Debugging Functional Programs

Olaf Chitil
Partially supported by EPSRC grant EP/C516605/1

University of

Kent

April 2009

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 1/ 60

A Faulty Haskell Program

main = putStrLn (sort "sort")

sort :: Ord a => [a] —> [a]

sort [1 =[]

sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] —> [a]
insert x [] = [x]

insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Output: os
Observable faulty behaviour:
@ wrong result
@ abortion with run-time error

@ non-termination

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Conventional Debugging Methods

@ The print / logging method: Add print statements to program.
@ A stepping debugger such as the Data Display Debugger (DDD)

3 00D: fpublicisource/programmingicidd-3.2/dddickxtest.C

File Edt Yiew Program Commands Staus Source Data ﬂa\pl
T T T T Ul ST T Z
0| 1ist-sserl EI T - AR A TAC W
[- U < S - ST Y

st it

1: Tist
(List *)_0x804df80]

Tist-onext = nen List(a_global + start+); =
Tist->next-rnext = new List(a_global + start+)}
Tist-onext-onext-onext - list:
@ (void) Visks /¢ visplay this _Interupt_|
P delete 1ist (LISt) 0xED4dFE0 ik | S
delete 1ist- et | Neti
delete Tist; Gl
« DDD Tip of the Day #5 i
11 Test L Z ol il
yeid 1t fown|
ez 17 you mate a mistake, try Edit—Undo. This will undo the most 5
recent debugger command an redispiay the previous progran state. || | |
vmd ref
ﬂate Close Prev Tip Next Tip
dat

(gdb) grash display *(11st—>next—>next—self) dependent on 4
(gdb) {

e s

o list = (List) 0xa04df80

Olaf Chitil (University of Kent) Debuggin | Programs April 200

Why Debug Functional Programs Differently?

o Conventional methods are ill-suited for non-strict functional
languages.

@ New, more powerful methods can take advantage of properties of
purely functional languages.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 5 / 60

Haskell: A Non-Strict Purely Functional Programming

Language

@ Non-strict function: it has a well-defined result even when (parts of)
arguments are unknown or ill-defined.

@ Purely functional: an expression only denotes a value, no state

transformation.
Properties:

@ Rich but simple equational program algebra.
map f . map g = map (f . g)

@ Can evaluate function arguments in any order (or not at all).
f(g34 (W12 (15 (G 39 (k4)

@ Enables programming with recursive values, infinite data structures
and efficient data-oriented programming.
pExp = pChar ’(’ >> pExp >> pChar ’+’ >> pExp >> pChar ’)’

factorial n = product [1..n]

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 7 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]
~ or (map (== 42) [1..]1)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]
~ or (map (== 42) [1..])
~ or (map (== 42) (1:[2..1))

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~» or (map (== 42) [1..])

~ or (map (== 42) (1:[2..1))

~» or (False : map (== 42) [2..])

April 2009 9 / 60

Olaf Chitil (University of Kent) Debugging Functional Programs

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~» or (map (== 42) [1..])

~ or (map (== 42) (1:[2..1))

~» or (False : map (== 42) [2..])
~ or (map (== 42) [2..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~» or (map (== 42) [1..])

~ or (map (== 42) (1:[2..1))

~» or (False : map (== 42) [2..])
~ or (map (== 42) [2..])

~ or (map (== 42) (2:[3..1))

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~ or (map (== 42) [1..])

~ or (map (== 42) (1:[2..1))

~» or (False : map (== 42) [2..])
~ or (map (== 42) [2..])

~ or (map (== 42) (2:[3..1))

~» or (False : map (== 42) [3..])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~ or (map (== 42) [1..])

or (map (== 42) (1:[2..1))

or (False : map (== 42) [2..])
or (map (== 42) [2..])

or (map (== 42) (2:[3..1))

or (False : map (== 42) [3..])
or (map (== 42) [3..])

$

§8 88

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~ or (map (== 42) [1..])

or (map (== 42) (1:[2..1))

or (False : map (== 42) [2..])
or (map (== 42) [2..])

or (map (== 42) (2:[3..1))

or (False : map (== 42) [3..])
or (map (== 42) [3..])

$

§8 88

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Evaluation of an expression

elem :: Int —> [Int] -> Bool
elem x xs = or (map (==x) xs)

elem 42 [1..]

~ or (map (== 42) [1..])

or (map (== 42) (1:[2..1))

or (False : map (== 42) [2..])
or (map (== 42) [2..])

or (map (== 42) (2:[3..1))

or (False : map (== 42) [3..])
or (map (== 42) [3..])

$

§8 88

~ True

Here reduction steps for map and or are skipped.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 9 / 60

Why stepping doesn't work

@ No stepping through sequence of statements in source code.
@ Complex evaluation order.
@ Run-time stack unrelated to static function call structure.

@ Unevaluated subexpressions large and hard to read.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Why Printing doesn’t work

Impure function traceShow :: String -> [Int] -> [Int]
insert :: Int -> [Int] -> [Int]
insert x [1 = [x]

insert x (y:ys) =
if x > y then y : (traceShow ">" (insert x ys))
else x:y:ys

main = print (take 5 (insert 4 [1..]))
Output:
[1>[2>[3>[4,4,5,6,7,8,9,10,11,...

@ output mixed up

@ non-termination = observation changes behaviour

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 12 / 60

Properties of Functional Languages

@ No canonical execution model.
@ various reduction semantics (small step, big step)
@ interpreters with environments (explicit substitutions)
@ also denotational semantics

@ An expression denotes only a value

@ independent evaluation of subexpressions
f (g34) (W12 (15) (G 393)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Properties of Functional Languages

@ No canonical execution model.

@ various reduction semantics (small step, big step)
@ interpreters with environments (explicit substitutions)
@ also denotational semantics

@ An expression denotes only a value

@ independent evaluation of subexpressions
f (g34) (W12 (15) (G 393)

Advantages for Debugging

@ Many semantic models as potential basis.
@ Simple and compositional semantics.

@ Freedom from sequentiality of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

© Two-Phase Tracing
© Views of Computation

@ Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Program Slicing

Call Stack

Redex Trails

Animation

¢ © & € ¢ ¢ ¢ ¢

Trusting
New Views
© A Theory of Tracing

© Summary

©

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 14 / 60

Two-Phase Tracing

input output
1 2

Liberates from time arrow of computation.

Olaf Chitil (University of Kent)

Debugging Functional Programs

April 2009

Two-Phase Tracing

input output
1 2

Liberates from time arrow of computation.

Trace stored in
@ Memory.
o File.

@ Generated on demand by
reexecution.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Two-Phase Tracing

input output
1 2

Liberates from time arrow of computation.

Trace stored in Trace Generation
@ Memory. @ Program annotations + library.
@ File. @ Program transformation.
@ Generated on demand by @ Modified abstract machine.

reexecution.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 15 / 60

Hat

@ Multi-View Tracer

input

<

Hat-Observe

output

Hat-Detect

Hat-Explore

Hat-Trail

@ For Haskell 98 + some extensions.

@ Developed by Colin Runciman, Jan Sparud, Malcolm Wallace, Olaf
Chitil, Thorsten Brehm, Tom Davie, Tom Shackell, ...

Olaf Chitil (University of Kent) Debugging Functional Programs

April 2009 16 /

Faulty Insertion Sort

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [1 = []

sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]

insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Output:

oS

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 18 / 60

Observation of Expressions and Functions

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 20 / 60

Observation of Expressions and Functions

Observation of function sort:

sort
sort
sort
sort
sort

"sort
Ilort n
"rt n

et =

"= ngg

= ngn
= nypn
nen

Observation of function insert:

insert
insert
insert
insert
insert

JS7
Js)
Jo7
)r)
Jt)

n o n = n os n
nn - n s n

n r n = n o) n
Ilt n = Ilrll
nn - Ilt n

Olaf Chitil (University of Kent)

Debugging Functional Programs

April 2009

20 / 60

Observation of Expressions and Functions

@ Haskell Object Observation Debugger (Hood) by Andy Gill.
o A library.

Programmer annotates expressions of interest.

Annotated expressions are traced during computation.

The print method for the lazy functional programmer.

¢ €& ©

@ Observation of functions most useful.

@ Relates to denotational semantics.
insert 3 (1:2:3:4:_) = 1:2:3:4:_
insert 3 (2:3:4:_) = 2:3:4:_
insert 3 (3:4:_) = 3:4:

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 22 / 60

Algorithmic Debugging

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 24 / 60

Algorithmic Debugging

sort "sort" = "os" 7

n

insert ’s’ "o" = "os" 7
y

sort "ort" = "o" 7

n

insert ’o0’ "r" = "o" ?
n

Bug identified:
"Insert.hs":8-9:
insert x [] = [x]
insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 24 / 60

The Computation Tree

main = {IO0}
sort "sort" = "os" putStrLn "os" = {IO0}
Sort n ort n = lloll insert J s) n o) n = n os n
’s? > 0’ = True insert ’s’ "" = "g"
Sort n rt n = Ilr" insert) o J ||r|| = lloll
[
Sort "t“ = lltll insert 7r) "t“ = llrll)o’ > ’r7 = False
/
Sort nmn - nmn insert)t) nn — ll-t" ’rJ > ’t) = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO0}
sort "sort" = "os" putStrLn "os" = {IO0}
Sort n ort n = lloll insert J s) n o) n = n os n
’s? > 0’ = True insert ’s’ "" = "g"
Sort n rt n = Ilr" insert) o J ||r|| = lloll
[
Sort "t“ = lltll insert 7r) "t“ = llrll)o’ > ’r7 = False
/
Sort nmn - nmn insert)t) nn — ll-t" ’rJ > ’t) = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO0}
sort "sort" = "os"|x |putStrLn "os" = {IO}
Sort n ort n = lloll insert J s) n o) n = n os n
’s? > 0’ = True insert ’s’ "" = "g"
Sort n rt n = Ilr" insert) o J ||r|| = lloll
[
Sort "t“ = lltll insert 7r) "t“ = llrll)o’ > ’r7 = False
/
Sort nmn - nmn insert)t) nn — ll-t" ’rJ > ’t) = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO0}
sort "sort" = "os"|x |putStrLn "os" = {IO}
sort "ort" = "o" insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll
[
sort Iltll = lltll lnsert 7r) Iltll = llrll)o) >)r7 = False
/
SOI‘t nn = nn insert)t) nn = lltll)rJ >)t) = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO0}
sort "sort" = "os"|x |putStrLn "os" = {IO}
sort "ort" = "o"|[X insert ’s’ "o" = "os"|{/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o J Ilrll = lloll
[
sort Iltll = lltll lnsert 7r) Iltll = llrll)o) >)r7 = False
/
SOI‘t nmn - nmn insert)t) nn — lltll)rJ >)t) = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

The Computation Tree

main = {IO0}
sort "sort" = "os"|x |putStrLn "os" = {IO}
sort "ort" = "o"|[X insert ’s’ "o" = "os"|{/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll insert J fo)) Ilrll = Iloll X
[
sort Iltll = lltll lnsert 7r) Iltll = llrll)o) >)r7 = False
/
SOI‘t nmn - nmn insert)t) nn — lltll)rJ >)t) = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 26 / 60

Fault located!

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = [

sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Faulty computation: insert ’o0’ "r" = "o"

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 28 / 60

Algorithmic Debugging

Shapiro for Prolog, 1983.
Henrik Nilsson’s Freija for lazy functional language, 1998.
Bernie Pope's Buddha for Haskell, 2003.

(4

(]

(]

(]

Correctness of tree node according to intended semantics.

(]

Incorrect node whose children are all correct is faulty.

©

Each node relates to (part of) a function definition.

(]

Relates to natural, big-step semantics.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 29 / 60

Higher-Order Insertion Sort

main :: String
main = sort "sort"

sort :: Ord a => [a] -> [a]
sort = foldr insert []

foldr :: (a->b ->b) =>b ->[a] -> b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr £ a xs)

insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys)

if x > y then y : (insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 31/ 60

Higher-Order Algorithmic Debugging

main = "os"
foldr insert [] "sort" = "os" sort = foldr imnsert []
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > ’0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"|[|insert ’o’ "r" = "o"
|
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" ’0’ > ’r’ = False
/
foldrinsert [J"" = ""|[insert ’t’> "" = "g" ’r’> > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" X
foldr insert [] "sort" = "os" sort = foldr imnsert []
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > ’0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"|[|insert ’o’ "r" = "o"
|
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" ’0’ > ’r’ = False
/
foldrinsert [J"" = ""|[insert ’t’> "" = "g" ’r’> > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" X
foldr insert [] "sort" = "os" sort = foldr insert []|y/
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > ’0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"|[|insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" ’0’ > ’r’ = False
/
foldrinsert [J"" = ""|[insert ’t’> "" = "g" ’r’> > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" X
foldr insert [] "sort" = "os"|x |sort = foldr imsert []|[y/
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > ’0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"|[|insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" ’0’ > ’r’ = False
/
foldrinsert [J"" = ""|[insert ’t’> "" = "g" ’r’> > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" [X
foldr insert [] "sort" = "os"|x |sort = foldr imsert []|[y/
[
foldr insert [] "ort" = "o" insert ’s’ "o" = "os"|\/
’s’ > ’0’ = True insert ’s’ "" = "g"
foldrinsert [] "rt" = "r"||insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldrinsert [J"" = ""| insert ’t’ "" = "t" ’r’> > ’t’ = False

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" [X
foldr insert [] "sort" = "os"|x |sort = foldr imsert []|[y/
[
foldr insert [] "ort" = "o"|[x insert ’s’ "o" = "os"|\/
’s’ > ’0’ = True insert ’s’ "" = "g"
foldrinsert [] "rt" = "r"||insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldrinsert [J"" = ""| insert ’t’ "" = "t" ’r’> > ’t’ = False

Olaf Chitil (University of Kent)

Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" [X
foldr insert [] "sort" = "os"|x |sort = foldr imsert []|[y/
[
foldr insert [] "ort" = "o"|[x insert ’s’ "o" = "os"|\/
’s’ > ’0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"||insert ’o’ "r" = "o"| X
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldrinsert [J"" = ""| insert ’t’ "" = "t" ’r’> > ’t’ = False

Olaf Chitil (University of Kent)

Debugging Functional Programs April 2009 33 /60

Higher-Order Algorithmic Debugging

main = "os" [X
foldr insert [] "sort" = "os"|x |sort = foldr imsert []|[y/
[
foldr insert [] "ort" = "o"|[x insert ’s’ "o" = "os"|\/
’s’ > ’0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"| |[insert ’o’ "r" = "o"| X
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldrinsert [J"" = ""| insert ’t’ "" = "t" ’r’> > ’t’ = False

Olaf Chitil (University of Kent)

Debugging Functional Programs April 2009

33 / 60

Higher-Order Algorithmic Debugging Il

main = "os"

|sort = {"sort" -> "os"} IL

|foldr{’s’ lloll_>llosll’ ’9? llrll_>lloll’)r) lltll_)llrll,)t) ""_>"t"} [] "sort" ="og" |

T

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort" = "o" |
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; l|ll_>l|tl|} [] Nyt = Nyt |

|foldr{’s’ Holosiggh 192 Mplo>lgl D) Hpl_siplt g ||||_>||t||} [] npn o= ngn |
b b b

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v lll|_>lltll} [] nno— nn

|insert 1g2 Mg =gg" | insert o’ "r"="o" |insert Yy Nt = Ny | | insert ’t’ ""="¢"

| ’s?’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r’ =False | ’r’>’t’ =Fa1se|

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Higher-Order Algorithmic Debugging Il

main = "os" |X

|sort = {"sort" -> "os"} IL

|foldr{’s’ lloll_>llosll’ ’9? llrll_>lloll’)r) lltll_)llrll,)t) ""_>"t"} [] "sort" ="og" |

T

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort" = "o" |
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; l|ll_>l|tl|} [] Nyt = Nyt |

|foldr{’s’ Holosiggh 192 Mplo>lgl D) Hpl_siplt g ||||_>||t||} [] npn o= ngn |
b b b

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v lll|_>lltll} [] nno— nn

|insert 1g2 Mg =gg" | insert o’ "r"="o" |insert Yy Nt = Ny | | insert ’t’ ""="¢"

| ’s?’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r’ =False | ’r’>’t’ =Fa1se|

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Higher-Order Algorithmic Debugging Il

main = "os" |X

|sort = {"sort" -> "os"} ILL

|foldr{’s’ lloll_>llosll, ’9? llrll_>ll0ll’)r) lltll_)llrll,)t) ""_>"t"} [] "sort" ="og"

T

[
°

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort"
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; llll_>lltll} [] Nyt

I
H

|foldr{’s’ Holosiggh 192 Mplo>lgl D) Hpl_siplt g ||||_>||t||} [] npn o= ngn |
b b b

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v llll_>lltll} [] nno— nn

|insert 1g2 Mg =gg" | insert o’ "r"="o" |insert Yy Nt = Ny | | insert ’t’ ""="¢"

| ’s?’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r’ =False | ’r’>’t’ =Fa1se|

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Higher-Order Algorithmic Debugging Il

main = "os" |X

|sort = {"sort" -> "os"} ILL

|foldr{’s’ lloll_>llosll’ ’9? llrll_>lloll’)r) lltll_)llrll,)t) ""_>"t"} [] "sort" ="og" |

T

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort" = "o" |
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; l|ll_>l|tl|} [] Nyt = Nyt |

|foldr{’s’ Holosiggh 192 Mplo>lgl D) Hpl_siplt g ||||_>||t||} [] npn o= ngn |
b b b

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v lll|_>lltll} [] nno— nn

|insert 1g2 Mg =gg" | insert o’ "r"="o" |insert Yy Nt = Ny | | insert ’t’ ""="¢"

| ’s?’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r’ =False | ’r’>’t’ =Fa1se|

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Higher-Order Algorithmic Debugging Il

main = "os" |X

|sort = {"sort" -> "os"} ILL

|foldr{’s’ lloll_>llosll’ ’9? llrll_>lloll’)r) lltll_)llrll,)t) ""_>"t"} [] "sort" ="og" |

T

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort" = "o" |
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; l|ll_>l|tl|} [] Nyt = Nyt |

|foldr{’s’ Holosiggh 192 Mplo>lgl D) Hpl_siplt g ||||_>||t||} [] npn o= ngn |
b b b

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v lll|_>lltll} [] nno— nn

| insert ’s’ "o" ="os" | insert o’ "r"="o" |insert Yy Nt = Ny H<insert TE M= ngn

| ’s?’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r’ =False | ’r’>’t’ =Fa1se|

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Higher-Order Algorithmic Debugging Il

main = "os" |X

|sort = {"sort" -> "os"} ILL

|foldr{’s’ lloll_>llosll’ ’9? llrll_>lloll’)r) lltll_)llrll,)t) ""_>"t"} [] "sort" ="og" |

T

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort" = "o" |
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; l|ll_>l|tl|} [] Nyt = Nyt |

|foldr{’s’ "0"->"OS",’O’ "I'"—>"0",’I" "t"—>"r",’t’ ||||_>||t||} [] ngn

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v lll|_>lltll} [] nn

| insert ’s’ "o" ="os" | insert o’ "r"="o" | insert ’r’ "t"="r" ||i<nsert TE M= ngn

| ’s?’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r? =False| ’r’>’t’ =False |\/

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Source-based Free Navigation and Program Slicing

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 37 / 60

Source-based Free Navigation and Program Slicing

Hat-Explore 2.00 ==== Call 2/2

1.
2. sort "sort" = "os"
. [sort vorer = ror

---- Insert.hs ---- lines 5 to 10 --——————————————————————-
1f € > y then y : insert z ys
else z : ys

sort :: [Char] -> [Char]
sort [] =[]

—

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 37/

Call Stack

Program terminated with error:
No match in pattern.
Virtual stack trace:

(Last.hs:6) last’ []
(Last.hs:6) last’ [_]
(Last.hs:6) last’ [_,_]
(Last.hs:4) last’ [8,_,_]
(unknown) main

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Redex Trails

Olaf Chitil (University of Kent) Debugging Functional Programs

Redex Trails

Qutput: --------- - - — -
os\n

Trail: -—-————- Insert.hs line: 10 col: 25 - ——————————-—————=
<- putStrLn "os"

<- insert ’s’ "o" | if True

<- insert ‘o’ "r" | if False

<- insert ’r’ "t" | if False

<- insert ’t’ []

<- sort []

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 41 / 60

Redex Trails

@ Colin Runciman and Jan Sparud, 1997.

o Go backwards from observed failure to fault.

@ Which redex created this expression?

@ Based on graph rewriting semantics of abstract machine.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Animation of Lazy Evaluation

Animation: -----—-————————-—-——-——
-> sort "sort"
-> insert ’s’ sort "ort")

insert ’o’ (sort "rt"))

insert ’o’ (imsert ’r’ (sort "t")))

insert ’o’ (insert ’r’ "t"))

-> insert ’s’
-> insert ’s’

N AN AN

-> insert ’s’
_> IIOSII

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 44 / 60

Trusting

Trust a module: Do not trace functions in module.
@ Smaller trace file.

@ Avoid viewing distracting details.
4 +7 =11

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 45 / 60

Trust a module: Do not trace functions in module.
@ Smaller trace file.

@ Avoid viewing distracting details.
4 +7 =11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

Trust a module: Do not trace functions in module.
@ Smaller trace file.

@ Avoid viewing distracting details.
4 +7 =11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

In future?
@ View-time trusting.

@ Trusting of local definitions.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

New Views

New ldeas

@ Follow a value through computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 46 / 60

New ldeas

@ Follow a value through computation.

Combining Existing Views
@ Can easily switch from one view to another.
@ All-in-one tool = egg-laying wool-milk-sow?

@ Exploring combination of algorithmic debugging and redex trails.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

New ldeas

@ Follow a value through computation.

Combining Existing Views
@ Can easily switch from one view to another.
@ All-in-one tool = egg-laying wool-milk-sow?

@ Exploring combination of algorithmic debugging and redex trails.

Refining Existing Views
Algorithmic Debugging:
@ Different Tree-Traversal Strategies.

@ Heuristics.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 46 /

Why a Theory of Tracing?

@ Implementations of tracing tools ahead of theoretical results.
@ Correctness of tools?

@ Clear methodology for using them?

@ Development of advanced features?

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

What is a Good Trace?

Program + input determine every detail of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 48 / 60

What is a Good Trace?

Program + input determine every detail of computation.
= Trace gives efficient access to certain details of computation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 48 / 60

What is a Good Trace?

Program + input determine every detail of computation.
= Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

@ Term rewriting: A sequence of expressions.

ti1 =t —1t3 >t —tg — ... — 1,

@ Natural semantics: A proof tree.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

The Trace: Simple Graph Rewriting
\S

= =

@@

O D

Start with expression sort (’t’:[])

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

= =R
gg GO GO

(0), Gasert> [Gort
© CD

sort [1 = []

sort (x:xs) = insert x (sort xs)
insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting

@ G (O

sort [1 = []

sort (x:xs) = insert x (sort xs)

insert x [1 = [x]

insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting
D T s

sort [1 = []

sort (x:xs) = insert x (sort xs)

insert x [1 = [x]

insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Trace: Simple Graph Rewriting
D S s

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 49 / 60

The Node Naming Scheme
R R

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 50 / 60

The Node Naming Scheme

~f r rr

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes
Solution
@ standard representation with node describing path from root
@ path at creation time (sharing later)
@ path independent of evaluation order

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 50 / 60

The Node Labels

~E r rr

node n = {far}*
label term T = a atom
| nm application of nodes
atom a = f|C|42]|... defined variable, data constructor

atomic literal, ...

Reduction edge implicitly given through existence of node.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 52 / 60

@ Reduction edge implicitly given through existence of node.

@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

T
True && x = x ¢ fg\a
not True = False R 0
£ f: f

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

@ Reduction edge implicitly given through existence of node.

@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

=- A projection requires an indirection as result.

€ r
TTTT—(ee °
True && x = x f

not True = False
ff f
[EDICIED

label term T = atom
| nm application of nodes
| n indirection
atom a := x| C|42]|... variable, data constructor, ...

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

@ Reduction edge implicitly given through existence of node.

@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

=- A projection requires an indirection as result.

True && x = x

not True = False R 0 a

ff fa af aa
Go
label term T = a atom
| nm application of nodes
| n indirection

atom a variable, data constructor, ...

Il
x
@)

s

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n+— T, defined by

@ The unshared graph representation of M, graphg(e, M), is a trace.
o If G is a trace and

@ L = R an equation of the program P,

o a substitution replacing argument variables by nodes,
matchg(n, Lo),

nr ¢ dom(G),

then G U graphg(nr, Ro) is a trace.

¢ ¢ ©

No evaluation order is fixed.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 55 / 60

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.
~—F

Definition
)
Definition)=a
n=gm < m=nVG(n)=m mefTg(n) = mefg(n)
[nlg=m & n>gmAfo.m>go mefTg(nm) = mefg(n) mefg(m)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 56 / 60

Redexes and Big-Step Reductions

\5

redexg(r) = insert ’t’ []
bigstepg(r) = insert ’t’ [1 = (:) ’t’ []

Definition

For any redex node n, redexg(n) = mefg(m) mefg(o) , if G(n)=mo
i.e., nr € dom(G) a L if G(n)=a

bigstepg(n) = redexg(n) = mefg(n)

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 57 / 60

From Trace to Big-Step Computation Tree

sort (Ct’:[]) = ’t?:[]

ra r
sort [] = [] insert ’t’ [] = ’t’:[]

parent(nr) = n
parent(nf) = parent(n)

parent(na) = parent(n)
parent(e) = undefined

@ Every redex node n yields
a tree node n labelled bigstep;(n).

@ Tree node n is child of
tree node parent(n).

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009 59 / 60

@ Two-Phase Tracing.
input output

computation @ —| view
2

1

Liberates from time arrow of computation.
@ There exist many useful different views of a computation.
@ Observation of Functions
@ Algorithmic Debugging
@ Source-based Free Navigation
@ Redex Trails

@ Semantics.
@ Inspire views.
@ Enable formulation and proof of properties.
@ But do not answer all questions.

@ Still much to explore.

Olaf Chitil (University of Kent) Debugging Functional Programs April 2009

