
Debugging Functional Programs

Olaf Chitil
Partially supported by EPSRC grant EP/C516605/1

April 2009

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 1 / 60

A Faulty Haskell Program

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Output: os

Observable faulty behaviour:

wrong result

abortion with run-time error

non-termination

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 3 / 60

Conventional Debugging Methods

The print / logging method: Add print statements to program.

A stepping debugger such as the Data Display Debugger (DDD)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 4 / 60

Why Debug Functional Programs Differently?

Conventional methods are ill-suited for non-strict functional
languages.

New, more powerful methods can take advantage of properties of
purely functional languages.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 5 / 60

Haskell: A Non-Strict Purely Functional Programming
Language

Non-strict function: it has a well-defined result even when (parts of)
arguments are unknown or ill-defined.

Purely functional: an expression only denotes a value, no state
transformation.

Properties:

Rich but simple equational program algebra.

map f . map g = map (f . g)

Can evaluate function arguments in any order (or not at all).

f (g 3 4) (h 1 2) (i 5 (j 3 9) (k 4))

Enables programming with recursive values, infinite data structures
and efficient data-oriented programming.

pExp = pChar ’(’ >> pExp >> pChar ’+’ >> pExp >> pChar ’)’

factorial n = product [1..n]

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 7 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

 or (map (== 42) (2:[3..]))

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

 or (map (== 42) (2:[3..]))

 or (False : map (== 42) [3..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

 or (map (== 42) (2:[3..]))

 or (False : map (== 42) [3..])

 or (map (== 42) [3..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

 or (map (== 42) (2:[3..]))

 or (False : map (== 42) [3..])

 or (map (== 42) [3..])
...

...

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

 or (map (== 42) (2:[3..]))

 or (False : map (== 42) [3..])

 or (map (== 42) [3..])
...

...

 True

Here reduction steps for map and or are skipped.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Why stepping doesn’t work

No stepping through sequence of statements in source code.

Complex evaluation order.

Run-time stack unrelated to static function call structure.

Unevaluated subexpressions large and hard to read.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 10 / 60

Why Printing doesn’t work

Impure function traceShow :: String -> [Int] -> [Int]

insert :: Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys) =

if x > y then y : (traceShow ">" (insert x ys))

else x:y:ys

main = print (take 5 (insert 4 [1..]))

Output:

[1>[2>[3>[4,4,5,6,7,8,9,10,11,. . .

output mixed up

non-termination ⇒ observation changes behaviour

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 12 / 60

Properties of Functional Languages

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

An expression denotes only a value

independent evaluation of subexpressions
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 13 / 60

Properties of Functional Languages

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

An expression denotes only a value

independent evaluation of subexpressions
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Advantages for Debugging

Many semantic models as potential basis.

Simple and compositional semantics.

Freedom from sequentiality of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 13 / 60

Outline

1 Two-Phase Tracing
2 Views of Computation

Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Program Slicing
Call Stack
Redex Trails
Animation
. . .
Trusting
New Views

3 A Theory of Tracing

4 Summary

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 14 / 60

Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 15 / 60

Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Trace stored in

Memory.

File.

Generated on demand by
reexecution.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 15 / 60

Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Trace stored in

Memory.

File.

Generated on demand by
reexecution.

Trace Generation

Program annotations + library.

Program transformation.

Modified abstract machine.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 15 / 60

Hat

Multi-View Tracer

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

For Haskell 98 + some extensions.

Developed by Colin Runciman, Jan Sparud, Malcolm Wallace, Olaf
Chitil, Thorsten Brehm, Tom Davie, Tom Shackell, . . .

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 16 / 60

Faulty Insertion Sort

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Output:

os

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 18 / 60

Observation of Expressions and Functions

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 20 / 60

Observation of Expressions and Functions

Observation of function sort:

sort "sort" = "os"

sort "ort" = "o"

sort "rt" = "r"

sort "t" = "t"

sort "" = ""

Observation of function insert:

insert ’s’ "o" = "os"

insert ’s’ "" = "s"

insert ’o’ "r" = "o"

insert ’r’ "t" = "r"

insert ’t’ "" = "t"

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 20 / 60

Observation of Expressions and Functions

Haskell Object Observation Debugger (Hood) by Andy Gill.

A library.
Programmer annotates expressions of interest.
Annotated expressions are traced during computation.
The print method for the lazy functional programmer.

Observation of functions most useful.

Relates to denotational semantics.

insert 3 (1:2:3:4:_) = 1:2:3:4:_

insert 3 (2:3:4:_) = 2:3:4:_

insert 3 (3:4:_) = 3:4:_

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 22 / 60

Algorithmic Debugging

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 24 / 60

Algorithmic Debugging

sort "sort" = "os" ?

n

insert ’s’ "o" = "os" ?

y

sort "ort" = "o" ?

n

insert ’o’ "r" = "o" ?

n

Bug identified:

"Insert.hs":8-9:

insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 24 / 60

The Computation Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

Fault located!

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Faulty computation: insert ’o’ "r" = "o"

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 28 / 60

Algorithmic Debugging

Shapiro for Prolog, 1983.

Henrik Nilsson’s Freija for lazy functional language, 1998.

Bernie Pope’s Buddha for Haskell, 2003.

Correctness of tree node according to intended semantics.

Incorrect node whose children are all correct is faulty.

Each node relates to (part of) a function definition.

Relates to natural, big-step semantics.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 29 / 60

Higher-Order Insertion Sort

main :: String

main = sort "sort"

sort :: Ord a => [a] -> [a]

sort = foldr insert []

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 31 / 60

Higher-Order Algorithmic Debugging

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" sort = foldr insert []

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 / 60

Higher-Order Algorithmic Debugging II

main = "os"

sort = {"sort" -> "os"}

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 35 / 60

Higher-Order Algorithmic Debugging II

main = "os" ×

sort = {"sort" -> "os"}

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 35 / 60

Higher-Order Algorithmic Debugging II

main = "os" ×

sort = {"sort" -> "os"} ×

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 35 / 60

Higher-Order Algorithmic Debugging II

main = "os" ×

sort = {"sort" -> "os"} ×

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os" √

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 35 / 60

Higher-Order Algorithmic Debugging II

main = "os" ×

sort = {"sort" -> "os"} ×

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os" √

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" ×insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 35 / 60

Higher-Order Algorithmic Debugging II

main = "os" ×

sort = {"sort" -> "os"} ×

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os" √

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" ×insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False
√

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 35 / 60

Source-based Free Navigation and Program Slicing

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 37 / 60

Source-based Free Navigation and Program Slicing

==== Hat-Explore 2.00 ==== Call 2/2 =======================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- lines 5 to 10 -------------------------

if x > y then y : insert x ys

else x : ys

sort :: [Char] -> [Char]

sort [] = []

sort (x:xs) = insert x (sort xs)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 37 / 60

Call Stack

Program terminated with error:

No match in pattern.

Virtual stack trace:

(Last.hs:6) last’ []

(Last.hs:6) last’ [_]

(Last.hs:6) last’ [_,_]

(Last.hs:4) last’ [8,_,_]

(unknown) main

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 39 / 60

Redex Trails

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 41 / 60

Redex Trails

Output: --

os\n

Trail: ------- Insert.hs line: 10 col: 25 ------------------

<- putStrLn "os"

<- insert ’s’ "o" | if True

<- insert ’o’ "r" | if False

<- insert ’r’ "t" | if False

<- insert ’t’ []

<- sort []

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 41 / 60

Redex Trails

Colin Runciman and Jan Sparud, 1997.

Go backwards from observed failure to fault.

Which redex created this expression?

Based on graph rewriting semantics of abstract machine.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 42 / 60

Animation of Lazy Evaluation

Output: --

Animation: ---

-> sort "sort"

-> insert ’s’ (sort "ort")

-> insert ’s’ (insert ’o’ (sort "rt"))

-> insert ’s’ (insert ’o’ (insert ’r’ (sort "t")))

-> insert ’s’ (insert ’o’ (insert ’r’ "t"))

-> "os"

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 44 / 60

Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 45 / 60

Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 45 / 60

Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

In future?

View-time trusting.

Trusting of local definitions.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 45 / 60

New Views

New Ideas

Follow a value through computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 46 / 60

New Views

New Ideas

Follow a value through computation.

Combining Existing Views

Can easily switch from one view to another.

All-in-one tool = egg-laying wool-milk-sow?

Exploring combination of algorithmic debugging and redex trails.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 46 / 60

New Views

New Ideas

Follow a value through computation.

Combining Existing Views

Can easily switch from one view to another.

All-in-one tool = egg-laying wool-milk-sow?

Exploring combination of algorithmic debugging and redex trails.

Refining Existing Views
Algorithmic Debugging:

Different Tree-Traversal Strategies.

Heuristics.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 46 / 60

Why a Theory of Tracing?

Implementations of tracing tools ahead of theoretical results.

Correctness of tools?

Clear methodology for using them?

Development of advanced features?

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 47 / 60

What is a Good Trace?

Program + input determine every detail of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 48 / 60

What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 48 / 60

What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

Term rewriting: A sequence of expressions.
t1 → t2 → t3 → t4 → t5 → . . . → tn

Natural semantics: A proof tree.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 48 / 60

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

Start with expression sort (’t’:[])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Node Naming Scheme

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 50 / 60

The Node Naming Scheme

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •
rff

insert

rf

• •

r

• •
rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Solution

standard representation with node describing path from root

path at creation time (sharing later)

path independent of evaluation order

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 50 / 60

The Node Labels

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •
rff

insert

rf

• •

r

• •
rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

node n := {f, a, r}∗

label term T := a atom
| n m application of nodes

atom a := f | C | 42 | . . . defined variable, data constructor
atomic literal, . . .

Reduction edge implicitly given through existence of node.
Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 52 / 60

Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 54 / 60

Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•

label term T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 54 / 60

Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•
ar

False

label term T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 54 / 60

The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n 7→ T , defined by

The unshared graph representation of M, graphG(ε, M), is a trace.

If G is a trace and

L = R an equation of the program P ,
σ a substitution replacing argument variables by nodes,
matchG(n, Lσ),
nr /∈ dom(G),

then G ∪ graphG(nr, Rσ) is a trace.

No evaluation order is fixed.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 55 / 60

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

mefG(ε) = (:) ’t’ []

Definition
n ≻G m ⇔ m = nr ∨ G(n) = m

⌈n⌉G = m ⇔ n ≻∗
G m ∧ ∄o. m ≻G o

Definition
mefG(n) = mefTG(G(⌈n⌉G))

mefTG(a) = a

mefTG(n) = mefG(n)

mefTG(n m) = mefG(n) mefG(m)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 56 / 60

Redexes and Big-Step Reductions

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

redexG(r) = insert ’t’ []

bigstepG(r) = insert ’t’ [] = (:) ’t’ []

Definition

For any redex node n,
i.e., nr ∈ dom(G)

redexG(n) =

{

mefG(m) mefG(o) , if G(n) = m o

a , if G(n) = a

bigstepG(n) = redexG(n) = mefG(n)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 57 / 60

From Trace to Big-Step Computation Tree

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

ε

sort (’t’:[]) = ’t’:[]

ra

sort [] = []
r

insert ’t’ [] = ’t’:[]

Every redex node n yields
a tree node n labelled bigstepG(n).

Tree node n is child of
tree node parent(n).

parent(nr) = n
parent(nf) = parent(n)
parent(na) = parent(n)
parent(ε) = undefined

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 59 / 60

Summary

Two-Phase Tracing.
input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.
There exist many useful different views of a computation.

Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Redex Trails
. . .

Semantics.
Inspire views.
Enable formulation and proof of properties.
But do not answer all questions.

Still much to explore.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 60 / 60

