5] and a man-
ual audit did not reveal any occurrences in Wordpress.

Accessing global variables. PHP functions can ac-
cess references to variables in the global scope using
the global keyword. These variables may be Aspis-
protected or not, dependent on the type of the current
global context and previous function calls. The compat-

ibility transformations rewrite global statements: when
the imported variable does not match the context of the
function, the variable is altered so that it can be used
by the function. After the function returns, all im-
ported global variables must be reverted to their previous
forms—return statements are preceded with the neces-
sary reverse transformations. When functions do not re-
turn values, reverse transformations are added as the last
function statement.

Accessing superglobal variables. PHP also supports
the notion of superglobals: arrays that include the HTTP
request data and can be accessed from any scope with-
out a global declaration. Data in these arrays are al-
ways kept tainted; removing their taint would effectively
stop taint tracking everywhere in the application. As a
result, only tracking contexts should directly access su-
perglobals. In addition, compatibility transformations en-
able limited access from non-tracking contexts when ac-
cess can be statically detected (i.e. a direct read to $ GET

but not an indirect access through an aliasing variable).
This is because PHP Aspis does not perform static alias
analysis to detect such indirect accesses [11].

Include statements. PHP’s global scope includes code
outside of function and class definitions and spans across
all included scripts. Compatibility transformations can
handle different context types for different scripts. This
introduces a problem for variables in the global scope:
they are Aspis-protected when they are created by a track-
ing context but have their original value when they are
created by a non-tracking context.

To address this issue, PHP Aspis alters temporarily all
variables in the global scope to be compatible with the
current context of an included script, before an include

statement is executed. After the include, all global
variables are altered again to match the previous con-
text type. To mitigate the performance overhead of this,
global scope code placed in different files but used to han-
dle the same request should be in the same context type.

Dynamic features. Compatibility transformations in-
tercept calls to create function and eval at runtime.
PHP Aspis then rewrites the provided code according to
the context type of the caller: when non-tracking code
calls eval, only the compatibility transformations are
applied and non-tracking code is generated. Moreover,
create function uses a global array to store the con-
text type of the resulting function. This information is
then used to adapt the function’s parameters and return
value in subsequent calls.
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3.4 Discussion
The taint tracking carried out by PHP Aspis is not pre-
cise. PHP Aspis follows a design philosophy that avoids
uncertain taint prediction (e.g. in library functions with-
out interceptors), which may result in false positives and
affect application semantics. Instead, it favours a reduced
ability to capture taint on certain execution paths, leading
to false negatives. For this, it should not be trusted as the
sole mechanism for protection against injection attacks.

Partial taint tracking is suited for applications where
a partition between trusted and untrusted components is
justified, e.g. third-party code. In addition, interactions
across such components must be limited because if data
flow from a tracking to non-tracking context and back,
taint meta-data may be lost. PHP Aspis also does not
track taint in file systems or databases, although tech-
niques for this have been proposed in the past [8, 19].

PHP is a language without formal semantics. Avail-
able documentation is imprecise regarding certain fea-
tures (e.g. increment operators and their side effects)
and there are behavioural changes between interpreter
versions (e.g. runtime call-by-reference semantics). Al-
though our approach requires changes when the language
semantics change, we believe that this cost is smaller than
the maintenance of third-party runtime implementations
that require updates even with maintenance releases.

Our taint tracking transformations support most com-
mon PHP features, as they are specified in the online
manual [1]. We have yet to add support for newer fea-
tures from PHP5 such as namespaces or closures.

4 Evaluation

The goals of our evaluation are to measure the effective-
ness of our approach in preventing real-world vulnerabil-
ities and to explore the performance penalty for the trans-
formed application. To achieve this, we use PHP Aspis
to secure an installation of Wordpress [3], a popular open
source web logging platform, with known vulnerabilities.

We first describe how an administrator sets up PHP As-
pis to protect a Wordpress installation. We then discuss
the vulnerabilities observed and show how PHP Aspis
addresses them. Finally, we measure the performance
penalty incurred by PHP Aspis for multiple applications.

4.1 Securing Wordpress
Wordpress’ extensibility relies on a set of hooks defined
at certain places during request handling. User-provided
functions can attach to these hooks and multiple types are
supported: actions are used by plugins to carry out opera-
tions in response to certain event (e.g. send an email when
a new post is published), and filters allow a plugin to alter

CVE Type Guarded Sources Prevented
2010-4518 XSS 1 Yes
2010-2924 SQLI 2 Yes
2010-4630 XSS 0 Yes
2010-4747 XSS 1 Yes
2011-0740 XSS 1 Yes
2010-4637 XSS 2 Yes
2010-3977 XSS 5 Yes
2010-1186 XSS 15 Yes
2010-4402 XSS 6 Yes
2011-0641 XSS 2 Yes
2011-1047 SQLI 1 Yes
2010-4277 XSS 3 Yes
2011-0760 XSS 1 No
2011-0759 XSS 9 No
2010-0673 SQLI –– ––

Table 6: Wordpress plugins’ injection vulnerabilities; reported
in 2010 and in the first quarter of 2011.

data before they are used by Wordpress (e.g. a post must
receive special formatting before being displayed).

A plugin contains a set of event handlers for specific
actions and filters and their initialisation code. Plugin
scripts can also be executed through direct HTTP re-
quests. In such cases, plugin scripts execute outside of
the main Wordpress page generation process.

We secure a plugin from injection vulnerabilities using
PHP Aspis as follows: first, we list the functions, classes
and scripts defined by the plugin and mark the relevant
contexts as tracking; second, we automatically inspect
the plugin for possible sensitive sinks, such as print state-
ments and SQL queries. We then decide the taint cate-
gories to be used in order to avoid irrelevant tracking (i.e.
avoid tracking taint for eval injection if no eval state-
ments exist); third, we obtain a list of event handlers from
the add filter statements used by the plugin. We aug-
ment the taint category definitions with these handlers as
guarded sources because filters’ return values are subse-
quently used by Wordpress (§3.3); and fourth, we classify
the plugin initialisation code as non-tracking as it is less
likely to contain injection vulnerabilities (§2.3).

4.2 Security
Table 6 lists all injection vulnerabilities reported in Word-
press plugins since 2010. For each vulnerable plugin, we
verify the vulnerability using the attack vector described
in the CVE report. We then try the same attack vector on
an installation protected by PHP Aspis.

The experiments are done on the latest vulnerable plu-
gin versions, as mentioned on each CVE report, running
on Wordpress 2.9.2. PHP Aspis manages to prevent most
vulnerabilities, which can be summarised according to
three different categories:
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Direct request vulnerabilities. The most common
type of vulnerability involves direct requests to plugin
scripts. Many scripts do not perform any sanitisation
for some parameters (2010-4518, 2010-2924, 2010-4630,
2010-4747, 2011-0740). Others do not anticipate invalid
parameter values and neglect to sanitise when printing er-
ror messages (2010-4637, 2010-3977, 2010-1186).

PHP Aspis manages to prevent all attack vectors de-
scribed in the CVE reports by propagating taint correctly
from the HTTP parameters, within the taint-transformed
plugin scripts and to various printing or script termina-
tion statements such as such as die and exit, when its
sanitisation functions are invoked.

Action vulnerabilities. Some of the plugins tested
(2010-4402, 2011-0641, 2011-1047) introduce a vulner-
ability in an action event handler. Similarly, a few other
plugins (2010-2924, 2010-1186, 2011-1047) only exhibit
a vulnerability through a direct request but explicitly load
Wordpress before servicing such a request. Wordpress
transforms $ GET and $ POST by applying some prelim-
inary functions to their values in wp-settings.php.
As the Wordpress initialisation code is classified as non-
tracking, it effectively removes all taint from the HTTP
parameters and introduces a false negative for all plugins
that execute after Wordpress has loaded.

Given that this behaviour is common for all plugins,
we also use taint tracking in a limited set of Wordpress
contexts—the functions add magic quotes, esc sql

and the wpdb class, which are invoked by this code. As
the assignment statements that alter the superglobal ta-
bles are in the global scope of wp-settings.php, we
also perform taint tracking in this context.

Unfortunately, this file is central in Wordpress initiali-
sation: enabling taint tracking there leads to substantially
reduced performance. To avoid this problem, we intro-
duce a small function that encloses the assignment state-
ments and we mark its context as tracking. This change
required three extra lines of code to define and call the
function but it significantly improved performance.

Filter vulnerabilities. From all tested plugins, only
one (2010-4277) introduces a vulnerability in the code
attached to a filter hook. Although we can verify the
behaviour described in the CVE report, we believe that
it is intended functionality of Wordpress: the Javascript
injection is only done by a user who can normally post
Javascript-enabled text. PHP Aspis correctly marks the
post’s text as untainted and avoided a false positive.

To test the filter, we edit the plugin to receive the text
of posts from a tainted $ GET parameter instead of the
Wordpress hook. After this change, PHP Aspis prop-
erly propagates taint and correctly escapes the dangerous
Javascript in the guard applied to the filter hook.

4.2.1 False positives and negatives.

As discussed in §3.4, PHP Aspis may introduce both false
negatives and false positives. By propagating taint cor-
rectly, we largely avoid the problem of false positives.
False negatives, however, can be common because they
are introduced (1) by built-in library functions that do
not propagate taint, (2) by calls to non-tracking contexts
and (3), by data paths that involve the file system or the
database. In these cases, taint is removed from data, and
when that data are subsequently used, vulnerabilities may
not be prevented. PHP Aspis’ current inability to track
taint in the database is the reason why the XSS vulnera-
bilities 2011-0760 and 2011-0759 are not prevented.

To reduce the rate of false negatives, we use intercep-
tors that perform precise taint tracking for all built-in li-
brary functions used by the tested plugins. In addition, we
find that classifying the aforementioned set of Wordpress
initialisation routines as tracking contexts is sufficient to
prevent all other reported injection vulnerabilities. Note
that the last vulnerable plugin (2010-0673) has been with-
drawn and was not available for testing.

4.3 Performance
To evaluate the performance impact of PHP Aspis, we
measure the page generation time for:

• a simple prime generator that tests each candi-
date number by dividing it with all smaller inte-
gers (Prime);

• a typical script that queries the local database and
returns an HTML response (DB).

• Wordpress (WP) with the vulnerable Embedded
Video plugin (2010-4277). Wordpress is configured
to display a single post with a video link, which trig-
gers the plugin on page generation.

Our measurements are taken in a 3 Ghz Intel
Core 2 Duo E6850 machine with 4 GiB RAM, run-
ning Ubuntu 10.04 32-bit. We use PHP 5.3.3 and Zend
Server 5.0.3 CE with Zend Optimizer and Zend Data
Cache enabled. For each application, we enable tracking
of two taint categories, XSS and SQLI.

Table 7 shows the 90th percentile of page generation
times over 500 requests for various configurations. Over-
all, we observe that fully tracking taint has a performance
impact that increases page generation between 3.4× and
10.4×. The overhead of PHP Aspis depends on how CPU
intensive the application is: DB is the least affected be-
cause its page generation is the result of a single database
query. On the other hand, Prime has the worst perfor-
mance penalty of 10.4×, mostly due to the replacement
of efficient mathematical operators with function calls.

Wordpress (WP) with full taint tracking results in
a 6.0× increase of page generation time. With par-
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App. Tracking Page generation Penalty
Prime Off 44.9 ms -
Prime On 466.8 ms 10.4×

DB Off 0.4 ms -
DB On 1.3 ms 3.4×
WP Off 65.6 ms -
WP On 394.4 ms 6.0×
WP Partial 144.3 ms 2.2×

Table 7: Performance overhead of PHP Aspis in terms of page
generation time

tial taint tracking configured only on the installed plu-
gin, page generation overhead is significantly reduced to
2.2×. Given that Wordpress uses globals extensively, the
main source of performance reduction for the partial taint
tracking configuration are the checks on global variable
access as part of the compatibility transformations.

Although full taint tracking at the source code level in-
curs a significant performance penalty, partial taint track-
ing can reduce the overhead considerably. In practice,
2.2× performance overhead when navigating Wordpress
pages with partial taint tracking is acceptable for deploy-
ments in which security has priority over performance.

5 Conclusions

In this paper, we presented PHP Aspis, a tool that ap-
plies partial taint tracking at the source code level, with
a focus on third-party extensions. PHP Aspis avoids the
need for taint tracking support in the PHP runtime. Al-
though the performance penalty of PHP Aspis can in-
crease the page generation time by several times, we have
shown that if taint tracking is limited only to a subset of a
web application, the performance penalty is significantly
reduced while many real world vulnerabilities are miti-
gated. Our evaluation with the Wordpress platform shows
that PHP Aspis can offer increased protection when a
moderate increase in page generation time is acceptable.
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