
Comprehending Finite Maps for Algorithmic Debugging of
Higher-Order Functional Programs

Olaf Chitil
University of Kent, UK

Thomas Davie
University of Kent, UK

ABSTRACT
Algorithmic debuggers for higher-order functional languages
have to display functional values. Originally functional val-
ues had been represented as partial applications of function
and constructor symbols, but a recent approach represents
functional values as finite maps. The two representations
require the computation tree that is central to algorith-
mic debugging to be structured rather differently. In this
paper we present a unifying framework that formally de-
fines algorithmic debugging for both representations in an
implementation-independent way. On this basis we prove
the soundness of algorithmic debugging with finite maps.
Our framework shows how a single implementation can sup-
port both forms of algorithmic debugging. The proof ex-
posed that algorithmic debugging with finite maps does not
handle arbitrary functional programs, but in current prac-
tice the problematic ones are excluded by Haskell’s type sys-
tem. Both framework and proof suggest variations of algo-
rithmic debugging with finite maps and thus are tools for
further improvement of this form of debugging.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: processors; F.3.1 [Logics

and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs; F.3.2 [Logics and Mean-

ings of Programs]: Semantics of Programming Languages

Keywords
Algorithmic debugging, tracing, functional programming

1. INTRODUCTION
Algorithmic debugging is a semi-automated method of lo-

cating faults in declarative programs. Consider the following
faulty Haskell program1. The function allOdd shall deter-
mine whether all numbers in a given tree are odd. The

1We disregard that main should have the type IO ().

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP 2008
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

worker function allOddC uses a continuation to traverse the
tree from left to right.

data Tree a = Branch (Tree a) (Tree a) | Leaf a

allOdd :: Tree Int -> Bool

allOdd t = allOddC id t True

allOddC :: (Bool -> Bool) -> Tree Int -> Bool -> Bool

-- spec: allOddC c t b = b && c (allOdd t)

allOddC c (Leaf n) b = b && c (odd n)

allOddC c (Branch l r) b = allOddC (allOddC c r) l b

odd :: Int -> Bool

odd x = x ‘mod‘ 3 == 1

id :: a -> a

id x = x

main = allOdd (Branch (Leaf 7) (Leaf 5))

Evaluation of main yields the unexpected answer False. So
which fault causes this erroneous behaviour? A standard
algorithmic debugger asks us, the user, a series of ques-
tions about the computation, namely whether given equa-
tions agree with our intentions or not. Our answers are
highlighted in italics.

1. main = False ? no

2. allOdd (Branch (Leaf 7) (Leaf 5)) = False ? no

3. allOddC id (Branch (Leaf 7) (Leaf 5)) True =

False ? no

4. allOddC (allOddC id (Leaf 5)) (Leaf 7) True =

False ? no

5. odd 7 = True ? yes

6. allOddC id (Leaf 5) True = False ? no

7. odd 5 = False ? no

Fault in definition: odd x = x ‘mod‘ 3 == 1

Soon the debugger identifies a faulty definition that needs to
be modified. Inspecting the definition we find that 3 needs
to be replaced by 2.

Standard algorithmic debugging works, but question 4 in-
dicates a problem: it contains already three occurrences of
function symbols (id and twice allOddC). To answer such
a question, we have to consider the intended meaning of all
function symbols that appear in the question concurrently.

Standard algorithmic debugging represents functional val-
ues as function symbols and their partial applications. The
number of function symbol occurrences in a single functional
value is unbounded. For many higher-order functional pro-
grams, especially those using continuations, combinator li-
braries or monads, the questions of the standard algorithmic
debugger become incomprehensible and thus unanswerable.

Hence Pope [11, 12] and later independently Davie and Chi-
til [5] proposed representing a functional value as a finite
map from arguments to results.

With finite maps an algorithmic debugging session looks
as follows:

1. main = False ? no

2. allOdd (Branch (Leaf 7) (Leaf 5)) = False ? no

3. id False = False ? yes

4. allOddC {False 7→ False}

(Branch (Leaf 7) (Leaf 5)) True = False ? no

5. allOddC {False 7→ False} (Leaf 5) True = False ?

no

6. odd 5 = False ? no

Fault in definition: odd x = x ‘mod‘ 3 == 1

A finite map includes only arguments to which the func-
tion was applied during the computation. When answering
a question, the user assumes that the function maps any
other argument to the undefined value ⊥. Every question
contains only one function symbol. With a different function
representation the meaning of questions changes and hence
questions have to be asked in a different order.

Most questions are far easier to understand with finite
maps than with partial applications, as plenty of examples
in [11, 12, 5] demonstrate. Furthermore, no algorithmic de-
bugger supported λ-abstractions meaningfully before the in-
troduction of finite maps. We discuss another advantage in
Section 9.

Pope gives a detailed technical description of his imple-
mentation of finite maps in the algorithmic debugger Bud-
dha [12]. This description is specific to his implementation
and thus does not support proper comprehension of the prin-
ciples, proof of correctness and exploration of variations and
extensions. For example, if the function id was also used in
other parts of our program, would the argument of allOddC
in question 4 look like {False 7→ False, True 7→ True,

42 7→ 42, ’c’ 7→ ’c’, . . .}? Surely we want to have less
argument-result pairs, but which ones do we have to include?
To answer such questions we formally define a comprehen-
sible model of algorithmic debugging with a finite map rep-
resentation of functional values.

Our model relates algorithmic debugging to a simple graph
reduction semantics. Although we use Haskell’s syntax, all
definitions and theorems are independent of whether the
language semantics is strict or non-strict. Even though al-
gorithmic debugging with functions as partial applications
and algorithmic debugging with functions as finite maps use
rather differently structured computation trees, we describe
them in a single framework. On the practical side this in-
tegration shows how a single implementation can support
both forms of algorithmic debugging. On the theoretical
side it clarifies the differences between both variants of al-
gorithmic debugging. We prove that algorithmic debugging
with finite maps is sound; on the way we observe that finite
maps are well-defined only if certain programs are excluded,
as they are by Haskell’s type system. Model and soundness
proof allow simple experimentation with variations and ex-
tensions of algorithmic debugging; we outline a number of
useful ones.

2. OVERVIEW
Algorithmic debugging is based on the representation of

the computation, which yielded the erroneous result, as a

computation tree. Figure 1 shows two computation trees
for our tree traversal program, the standard evaluation de-
pendency tree (EDT) [10], where functions are represented
as partial applications, and the function dependency tree
(FDT), where functions are represented as finite maps. We
use strings such as rr and rrrra as nodes, for reasons dis-
cussed later. Centrally, each node of a computation tree is
labelled with a subcomputation. In the EDT and FDT the
subcomputation is a big-step reduction of a function symbol
with argument values to its result value: f M1 . . . Mk = M0.
A subcomputation on its own can be judged to be either
correct (

√
), that is, agreeing with the user’s intentions, or

incorrect (×). Each node is associated with a slice of the pro-
gram; here we associate each node with the program equa-
tion that was used to reduce the redex f M1 . . . Mk of the
label.

In algorithmic debugging the user’s yes/no answers direct
a path through the tree to a node associated with a faulty
slice [8]. If in a computation tree all the child nodes of an
incorrect node are correct, then this node is said to be faulty.
A tree is a computation tree, if the slice associated with a
faulty node is faulty, that is, the program slice disagrees
with the user’s intentions. Reformulated: if all the subcom-
putations of the children of a node are correct and the slice
associated with the node is not faulty, then the subcompu-
tation of the node itself must be correct. So a computation
tree must be compositional. If the root node of a computa-
tion tree is incorrect, then algorithmic debugging will locate
a faulty node in the tree (Propositions 1 and 3 in [8]).

The main difference between the EDT and the FDT is
their structure. In the EDT a node g N1 . . . Nl = N0 is a
child of a node f M1 . . . Mk = M0, if g N1 . . . Nl was called
from function f , more precisely, if the application g N1 . . . Nl

appears in the right hand side of the definition of f . In con-
trast, in the FDT a node g N1 . . . Nl = N0 is a child of a node
f M1 . . . Mk = M0, if the function symbol g appears in the
right hand side of the definition of f . Intuitively the func-
tion symbol is relevant, because the node f M1 . . . Mk = M0

considers g to be equivalent to its finite map representation,
which is justified by children such as g N1 . . . Nl = N0.

To prove that the FDT has the fault location property,
that is, the program equation associated with a faulty node
is faulty, we first have to clarify what we mean by a reduction
or a program equation being correct. We say that a reduction
f M1 . . . Mk = M0 is correct if and only if f M1 . . . Mk ⊒
M0 for some binary relation ⊒ that we call the intended
semantics. The intended semantics may exist in the mind
of the user or be derived from some form of specification:

Definition 1. An intended semantics is a binary rela-
tion ⊒ on terms2 M , N and O with the following consistency
properties:

1. Reflexivity: M ⊒ M

2. Transitivity: M ⊒ N ∧ N ⊒ O =⇒ M ⊒ O

3. Closure: M ⊒ N =⇒ M O ⊒ N O ∧ O M ⊒ O N

4. Least element: M ⊒ {}

5. Application: {N1 7→ M1, . . . , Nk 7→ Mk}Ni ⊒ Mi

2These computation terms will be formally defined in Defi-
nition 5.

ε
main = False

×

r

allOdd (Branch (Leaf 7) (Leaf 5)) = False

×

rr

allOddC id (Branch (Leaf 7) (Leaf 5)) True = False

×

rrr

allOddC (allOddC id (Leaf 5)) (Leaf 7) True = False

×

rrrraa

odd 7 = True

√
rrrra

allOddC id (Leaf 5) True = False

×

rrrraraa

odd 5 = False

× rrrrara

id False = False

√

ε
main = False

×

r

allOdd (Branch (Leaf 7) (Leaf 5)) = False

×

rrrrara

id False = False

√
rr

allOddC {False7→False} (Branch (Leaf 7) (Leaf 5)) True = False

×

rrrra

allOddC {False7→False} (Leaf 5) True = False

× rrr

allOddC {True7→False} (Leaf 7)True = False

√

rrrraraa

odd 5 = False

× rrrraa

odd 7 = True

√

Figure 1: EDT and FDT for the full computation of the tree traversal program

6. Abstraction: ON1 ⊒ M1 ∧ ... ∧ ONk ⊒ Mk ⇒
O ⊒ {N1 7→M1, ...,Nk 7→Mk}

The last two properties state that a finite map is a func-
tion as described by its entries. ⊒ is a pre-congruence with
{} as least element. So M ⊒ N can be read as “N approxi-
mates the value of M”. The definition leaves much freedom.
For example, for a set library both insert 2 [1] ⊒ [2,1]

and insert 2 [1] ⊒ [1,2] may hold. A runtime error is
represented as a special data constructor Error and hence
head [] ⊒ Error may hold. In this paper we just assume
that an intended semantics exists.

A program equation L = R is faulty if there exists a sub-
stitution σ such that the instance is not within the intended
semantics: Lσ 6⊒ Rσ.

Algorithmic debugging considers only those substitutions
of program equations that occurred within a computation;
therefore it locates faults in both strict and non-strict func-
tional programs.

To keep this paper self-contained we have to recapitulate
definitions and propositions of the augmented redex trail [3]
and algorithmic debugging with functions as partial appli-
cations [6].

3. THE AUGMENTED REDEX TRAIL
To relate algorithmic debugging to the computation of

a program, we need a formal description of the computa-
tion. We use the augmented redex trail (ART) [3], a data
structure that describes the computation of a functional pro-
gram in detail, including all reductions, intermediate terms

and sharing. This ART is a model of the trace used by the
Haskell tracer Hat [14]. The ART is a graph whose structure
was inspired by standard graph reduction implementations
of functional languages. Basically an ART describes a state
of a graph reduction machine, except that when a graph re-
duction step happens, the redex is not overwritten by the
reduct, but the reduct is added to the ART and redex and
reduct are connected via a reduction edge. Because nothing
is overwritten, the whole history of a computation is pre-
served. The graph structure ensures space efficient sharing.

3.1 Term Graphs
Figure 2 shows the ART P for the computation of our

example program after six reduction steps. A dotted arrow
indicates a reduction. Each node’s label, which may refer to
further nodes, is depicted inside an oval. Nodes themselves
are (possibly empty) strings of the letters f, a and r, that is,
n, m, o ∈ {f, a, r}∗. Thus nodes alone partially describe the
graph structure: f means going to the function component of
an application, a means going to the argument component
of an application, and r means following a reduction edge
to the reduct. An atom a is a function symbol f or a data
constructor C.

Definition 2 (Term graph).

label L := a atom
| n m application
| n indirection

A term graph is a partial function from nodes to labels, G :

•
ε
main

raaa
5

raaf
Leaf

raa
• •

rafaa
7

rafaf
Leaf

rafa
• •

raff
Branch

raf
• •

ra
• •

rf
allOdd

r
• •

rrffa
id

rrfff
allOddC

rrff
• •

rrf
• •

rra
True

rr
• •

rrrffaff
allOddC

rrrffaf
• •

rrrffa
• •

rrrfff
allOddC

rrrff
• •

rrrf
• •

rrr
• •

rrrraaf
odd

rrrraa
• •

rrrra
• •

rrrrff
&&

rrrrf
• •

rrrr
• •

rrrraraaf
odd

rrrraraa
• •

rrrrara
• •

rrrrarff
&&

rrrrarf
• •

rrrrar
• •

rrrrarar
•

Figure 2: The ART P of a partial computation of the tree traversal program

n 7→ L. The domain dom(G) of term graph G is the set
of nodes for which the function is defined. We sometimes
regard a term graph G as a set of tuples {(n,G(n)) | n ∈
dom(G)}.

Reduction edges are given implicitly: If and only if node
nr exists in the graph, then there is a reduction edge from
node n to node nr. So to record a reduction we have to add
at least one node. Therefore we need a special indirection
node to record the reduction of a projection such as id x =

x. In Figure 2 only node rrrrarar is an indirection node.
We will often need to follow a reduction or indirection

edge. Hence we define a relationship on nodes:

Definition 3 (Predecessor-successor relation).
Let G be a term graph and n ∈ dom(G). Then

n ≻G m ⇐⇒ m = nr ∈ dom(G) ∨
(nr /∈ dom(G) ∧ G(n) = m)

Clearly a node n has at most one unique3 successor m; but
a node m may have several predecessors n.

We will often need to follow a chain of reduction and in-
direction edges to its end:

Definition 4 (Last node). Let G be a term graph and
n ∈ dom(G). Then

⌈n⌉G = m ⇐⇒ n ≻∗
G m ∧ ∄o. m ≻G o

If there is no infinite sequence of successors, then the last
node is defined and it is always unique. For example, in
the term graph P of Figure 2, ⌈ε⌉P = rrrr and ⌈rrrrara⌉ =
rrrraraa.

3.2 Programs
We still have to define how we construct an ART for a par-

ticular program. Our programs are applicative term rewrit-
ing systems such as the program in the introduction.

3In an ART indirection nodes are never reduced, i.e., G(n) =
m =⇒ nr /∈ dom(G); so for ARTs we could simplify the
definition.

Definition 5 (Various terms).

term M, N := a atom
| n node
| x variable
| M N application

Terms may contain both nodes and variables. A label term
is a term that does not contain variables. A program term
is a term that does not contain nodes. A computation term
is a term that contains neither variables nor nodes.

Each atom a is associated with a natural number, its arity.
A pattern P is a program term without function symbols.
fP1 . . . Pn = R is a program equation, provided that f is a
function symbol of arity n and P1 . . . Pn are patterns and R
is a program term such that the variables of R are a subset
of the variables of fP1 . . . Pn. A program is a set of program
equations. We assume that the meaning of each predefined
function such as (&&) and mod is given by a possibly infinite
set of program equations.

3.3 Augmented Redex Trails
Augmented redex trails (ARTs) are defined inductively.

The graph representation of an initial term M , graph(ε, M),
is an ART. If G is an ART and G reduces in one step with
program P to G′, that is, G →P G′, then G′ is an ART:

Definition 6 (Augmented redex trail). Let P be a
program and M a computation term. A term graph G with
graph(ε, M) →∗

P G is an augmented redex trail (ART) for
initial term M and program P .

Figure 3 defines all functions used in our definition of
ARTs. Detailed explanations are given in [3].

Figure 2 shows one of many ARTs for our example pro-
gram. The reduction relation is non-deterministic and hence
ARTs can describe computations of strict and non-strict lan-
guages and aborted computations. In later examples F de-
notes the ART of the full computation of our tree traversal
program.

ARTs are finite and acyclic (see Proposition 7.2 in [3]).
Hence the last node of a chain ⌈n⌉G is defined for any node
n, and so is matchG(n, M) (cf. Section 7 in [3]).

The term graph for a given label term:

graph(n, a) = {(n, a)}
graph(n,m) = {(n, m)}

graph(n, M N) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

{(n, M N)} , if M , N are nodes

{(n, M na)} ∪ graph(na, N)

, if only M is a node

{(n, nf N)} ∪ graph(nf, M)

, if only N is a node

{(n, nf na)}∪graph(nf, M)∪graph(na, N)

, otherwise

Matching is defined inductively over the structure of the
matched label term:

matchG(o, a)= (G(o) = a)

matchG(o, M N)=
∃m, n.(G(o) = m n) ∧

matchG(if M is a node then m else ⌈m⌉G , M) ∧
matchG(if N is a node then n else ⌈n⌉G , N)

matchG(o, m)= (o = m)

The reduction relation →P on term graphs for program P
is defined as follows. If

• G is a term graph with n ∈ dom(G) and nr /∈ dom(G),

• L = R is a program equation of the program P ,

• σ is a substitution replacing variables by nodes,

• matchG(n, Lσ),

then G →P,n G ∪ graphG(nr, Rσ) with program equation L =
R and substitution σ.

Figure 3: Definitions for the ART

4. COMPUTATION TREES
It is a central property of the ART that every reduc-

tion step performed in its construction can easily be recon-
structed from it by traversing a small part of the graph.

4.1 Most Evaluated Forms
Because of reduction edges, a single node of a term graph

usually represents many computation terms. An algorithmic
debugger mostly shows values and hence we are interested
in the most evaluated form represented by a given node.
Because an ART may contain unevaluated expressions (in-
complete, aborted computation or lazy evaluation) we speak
of “most evaluated forms” and not of values. To construct a
most evaluated form we always follows reduction and indi-
rection edges. The most evaluated form (mef) of the node ε
of the ART P in Figure 2 is (&&) True ((&&) (odd7) (odd

5)), in the ART F it is False. We have to decide whether
we want to represent functional values as partial applica-
tions (P) or finite maps (M). For example, mefP

F (rrffa) = id

and mefM

F (rrffa) = {False 7→ False}.

Definition 7 (Most evaluated form mefP

G).

mefP

G(n) = mefTP

G(G(⌈n⌉G))

mefTP

G(a) = a

mefTP

G(mn) = mefP

G(m) mefP

G(n)

For example:

mefP

P(rrffa) = mefTP

P(P(⌈rrffa⌉P))

= mefTP

P(P(rrffa)) = mefTP

P(id) = id

For finite maps we have to extend our definition of compu-
tation terms by the alternative form {N1 7→ M1, . . . , Nk 7→
Mk} for k ≥ 0.

Definition 8 (Most evaluated form mefM

G).

mefM

G (n) =

8

>

<

>

:

fMapG(n), if M = f N1...Nk ∧ 0≤ k<arity(f)

{} , if M = f N1...Nk ∧ k≥arity(f)

M , otherwise

where M = meaG(n)

meaG(n) = meaTG(G(⌈n⌉G))

meaTG(a) = a

meaTG(mn) = meaG(m) mefM

G (n)

fMapG(n) = { mefM

G (o) 7→ mefM

G (m)

| G(m) = n′ o ∧ n′ ≻∗
G n ∧ mefM

G (m) 6= {} }

Let us first consider two examples:

mefM

P(rrffa)

= (meaP(rrffa) = id)

fMapP(rrffa)

={ mefM

P(o) 7→ mefM

P(m)

| P(m) = n′ o ∧ n′ ≻∗
P rrffa ∧ mefM

P(m) 6= {} }

=

{mefM

P(rrrraraa) 7→mefM

P(rrrrara)}, if mefM

P(rrrrara) 6= {}
{} , otherwise

= (meaP(rrrrara) = odd 5 =⇒ mefM

P(rrrrara) = {})
{}

So the finite map is empty, because the result of the single
application of the function, odd 5, was not reduced, but in
the ART F of the full computation:

mefM

F (rrffa)

= (meaF (rrffa) = id)

fMapF (rrffa)

=

{mefM

F (rrrraraa) 7→mefM

F (rrrrara)}, if mefM

F (rrrrara) 6= {}
{} , otherwise

={ False 7→ False }
The most evaluated applicative form meaG(n) is defined

identically to the most evaluated form with partial appli-
cations mefP

G(n), except that arguments of applications are
represented with finite maps. The most evaluated applica-
tive form meaG(n) always contains an atom in the left-most
position (it is an n-ary application of an atom or just an

atom). The most evaluated form with finite maps mefM

G (n)
does not contain any function symbol, only data construc-
tors, applications and finite maps.

The definition of the most evaluated form with finite maps
mefM

G (n) distinguishes three cases. A partial application of a
function symbol is represented as a finite map. The applica-
tion of a function symbol of arity n to n or more arguments
identifies an unevaluated term and is simply represented as
{}. Hence our soundness proof will also demonstrate that
information about unevaluated terms is unnecessary for al-
gorithmic debugging4. An empty map {} represents both
an unevaluated term and a functional value that was never
applied to as many arguments as demanded by its arity.
Distinguishing the two cases just would complicate the for-
malisation. Finally a most evaluated form can be a data
constructor or an application of a data constructor. This
representation is left unchanged. So not all functional val-
ues are represented as finite maps. Partial applications of
data constructors are still simply represented as partial ap-
plications of data constructors.

A function map fMapG(n) is defined recursively, locating
arguments and the result by locating all applications of the
function at node n. To keep finite maps small, a finite map
comprises applications of a specific node, not of a function
symbol. For the code

main = map increase [1,2] ++ map increase [3,4]

the ART contains two nodes for increase and hence we will
obtain the equations

map {1 7→ 2, 2 7→ 3} [1,2] = [2,3]

map {3 7→ 4, 4 7→ 5} [3,4] = [4,5]

and not the longer equations

map {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5} [1,2] = [2,3]

map {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5} [3,4] = [4,5]

In the definition the condition mefM

G (m) 6= {} avoids super-
fluous collection of partial applications. Otherwise we would
have

mefM

P(rrffa) = { {} 7→ {} }
The definition yields finite maps of the form {1 7→ {2 7→
3, 3 7→ 4}}, but in practice we may prefer to display them
as {1 2 7→ 3, 1 3 7→ 4}.

4.2 Well-Definedness of Finite Maps
For partial applications the most evaluated form is well-

defined, because ARTs are acyclic. However, the definitions
of mefM

G and fMapG are mutually recursive and may not be
well-founded. The following program exposes the problem:

main = g id

id x = x

g h = (h h) 4

Figure 4 shows the ART I of the full computation. We have:

mefM

I (ra) = fMapI(ra)

= {mefM

I (ra) 7→ mefM

I (rrf), mefM

I (rra) 7→ mefM

I (rr)}
= {mefM

I (ra) 7→ {4 7→ 4}, 4 7→ 4}
4We could drop this case and thus include unevaluated terms
as we do in the definition of mefP

G . Or we could define

mefP

G(mn) = {}, if mefP

G(m) mefP

G(n) = f N1 . . . Nk ∧ k ≥
arity(f) and thus exclude unevaluated terms there as well.

• ε
main

ra
id

rf
g

r
• •

rra
4

rrf
• •

rr
• •

rrfr
•

rrr
•

Figure 4: The ART I of the full computation of a

program requiring rank-2 types

• ε
main

ra
id

rf
g

r
• •

rra
4

rrff
•

rrfa
•

rrf
• •

rr
• •

rrfr
•

rrr
•

Figure 5: The ART J of the full computation of

a program requiring rank-2 types with additional

indirections

So mefI(ra) is clearly not well defined. However, the above
program is not accepted by the Haskell 98 type system nor
any other type system based on the Hindley-Milner type
system [7]. Such type systems disallow applying a parameter
to itself as occurs here in function g. The Hindley-Milner
type system and its extensions for Haskell 98 or ML have
the property that every polymorphic function is instantiated
monomorphically at every occurrence where it is used in the
program. Hence we can also type an ART by assigning a
monomorphic type to each node. In the definition of fMapG

for a node n the nodes o and m, to which mefM

G is applied
recursively, have types that are components (argument and
result type respectively) of the functional type of n. So the
arguments of the recursive applications are strictly smaller
and thus mefM

G is well-defined.

4.3 Extension: More Indirection Nodes
We could define finite maps for any program if we mod-

ified our definition of ARTs. Instead of using indirection
nodes only for projections we would insert an indirection for
all variables (or just all variables of functional type) by mod-
ifying our construction of the graph of a reduct as follows:

graph(n, a) = {(n, a)}
graph(n,m) = {(n, m)}

graph(n, M N) = {(n, nf na)}∪graph(nf, M)∪graph(na, N)

Figure 5 shows the ART J for the full computation of our
example program with these additional indirection nodes.
The additional indirections enable us to distinguish different
instances of the same function:

mefM

J (ra) = fMapJ (ra)

= {mefM

J (rrfa) 7→ mefM

J (rrf)

, mefM

J (rra) 7→ mefM

J (rr) }
= {{mefM

J (rra) 7→mefM

J (rr)} 7→
{mefM

J (rra) 7→mefM

J (rr)}
, mefM

J (rra) 7→ mefM

J (rr) }
= {{4 7→ 4} 7→ {4 7→ 4}, 4 7→ 4 }

Such additional indirections would also make some finite
maps smaller and thus simplify questions. For example, for
the standard recursive definition of the function map the eval-
uation of map odd [2,7] yields the equations

map {2 7→ False, 7 7→ True} [2,7] = [False, True]

map {2 7→ False, 7 7→ True} [7] = [True]

map {2 7→ False, 7 7→ True} [] = []

because there is only one shared node for the function odd.
With additional indirections we would have separate nodes
and thus obtain:

map {2 7→ False, 7 7→ True} [2,7] = [False, True]

map {7 7→ True} [7] = [True]

map {} [] = []

However, for Haskell 98 and ML additional indirection
nodes are not necessary but would yield larger traces. We
are still exploring further alternatives for tracing programs
independent of any type system.

4.4 Equations
From a redex node n, that is, a node n with nr ∈ dom(G),

we can reconstruct an equation to be displayed as a question
in an algorithmic debugging session. An equation is a pair
of a redex, that is, an application of a function symbol, and
a most evaluated form:

Definition 9 (Redexes and equations). Let n be a
redex node in G.

equationP

G(n) = redexP

G(n) = mefP

G(n)

equationM

G (n) = redexM

G (n) = mefM

G (n)

redexP

G(n) = mefTP

G(G(n))

redexM

G (n) = meaTM

G (G(n))

To construct a redex for a redex node n we do not follow
the reduction edge from n, but otherwise the redex is defined
like the most evaluated form.

4.5 EDT and FDT
Both EDT and FDT have a tree node for each redex node

in the ART. In the preceding subsection we defined the equa-
tions of the nodes, which differ only in how functional values
are represented. Now we have to define the structures of the
two trees. Hence we have to relate instances of right-hand-
sides to instances of left-hand-sides. The structure of ART
nodes makes it easy to determine for a given node n the
redex node parent(n) that caused its creation:

Definition 10 (ART parent node).

parent(nr) = n

parent(nf) = parent(n)

parent(na) = parent(n)

parent(ε) = undefined

For example, in Figure 2 parent(rr) = r and parent(rrfff) = r.
We can identify the function node of a redex node:

Definition 11 (Function node). Let n be a redex node
of an ART G.

funG(n) =

(

n , if G(n) = a

funG(⌈m⌉G) , if G(n) = m o

Definition 12 (EDT, FDT). The set of tree nodes,
treeNodesG, is the set of redex nodes.

The evaluation dependency tree (EDT) for an ART G
consists of the tree nodes treeNodesG labelled with equationP

G

and related via parent [6].
The function dependency tree (FDT) for an ART G con-

sists of the tree nodes treeNodesG labelled with equationM

G

and related via parentFDTG = parent · funG.

The root of any non-empty EDT or FDT is ε.
The EDT is basically the proof tree of a natural semantics

for a call-by-value computation that may skip some subcom-
putations. The structure of the EDT is determined by the
parent of the application of a redex, the structure of the
FDT is determined by the parent of the function symbol of
a redex. In a first-order program function symbol and ap-
plication always appear together in the right hand side of a
definition. Hence then the EDT and the FDT are identical
(there are also no functional arguments to be displayed as
finite maps).

5. SOUNDNESS PROOF FOR THE FDT
Recall from Section 2 that the intended semantics is a bi-

nary relation ⊒ on terms meeting six consistency properties.
Furthermore:

Definition 13 (Correctness and faultiness).

FDT tree node n correct ⇔ redexM

G (n) ⊒ mefM

G (n)

all FDT children of
tree node n correct

⇔
∀m∈treeNodesG .
parentFDTG(m)=n ⇒
tree node m correct

FDT tree node n faulty ⇔
FDT tree node n incorrect
and
all FDT children of
tree node n correct

program equation
L = R faulty

⇔ ∃σ. Lσ 6⊒ Rσ

We have to prove that, if an FDT tree node is faulty, then
its associated program equation is faulty.

To do so for any FDT tree node n, we split the compu-
tation redexM

G (n) = mefM

G (n) into an initial reduction step
from redex to reduct, redexM

G (n) = reductM

G (n), and a re-
maining computation from reduct to most evaluated form,

reductM

G (n) = mefM

G (n). We will prove that, if n is faulty,
then redexM

G (n) 6⊒ reductM

G (n). From the latter immediately
follows, that the associated program equation is faulty:

Proposition 1. Let n be a redex node of ART G. If
redexM

G (n) 6⊒ reductM

G (n), then its associated program equa-
tion is faulty.

Proof. Analogous to Proposition 8.9 of [3]. redexM

G (n) 6⊒
reductM

G (n) is an instance of the associated program equa-
tion.

We still need to define how we reconstruct from a redex
node n of an ART the reduct of the reduction, that is, the
instance of the right hand side of the program equation used
for the reduction. All nodes that have n as parent form
the right-hand-side of the program equation and therefore
belong to the reduct. So the reduct comprises of all nodes
that are reachable from the top node of the reduct via the
node letters f and a. Shared subterms are represented in
their most evaluated form. The reduct body reductBM

G (n) is
the part of a reduct below the top node n.

Definition 14 (Reduct of a redex node).

reductM

G (n) = reductBM

G (nr)

reductBM

G (n) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a , if G(n) = a

mefM

G (m), if G(n) = m

reductBM

G (nf) reductBM

G (na)
, if G(n) = nfna

reductBM

G (nf) mefM

G (o)
, if G(n) = nf o and o 6= na

mefM

G (m) reductBM

G (na)
, if G(n) = m na and m 6= nf

mefM

G (m) mefM

G (o)
, if G(n)=m o, m 6=nf and o 6=na

For example:

reductM

F (r)

= reductBM

F (rr)

= reductBM

F (rrf) reductBM

F (rra)

= reductBM

F (rrff) mefM

F (ra) reductBM

F (rra)

= reductBM

F (rrfff) reductBM

F (rrffa) mefM

F (ra) reductBM

F (rra)

= allOddC id (Branch (Leaf 7) (Leaf 5)) True

Now to the proof: Proposition 2 makes a statement about
the intended semantics of a function symbol: if certain FDT
nodes are correct, then the function symbol is correctly ap-
proximated by the finite map. Proposition 3 makes a state-
ment about the intended semantics of application: applying
a most evaluated form (usually a finite map) to another most
evaluated form is correctly approximated by the most eval-
uated form of the application. Based on these two proposi-
tions we prove by a structural induction on the right-hand-
side of a program equation that algorithmic debugging with
finite maps is sound (Corollary 1). So for any future varia-
tion of algorithmic debugging with finite maps we will aim to
ensure that Propositions 2 and 3 still hold and then sound-
ness of that variation is guaranteed.

The complete proofs are in the appendix.

parent(n)

• •

• •m3

n

• •

• •

m2 • •

• •

m1 • •

m4 • •

Figure 6: Extract of an ART concentrating on one

reduct to outline the proof idea of Proposition 4 on

the Correctness of the Reduct

Proposition 2. If G(n) = f for some function symbol
f with arity(f) > 0 and all FDT children of parent(n) are
correct, then f ⊒ fMapG(n).

Proof. Because arity(f) > 0, we have n /∈ treeNodesG
and mefM

G (n) = fMapG(n).
We prove the more general property that if n ∈ dom(G)

with n /∈ treeNodesG and meaG(n) = f N1 . . . Nk for some
function symbol f and computation terms N1 . . . Nk with
arity(f) > k ≥ 0, and all FDT children of parentFDTG(n)

are correct, then meaG(n) ⊒ mefM

G (n).
Let j = arity(f) − k. Proof by induction on j.

Proposition 3. In the FDT application is in the intended
semantics, that is,

G(n) = p o =⇒ mefM

G (p) mefM

G (o) ⊒ mefM

G (n)

Proof. Proof by case analysis on meaG(p).

Proposition 4 (Correctness of the Reduct).
If n is a tree node and all its FDT children are correct, then
reductM

G (n) ⊒ mefM

G (n).

Proof. reductM

G (n) = reductBM

G (nr). reductBM

G (nr) ⊒
mefM

G (n) follows from the more general property: If n ∈
dom(G) and all FDT children of parent(n) are correct, then
reductBM

G (n) ⊒ mefM

G (n).
Induction on heightG(n) = max{|o| | o ∈ {f, a}∗ ∧ no ∈

dom(G)}.

The inductive proof of Proposition 4 is outlined in Fig-
ure 6. It shows in light grey all the nodes representing
a right-hand-side of a program equation, plus their parent
node parent(n) and one node m4 that shares a node of this
right-hand-side. The base step of the induction covers the
leaf nodes, that is atom nodes and application nodes point-
ing to shared nodes (indicated by edges going to the bottom
left). The induction step then covers inner application nodes
such as n. The nodes m1, m2, m3 and m4 are the FDT
children of the node parent(n). Roughly, Proposition 2 is
needed for the base step and Proposition 3 for the induction
step.

ε
main = False

×

r

allOdd (Branch (Leaf 7) (Leaf 5)) = False

×

rr

flip (&&) False True = False

√
rrf

allOddC id (Branch (Leaf 7) (Leaf 5)) = flip (&&) False

×

rrfrfa

allOddC id (Leaf 5) = flip (&&) False

× rrfr

allOddC (flip (&&) False) (Leaf 7) = flip (&&) False

√

rrfrfaraa

odd 5 = False

× rrfrfara

id False = False

√
rrfrraa

odd 7 = True

√
rrfrra

flip (&&) False True = False

√

ε
main = False

×

r

allOdd (Branch (Leaf 7) (Leaf 5)) = False

×

rrrrara

id False = False

√
rrf

allOddC {False7→False} (Branch (Leaf 7) (Leaf 5)) = {True 7→ False}

×

rrfrfa

allOddC {False7→False} (Leaf 5) = {True 7→ False}

× rrfr

allOddC {True7→False} (Leaf 7) = {True 7→ False}

√

rrfrfaraa

odd 5 = False

×

rrfr

flip {True7→False7→False} False True = False

√

rrfrraa

odd 7 = True

√

rr

flip {True7→False7→False} False True = False

√

Figure 7: EDT and FDT for the full computation of the example variant

Corollary 1 (FDT is a computation tree).
If tree node n is faulty, then redexM

G (n) 6⊒ reductM

G (n).

Proof. Let n be a tree node. According to Proposi-
tion 4 we have reductM

G (n) ⊒ mefM

G (n). Assume redexM

G (n) ⊒
reductM

G (n). By transitivity redexM

G (n) ⊒ mefM

G (n) in con-
tradiction to our hypothesis that the tree node is incorrect.
Hence redexM

G (n) 6⊒ reductM

G (n).

6. TRUSTING
In Definition 12 of the EDT and the FDT every redex

node of the ART becomes a tree node. However, in our
example EDT and FDT of Figure 1 we excluded reductions
of predefined functions such as (&&) and mod. We can do
so, because we trust the definitions of these functions to be
correct. If we trust definitions to be correct, then tree nodes
associated with these definitions must be correct. Hence the
algorithmic debugger does not have to ask about these tree
nodes. Even better, we can remove such trusted tree nodes
from the tree. A trusted tree node may still have children
(common for higher-order functions in the EDT; also we
may trust a testing scaffold calling our suspected code); so
if we remove a trusted tree node, its parent node gains the
children of the removed node.

As noted already by Shapiro [13], algorithmic debugging is
still sound when trusting is applied. Trusting applies to any
computation tree, independent of its particular definition
and conceptually is applied after constructing the complete

computation tree. To save time and space, it is desirable in
practise to avoid tracing and constructing computation tree
nodes for trusted code.

7. AN EXAMPLE VARIANT
What happens if we make a small change to our example

program, if we remove the Boolean argument b from the
equations of allOddC?

allOddC c (Leaf n) = flip (&&) (c (odd n))

allOddC c (Branch l r) = allOddC (allOddC c r) l

where the function flip swaps arguments:

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

Figure 7 shows the EDT and FDT for this variant. The
new EDT includes a node labelled

allOddC (flip (&&) False) (Leaf 7) = flip (&&) False

whereas the corresponding node of the FDT is labelled

allOddC {True 7→ False} (Leaf 7) = {True 7→ False}

The former question requires us to interpret the function
symbols allOddC, flip and (&&). The latter expresses that
the finite map {True 7→ False} (indeed correctly) approx-
imates the functional value of allOddC {True 7→ False}

(Leaf 7). Thus this example demonstrates the occurrence
of a functional value as result value.

The structure of the FDT is the same as the one for our
original program, whereas the structure of the EDT differs
substantially compared to the EDT of the original program.
In fact, the structure of the new EDT is similar to the struc-
ture of the FDT. Our simple and commonly used program
refactoring does not change the occurrences of function sym-
bols in an equation. Thus it leaves the structure of an FDT
unchanged, whereas it may substantially change the struc-
ture of an EDT.

8. RELATED WORK
Naish [8] gives an abstract description of algorithmic de-

bugging, independent of any particular programming lan-
guage. He proves that algorithmic debugging is complete
in the sense that if the program computation produces a
wrong result, then algorithmic debugging will locate a fault.
No such general proof exists for the soundness of algorith-
mic debugging, that is, the property that the indicated fault
location is indeed faulty, because soundness depends on the
exact definition of the computation tree.

For lazy functional programming languages Nilsson and
Sparud [10] introduced the evaluation dependency tree (EDT)
as computation tree. The EDT has the property that the
tree structure reflects the static function call structure of
the program and all arguments and results are in their most
evaluated form. For many years the EDT was considered to
be the only useful computation tree for functional programs.

Caballero et al. [2] give a formal definition of the EDT
for a lazy functional logic language and outline a soundness
proof of algorithmic debugging. They introduced the for-
malisation of the intended semantics that we extend. Their
approach relies on the EDT being defined through a high-
level non-deterministic big-step semantics. This big-step se-
mantics is unsuitable for defining the FDT, because it would
be hard to relate the occurrence of a function symbol in an
argument with an application of the function symbol. In
contrast, the augmented redex trail (ART) [3] records such
information directly in its graph structure and as an explicit
data structure it is also easier to manipulate. A formal defi-
nition of the EDT based on the ART together with a sound-
ness proof are already given in [6]. The soundness proof for
the FDT is similarly structured but longer, because it has
to handle the finite map representation and its properties
(cf. Propositions 2 and 3). Without additional work it also
covers the representation of unevaluated subexpressions by
a special symbol (here {}).

Pope [11, 12] introduced the idea of representing func-
tional values as finite maps into algorithmic debugging of
higher-order functional languages and implemented it in the
Haskell debugger Buddha. He demonstrates its usefulness
and describes the implementation but gives no formal model.
He does not use the name FDT but considers it as a variant
of the EDT. Pope uses the term intensional style for the
partial application representation and extensional style for
the finite map representation of functional values.

The ART is a model of the trace used by the Haskell
tracer Hat, which includes an EDT-based algorithmic de-
bugger. Hat records the trace in a file. Hat has been used
for debugging the nhc98 compiler [4] and a chess end-game
solver that executes 6 million reductions, producing traces
of several hundred megabytes, about 40-50 bytes per reduc-

tion [14]. The definition of equationP

G demonstrates that the
algorithmic debugger needs to read only a tiny fragment of
a huge trace file to construct an equation. Even longer com-
putations can be debugged if the majority of the program is
trusted and thus its reductions are not recorded in the trace.

Both Nilsson [9] and Pope [12] developed piecemeal trac-
ing schemes to reduce the trace size of algorithmic debuggers
for lazy functional languages. Initially only a top piece of
the computation tree is recorded; when the fault localisation
process reaches the fringe of this piece, the computation is
re-executed and another piece is added to the recorded tree.
These schemes require complex implementations and still
produce relatively large traces.

Braßel et al. [1] developed an alternative approach to EDT-
based algorithmic debugging of lazy functional languages
that reduces the trace size by at least four orders of mag-
nitude. The trace is only a sequence of integers that tells
a call-by-value evaluator after how many steps to skip a re-
dex so that it produces the same final result as a lazy com-
putation. To construct an equation, the lazy call-by-value
evaluator re-executes a part of the computation. Overall
the time for trace generation and equation construction is
similar to that of Hat. Our paper should provide a good
foundation for determining how the lazy call-by-value eval-
uator of Braßel et al. would need to be modified to support
FDT-based algorithmic debugging.

9. SUMMARY AND FUTURE WORK
We formally defined the function dependency tree (FDT),

a computation tree for algorithmic debugging of higher-order
functional programs that represents functional values as fi-
nite maps. We defined the FDT in terms of the augmented
redex trail (ART) a trace that describes the graph reduction
computation of a functional program in detail, but indepen-
dent of any evaluation order. Thus we proved the soundness
of algorithmic debugging with the FDT, that is, that every
located fault is indeed a fault. All definitions and theorems
apply to both strict and non-strict functional languages.

Every occurrence of a function symbol in the right hand
side of an equation creates at every reduction of this equa-
tion a new function node in the ART. The finite map of
such a function node contains only the arguments (and re-
sults) to which this node was applied, not all arguments
(and results) of the function symbol. This smaller set is
sufficient for soundness. A function that is passed as a pa-
rameter does not create a new node in the ART and hence
self-application of a function passed as parameter creates an
ART for which the “finite”map of the function is ill-defined;
because of cyclic dependencies it would be infinite. This is
not a problem for Haskell 98 or Standard ML, because the
Hindley-Milner type system excludes such self-application.
Alternatively we could modify the definition of the ART
to include more indirection nodes: thus we could obtain fi-
nite maps for any program and even smaller, more specific
finite maps for many programs. We are still looking for
alternative solutions that do not require such additional in-
direction nodes but still yield relatively simple definitions of
finite maps.

The ART is a model of the trace used by the Haskell tracer
Hat. Thus this paper shows how little effort is needed to ex-
tend Hat such that it supports algorithmic debugging with
both partial applications and finite maps. A prototype ex-
ists, but in practise construction of the finite maps is time

consuming and hence we are working on more efficient algo-
rithms.

There is a clear symmetry between the definitions of the
standard evaluation dependency tree (EDT) and the FDT.
The close relationship suggests that sound mixtures of the
two computation trees exist and further variations, for ex-
ample with equations that do not respect the arity of the
original function definitions, are worth exploring.

The FDT also enables algorithmic debugging of top-level
definitions independent of local definitions made in where-
or let-clauses. The idea is that algorithmic debugging could
ask only questions about functions defined at the top-level.
When a faulty function is identified, the fault is either in the
definition of that function itself or its local function defini-
tions. This kind of low granularity algorithmic debugging
requires less questions and it is still possible to locate the
fault more precisely by later asking questions about locally
defined functions. Such low granularity algorithmic debug-
ging is unsound for the EDT, because the call site for a
function passed out of a local scope can be anywhere in
the program. In contrast, locally defined function symbols
can only occur within the surrounding definition. To prove
the soundness of this algorithmic debugging scheme, we will
have to extend our ART model to programs with local func-
tion definitions.

Acknowledgement
This work has been partially supported by the United King-
dom under EPSRC grant EP/C516605/1.

10. REFERENCES
[1] B. Braßel, M. Hanus, S. Fischer, F. Huch, and

G. Vidal. Lazy call-by-value evaluation. In ICFP ’07:
Proceedings of the 2007 ACM SIGPLAN International
Conference on Functional Programming, pages
265–276, 2007.

[2] R. Caballero, F. J. López-Fraguas, and
M. Rodŕıguez-Artalejo. Theoretical foundations for
the declarative debugging of lazy functional logic
programs. In H. Kuchen and K. Ueda, editors,
Functional and Logic Programming, FLOPS 2001,
LNCS 2024, pages 170–184. Springer, 2001.

[3] O. Chitil and Y. Luo. Structure and properties of
traces for functional programs. In I. Mackie, editor,
Proceedings of the 3rd International Workshop on
Term Graph Rewriting, Termgraph 2006, ENTCS
176(1), pages 39–63, 2007.

[4] O. Chitil, C. Runciman, and M. Wallace.
Transforming Haskell for tracing. In Proceedings of the
14th International Workshop on Implementation of
Functional Languages (IFL 2002), LNCS 2670, pages
165–181, 2003.

[5] T. Davie and O. Chitil. Display of functional values
for debugging. In Draft Proceedings of the 18th
International Symposium on Implementation and
Application of Functional Languages, IFL 2006, pages
326–337. Eötvös Loránd University, September 2006.
Technical Report No 2006-SO1.

[6] Y. Luo and O. Chitil. Proving the correctness of
algorithmic debugging for functional programs. In
Trends in Functional Programming, volume 7, pages
19–34. Intellect Books, 2007.

[7] R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348–375, Dec. 1978.

[8] L. Naish. A declarative debugging scheme. Journal of
Functional and Logic Programming, 1997(3), 1997.

[9] H. Nilsson. Tracing piece by piece: affordable
debugging for lazy functional languages. In
Proceedings of the 1999 ACM SIGPLAN International
Conference on Functional Programming, pages 36–47.
ACM Press, 1999.

[10] H. Nilsson and J. Sparud. The evaluation dependence
tree as a basis for lazy functional debugging.
Automated Software Engineering: An International
Journal, 4(2):121–150, Apr. 1997.

[11] B. Pope. Declarative debugging with Buddha. In
Advanced Functional Programming, 5th International
School, AFP 2004, LNCS 3622, pages 273–308.
Springer Verlag, September 2005.

[12] B. Pope. A Declarative Debugger for Haskell. PhD
thesis, The University of Melbourne, Australia, 2006.

[13] E. Y. Shapiro. Algorithmic Program Debugging. MIT
Press, 1983.

[14] M. Wallace, O. Chitil, T. Brehm, and C. Runciman.
Multiple-view tracing for Haskell: a new Hat. In
Proceedings of the 2001 ACM SIGPLAN Haskell
Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001.

Appendix: Complete Proofs
The following lemma will be used several times.

Lemma 1. An application that is not the application of
a function symbol f to arity(f) arguments cannot be a tree
node, that is,

G(n) = p o ∧
meaG(p) = a N1 . . . Nk ∧
(a = C ∨ arity(a) 6= k + 1)

=⇒ n /∈ treeNodesG

Proof. Assume n ∈ treeNodesG . Then redexM

G (n) =
meaTG(p o) = meaG(p) mefM

G (o) = a N1 . . . Nk mefM

G (o). Fol-
lowing Lemma 8.9 of [3] redexM

G (n) is an instance of the
left-hand-side of a rule. The left-hand-side of a rule is an
application of a function symbol f to exactly arity(f) pat-
terns. Because of this contradiction our original assumption
that n ∈ treeNodesG must be wrong.

Proof of Proposition 2. We prove the more gen-
eral property that, if n ∈ dom(G) with n /∈ treeNodesG
and meaG(n) = f N1 . . . Nk for some function symbol f
and computation terms N1 . . . Nk with arity(f) > k ≥ 0,
and all FDT children of parentFDTG(n) are correct, then

meaG(n) ⊒ mefM

G (n).
Let j = arity(f) − k. Induction on j.

case j = 1:
Let m ∈ dom(G) with G(m) = n′ o and n′ ≻∗

G n and
mefM

G (m) 6= {}.
Assume m /∈ treeNodesG . Then we have meaG(m) =
f N1 . . . Nk mefM

G (o). Because arity(f) = k + 1 we get
mefM

G (m) = {} in contradiction to our hypothesis that

mefM

G (m) 6= {}. Hence our assumption is wrong and
m ∈ treeNodesG .

We have redexG(m) = meaTG(G(m)) = meaTG(n′ o) =
meaG(n′) mefM

G (o) = f N1 . . . Nk mefM

G (o). Furthermore
parentFDTG(m) = parentFDTG(n). Therefore m is a

child of parentFDTG(n) and so redexG(m) ⊒ mefM

G (m)

and hence we know that meaG(n) mefM

G (o) ⊒ mefM

G (m).

Because we have this for any m, the abstraction prop-
erty of the intended semantics gives us meaG(n) ⊒
{mefM

G (o) 7→ mefM

G (m) | G(m) = n′ o ∧ n′ ≻∗
G n ∧

mefM

G (m) 6= {}}. Therefore meaG(n) ⊒ fMapG(n) =

mefM

G (n).

case j > 1:
Let p ∈ dom(G) with G(p) = n′ o and n′ ≻∗

G n.

From arity(f) − k = j > 1 follows arity(f) > k +
1. Together with meaG(n′) = meaG(n) = f N1 . . . Nk

Lemma 1 gives us p /∈ treeNodesG , so pr /∈ dom(G).

So mea(p) = meaG(n′) mefM

G (o) = meaG(n) mefM

G (o) =
f N1 . . . Nk mefM

G (o). Because we have arity(f) − (k +
1) = j − 1 and so arity(f) > k + 1, we can apply
the induction hypothesis. For all m ∈ treeNodesG
with parentFDTG(m) = parentFDTG(n) we know that
parentFDTG(m) = parentFDTG(p). So for all m ∈
treeNodesG we have parentFDTG(m) = parentFDTG(p)

implies redexG(m) ⊒ mefM

G (m). So meaG(p) ⊒ mefM

G (p).

Together with meaG(p) = meaG(n) mefM

G (o) we obtain
that meaG(n) mefM

G (o) ⊒ mefM

G (p).

Because we have this last relationship for any p we ob-
tain with the abstraction property of the intended se-
mantics meaG(n) ⊒ {mefM

G (o) 7→ mefM

G (p) | G(p) =
n′ o ∧ n′ ≻∗

G n ∧ mefM

G (p) 6= {}}. The condition
mefM

G (p) 6= {} is not necessary, but the relationship
still holds with additional conditions. We conclude that
meaG(n) ⊒ fMapG(n) = mefM

G (n). 2

Proof of Proposition 3. Case analysis on meaG(p):

case meaG(p) = f N1 . . . Nk and arity(f) > k ≥ 0:
So mefM

G (p) = fMapG(p) = {mefM

G (o′) 7→ mefM

G (m) |
G(m) = p′ o′ ∧ p′ ≻∗

G p ∧ mefM

G (m) 6= {}}.
case mefM

G (n) = {}:
Trivially mefM

G (p) mefM

G (o) ⊒ {} = mefM

G (n).

case mefM

G (n) 6= {}:
Then mefM

G (o) 7→ mefM

G (n) ∈ fMapG(p). With the

application property we get mefM

G (p) mefM

G (o) =
fMapG(p) mefM

G (o) ⊒ mefM

G (n).

case meaG(p) = f N1 . . . Nk and arity(f) ≤ k:
According to Lemma 1 n /∈ treeNodesG . So meaG(n) =
meaG(p) mefM

G (n) = f N1 . . . Nk mefM

G (n) and arity(f) ≤
k. Therefore mefM

G (n) = {}. Clearly mefM

G (p) mefM

G (o) ⊒
{} = mefM

G (n).

case meaG(p) 6= f N1 . . . Nk:
Then meaG(p) = C N1 . . . Nk for some constructor C
and terms N1 . . . Nk. Lemma 1 gives us n /∈ treeNodesG .
So meaG(n) = meaG(p) mefM

G (n) = C N1 . . . Nk mefM

G (n).
Hence mefM

G (n) = meaG(n). Therefore we know that
mefM

G (p) mefM

G (o) = meaG(p) mefM

G (o) = meaG(n) =
mefM

G (n). 2

Proof of Proposition 4 (Correctness of Reduct).
reductM

G (n) = reductBM

G (nr). reductBM

G (nr) ⊒ mefM

G (n) fol-
lows from the more general property: If n ∈ dom(G) and all

FDT children of parent(n) are correct, then reductBM

G (n) ⊒
mefM

G (n).
Induction on heightG(n) = max{|o| | o ∈ {f, a}∗ ∧ no ∈

dom(G)}.
case heightG(n) = 0:

case G(n) = a:

case n ∈ treeNodesG :
Because parentFDTG(n) = parent(n) we have

redexM

G (n) ⊒ mefM

G (n). So reductBM

G (n) = a =
redexM

G (n) ⊒ mefM

G (n).

case n /∈ treeNodesG :

case G(n) = f :
If arity(f) = 0 then reductBM

G (n) ⊒ {} =
mefM

G (n) else reductBM

G (n) = f = meaG(n)
and with Proposition 2 we get reductBM

G (n) ⊒
fMapG(n) = mefM

G (n).

case G(n) = C:
reductBM

G (n) = C = mefM

G (n).

case G(n) = m:
By definition reductBM

G (n) = mefM

G (n).

case G(n) = p o:
reductBM

G (n) = mefM

G (p) mefM

G (o). With Proposi-
tion 3 we obtain reductBM

G (n) ⊒ mefM

G (n).

case heightG(n) > 0:
Then G(n) = p o and p = nf or o = na.

case p = nf and o 6= na:
reductBM

G (n) = reductBM

G (nf) mefM

G (o). Accord-
ing to the induction hypothesis reductBM

G (nf) ⊒
mefM

G (nf). So with context closure of the intended
semantics reductBM

G (n) ⊒ mefM

G (p) mefM

G (o) follows
and with Proposition 3 we obtain reductBM

G (n) ⊒
mefM

G (n).

case p 6= nf and o = na:
reductBM

G (n) = mefM

G (p) reductBM

G (na). Accord-
ing to the induction hypothesis reductBM

G (na) ⊒
mefM

G (na). So reductBM

G (n) ⊒ mefM

G (p) mefM

G (o)
and thus reductBM

G (n) ⊒ mefM

G (n).

case p = nf and o = na:
reductBM

G (n) = reductBM

G (nf) reductBM

G (na). From
the induction hypothesis we obtain reductBM

G (nf) ⊒
mefM

G (nf) and reductBM

G (na) ⊒ mefM

G (na). There-
fore reductBM

G (n) ⊒ mefM

G (p) mefM

G (o) and conse-
quently reductBM

G (n) ⊒ mefM

G (n). 2

