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A Faulty Haskell Program

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Output: os

Observable faulty behaviour:

wrong result

abortion with run-time error

non-termination
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Conventional Debugging Methods

The print / logging method: Add print statements to program.

A stepping debugger such as the Data Display Debugger (DDD)
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Why Debug Functional Programs Differently?

Conventional methods are ill-suited for non-strict functional
languages.

New, more powerful methods can take advantage of properties of
purely functional languages.
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Haskell: A Non-Strict Purely Functional Programming
Language

Non-strict function: it has a well-defined result even when (parts of)
arguments are unknown or ill-defined.

Purely functional: an expression only denotes a value, no state
transformation.

Properties:

Rich but simple equational program algebra.

map f . map g = map (f . g)

Can evaluate function arguments in any order (or not at all).

f (g 3 4) (h 1 2) (i 5 (j 3 9) (k 4))

Enables programming with recursive values, infinite data structures
and efficient data-oriented programming.

pExp = pChar ’(’ >> pExp >> pChar ’+’ >> pExp >> pChar ’)’

factorial n = product [1..n]
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Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]
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Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

 or (map (== 42) (2:[3..]))

 or (False : map (== 42) [3..])

 or (map (== 42) [3..])
...

...

 True

Here reduction steps for map and or are skipped.
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Why stepping doesn’t work

No stepping through sequence of statements in source code.

Complex evaluation order.

Run-time stack unrelated to static function call structure.

Unevaluated subexpressions large and hard to read.
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Why Printing doesn’t work

Impure function traceShow :: String -> [Int] -> [Int]

insert :: Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys) =

if x > y then y : (traceShow ">" (insert x ys))

else x:y:ys

main = print (take 5 (insert 4 [1..]))

Output:

[1>[2>[3>[4,4,5,6,7,8,9,10,11,. . .

output mixed up

non-termination ⇒ observation changes behaviour
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Properties of Functional Languages

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

An expression denotes only a value

independent evaluation of subexpressions
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)
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Properties of Functional Languages

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

An expression denotes only a value

independent evaluation of subexpressions
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Advantages for Debugging

Many semantic models as potential basis.

Simple and compositional semantics.

Freedom from sequentiality of computation.
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Outline

1 Two-Phase Tracing
2 Views of Computation

Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Program Slicing
Call Stack
Redex Trails
Animation
. . .
Trusting
New Views

3 A Theory of Tracing

4 Summary
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Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.
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Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Trace stored in

Memory.

File.

Generated on demand by
reexecution.

Trace Generation

Program annotations + library.

Program transformation.

Modified abstract machine.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 15 / 60



Hat

Multi-View Tracer

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

For Haskell 98 + some extensions.

Developed by Colin Runciman, Jan Sparud, Malcolm Wallace, Olaf
Chitil, Thorsten Brehm, Tom Davie, Tom Shackell, . . .
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Faulty Insertion Sort

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Output:

os
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Observation of Expressions and Functions
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Observation of Expressions and Functions

Observation of function sort:

sort "sort" = "os"

sort "ort" = "o"

sort "rt" = "r"

sort "t" = "t"

sort "" = ""

Observation of function insert:

insert ’s’ "o" = "os"

insert ’s’ "" = "s"

insert ’o’ "r" = "o"

insert ’r’ "t" = "r"

insert ’t’ "" = "t"
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Observation of Expressions and Functions

Haskell Object Observation Debugger (Hood) by Andy Gill.

A library.
Programmer annotates expressions of interest.
Annotated expressions are traced during computation.
The print method for the lazy functional programmer.

Observation of functions most useful.

Relates to denotational semantics.

insert 3 (1:2:3:4:_) = 1:2:3:4:_

insert 3 (2:3:4:_) = 2:3:4:_

insert 3 (3:4:_) = 3:4:_
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Algorithmic Debugging
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Algorithmic Debugging

sort "sort" = "os" ?

n

insert ’s’ "o" = "os" ?

y

sort "ort" = "o" ?

n

insert ’o’ "r" = "o" ?

n

Bug identified:

"Insert.hs":8-9:

insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 24 / 60



The Computation Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False
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’s’ > ’o’ = True insert ’s’ "" = "s"
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Fault located!

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Faulty computation: insert ’o’ "r" = "o"
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Algorithmic Debugging

Shapiro for Prolog, 1983.

Henrik Nilsson’s Freija for lazy functional language, 1998.

Bernie Pope’s Buddha for Haskell, 2003.

Correctness of tree node according to intended semantics.

Incorrect node whose children are all correct is faulty.

Each node relates to (part of) a function definition.

Relates to natural, big-step semantics.
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Higher-Order Insertion Sort

main :: String

main = sort "sort"

sort :: Ord a => [a] -> [a]

sort = foldr insert []

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
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Higher-Order Algorithmic Debugging

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False
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main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60



Higher-Order Algorithmic Debugging II

main = "os"

sort = {"sort" -> "os"}

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False
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foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" ×insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False
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Higher-Order Algorithmic Debugging II

main = "os" ×

sort = {"sort" -> "os"} ×

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os" √

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" ×insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False
√
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Source-based Free Navigation and Program Slicing
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Source-based Free Navigation and Program Slicing

==== Hat-Explore 2.00 ==== Call 2/2 =======================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- lines 5 to 10 -------------------------

if x > y then y : insert x ys

else x : ys

sort :: [Char] -> [Char]

sort [] = []

sort (x:xs) = insert x ( sort xs )
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Call Stack

Program terminated with error:

No match in pattern.

Virtual stack trace:

(Last.hs:6) last’ []

(Last.hs:6) last’ [_]

(Last.hs:6) last’ [_,_]

(Last.hs:4) last’ [8,_,_]

(unknown) main
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Redex Trails
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Redex Trails

Output: ----------------------------------------------------

os\n

Trail: ------- Insert.hs line: 10 col: 25 ------------------

<- putStrLn "os"

<- insert ’s’ "o" | if True

<- insert ’o’ "r" | if False

<- insert ’r’ "t" | if False

<- insert ’t’ []

<- sort []
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Redex Trails

Colin Runciman and Jan Sparud, 1997.

Go backwards from observed failure to fault.

Which redex created this expression?

Based on graph rewriting semantics of abstract machine.
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Animation of Lazy Evaluation

Output: ----------------------------------------------------

Animation: -------------------------------------------------

-> sort "sort"

-> insert ’s’ ( sort "ort" )

-> insert ’s’ ( insert ’o’ ( sort "rt" ) )

-> insert ’s’ ( insert ’o’ ( insert ’r’ ( sort "t" ) ) )

-> insert ’s’ ( insert ’o’ ( insert ’r’ "t" ) )

-> "os"
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Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11
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Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]
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Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

In future?

View-time trusting.

Trusting of local definitions.
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New Views

New Ideas

Follow a value through computation.
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New Views

New Ideas

Follow a value through computation.

Combining Existing Views

Can easily switch from one view to another.

All-in-one tool = egg-laying wool-milk-sow?

Exploring combination of algorithmic debugging and redex trails.
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New Views

New Ideas

Follow a value through computation.

Combining Existing Views

Can easily switch from one view to another.

All-in-one tool = egg-laying wool-milk-sow?

Exploring combination of algorithmic debugging and redex trails.

Refining Existing Views
Algorithmic Debugging:

Different Tree-Traversal Strategies.

Heuristics.
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Why a Theory of Tracing?

Implementations of tracing tools ahead of theoretical results.

Correctness of tools?

Clear methodology for using them?

Development of advanced features?
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What is a Good Trace?

Program + input determine every detail of computation.
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What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.
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What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

Term rewriting: A sequence of expressions.
t1 → t2 → t3 → t4 → t5 → . . . → tn

Natural semantics: A proof tree.
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The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

Start with expression sort (’t’:[])
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The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60



The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.
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The Node Naming Scheme

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes
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The Node Naming Scheme

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •
rff

insert

rf

• •

r

• •
rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Solution

standard representation with node describing path from root

path at creation time (sharing later)

path independent of evaluation order
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The Node Labels

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •
rff

insert

rf

• •

r

• •
rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

node n := {f, a, r}∗

label term T := a atom
| n m application of nodes

atom a := f | C | 42 | . . . defined variable, data constructor
atomic literal, . . .

Reduction edge implicitly given through existence of node.
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Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
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Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•

label term T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .
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Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•
ar

False

label term T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .
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The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n 7→ T , defined by

The unshared graph representation of M, graphG(ε, M), is a trace.

If G is a trace and

L = R an equation of the program P ,
σ a substitution replacing argument variables by nodes,
matchG(n, Lσ),
nr /∈ dom(G),

then G ∪ graphG(nr, Rσ) is a trace.

No evaluation order is fixed.
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The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

mefG(ε) = (:) ’t’ []

Definition
n ≻G m ⇔ m = nr ∨ G(n) = m

⌈n⌉G = m ⇔ n ≻∗
G m ∧ ∄o. m ≻G o

Definition
mefG(n) = mefTG(G(⌈n⌉G))

mefTG(a) = a

mefTG(n) = mefG(n)

mefTG(n m) = mefG(n) mefG(m)
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Redexes and Big-Step Reductions

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

redexG(r) = insert ’t’ []

bigstepG(r) = insert ’t’ [] = (:) ’t’ []

Definition

For any redex node n,
i.e., nr ∈ dom(G )

redexG(n) =

{

mefG(m) mefG(o) , if G(n) = m o

a , if G(n) = a

bigstepG(n) = redexG(n) = mefG(n)
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From Trace to Big-Step Computation Tree

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

ε

sort (’t’:[]) = ’t’:[]

ra

sort [] = []
r

insert ’t’ [] = ’t’:[]

Every redex node n yields
a tree node n labelled bigstepG(n).

Tree node n is child of
tree node parent(n).

parent(nr) = n
parent(nf) = parent(n)
parent(na) = parent(n)
parent(ε) = undefined
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Summary

Two-Phase Tracing.
input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.
There exist many useful different views of a computation.

Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Redex Trails
. . .

Semantics.
Inspire views.
Enable formulation and proof of properties.
But do not answer all questions.

Still much to explore.
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