Structure and Properties of Traces for Functional

Programs

Olaf Chitil and Yong Luo

University of Kent, UK
Supported by EPSRC grant EP/C516605/1

5th October 2006

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 1/ 47



Why Tracing?

insert :: Ord a => a -> [a] -> [a]

insert x [1 = [x]
insert x (y:ys) =
if x > y then y : insert x ys
else x : ys
sort :: Ord a => [a] -> [al
sort [] = [
sort (x:xs) = insert x (sort xs)

main = getLine >>= putStrLn . sort

program
e <or— [ —
input computation output

@ Locate a fault (wrong output, run-time error, non-termination).

@ Comprehend a program.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 3 /47



Two-Phase Tracing: A Trace as Data Structure

input output
1 2

@ Liberates from time arrow of computation.

@ Enables views based on different execution models.
(small-step, big-step, interpreter with environment, denotational)

@ Enables compositional views.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



The Haskell Tracer Hat (www.haskell.org/hat)

@ Multi-View Tracer

Hat-Observe

input output Hat-Detect
Hat-Trail

@ Trace = Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of this trace and its views.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 5 /47



© Definition of the Trace through Graph Rewriting

© Properties of the Trace
© Views of the Trace

@ Observation of Functions
@ Following Redex Trails
@ Algorithmic Debugging

© Correctness of Algorithmic Debugging
© Future Work & Summary

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



The Programming Language

Launchbury's and related semantics
@ Subset of A-calculus plus case for matching.
@ Any program can be translated into this core calculus.

For tracing
@ Close relationship between trace and original program essential.
@ Language must have most frequently used features:

@ named functions
@ pattern matching

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



The Programming Language

Launchbury's and related semantics
@ Subset of A-calculus plus case for matching.
@ Any program can be translated into this core calculus.

For tracing

@ Close relationship between trace and original program essential.
@ Language must have most frequently used features:

@ named functions
@ pattern matching

= Higher-order term rewriting system

sort [1 = [] or sort = foldr insert []
sort (x:xs)

insert x (sort xs)

insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 8 /47



What is a Good Trace?

Program + input determine every detail of computation.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 9 /47



What is a Good Trace?

Program + input determine every detail of computation.
= Trace gives efficient access to certain details of computation.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 9 /47



What is a Good Trace?

Program + input determine every detail of computation.
= Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

@ Term rewriting: A sequence of expressions.

t1 =t —t3 >t —tg — ... — I,

@ Natural semantics: A proof tree.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 9 /47



What is a Good Trace?

Program + input determine every detail of computation.
= Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

@ Term rewriting: A sequence of expressions.

t1 =t —t3 >t —tg — ... — I,
@ Natural semantics: A proof tree.
But
@ Lots of redundancy.
@ Much structure already lost.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 9 /47



Graph Rewriting |

sort (°t’:[1) -

25

= =

/Q%@

O &>

sort [1 = []
sort (x:xs) = insert x (sort xs)

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 11 / 47



Graph Rewriting |

\

- G G
/@@ Gimsert KEor
O CD

sort [1 = []
sort (x:xs) = insert x (sort xs)

@ Create new nodes for right-hand-side.
@ Nodes of subexpressions are shared.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 11 / 47



Graph Rewriting |

\

- G o
OE=DICSD
CtD

sort [1 = []
sort (x:xs) = insert x (sort xs)

@ Create new nodes for right-hand-side.
@ Nodes of subexpressions are shared.
@ Some old nodes become garbage.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 11 / 47



Graph Rewriting Il

—
=

oo @b

sort [1 = []
sort (x:xs) = insert x (sort xs)

insert x [] [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 13 / 47



Graph Rewriting Il

sort [1 = []
sort (x:xs) = insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

@ Application node of redex replaced by new node.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 13 / 47



Graph Rewriting Il

= S

Gasers> D

sort [1 = []
sort (x:xs) = insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

@ Application node of redex replaced by new node.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 13 / 47



/
N
= o
CD

sort [] = []
sort (x:xs)

insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 15 / 47



Graph Rewriting Il

P\@ . ??@
@\E

sort [] = []
sort (x:xs)

insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 15 / 47



Graph Rewriting Il

®
) ©

sort [] = []
sort (x:xs)

insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 15 / 47



The Trace

Olaf Chitil and Yong Luo (Ken Foundations for Tracing 5th October 2006



@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 16 / 47



@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



= = 7

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



The Node Labels
R R 8

term constructor T = a atom
| nm application of nodes
atom a = f|C|42]|... defined variable, data constructor

atomic literal, ...

@ pointers instead of edges

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 18 / 47



The Node Naming Scheme
R R

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 19 / 47



The Node Naming Scheme

\5

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes
Solution
@ standard representation with node describing path from root
@ path at creation time (sharing later)
@ path independent of evaluation order

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



The Node Naming Scheme |l

tt

Ce )

@ Reduction edge implicitly given through existence of node.
@ Node encodes parent = top node of redex causing its creation:

parent(nt) = n
parent(nl) = parent(n)
parent(nr) = parent(n)

parent(e) = undefined

@ Easy to identify right-hand-side of rule: same parent.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



@ Reduction edge implicitly given through existence of node.
@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

T
True && x = x | '
not True = False R
| Ir

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



@ Reduction edge implicitly given through existence of node.
@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

= A projection requires an indirection as result.

(e °
True && x = x | '
not True = False R
Il |

term constructor T = a atom
| nm application of nodes
| n indirection
atom a = x| C|42]|... variable, data constructor, ...

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 22 / 47



@ Reduction edge implicitly given through existence of node.
@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

= A projection requires an indirection as result.

t
(e °
True && x = x | ' t
not True = False R %
Il Ir |

EDlElay

term constructor T = a atom
| nm application of nodes
| n indirection
atom a = x| C|42]|... variable, data constructor, ...

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 22 / 47



The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n+— T, defined by

@ The unshared graph representation of M, graph(s, M), is a trace.
@ If G is a trace and

@ L = R an equation of the program P,

o a substitution replacing argument variables by nodes,
matchg(n, Lo),

nt ¢ dom(G),

then G U graph(nt, Ro) is a trace.

¢ © ©

No evaluation order is fixed.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 23 / 47



Unshared Graph Representation

For the initial term and right-hand-sides of equation. t
tl__4 th
G G

graph(t,insertrir(sortrr)) =

rlr

graph(n, a) = {(n, a)}
graph(n, m) = {(n, m)}

{(n, M N)} , if M, N are nodes

M h(nr, N if only M i
graph(n, M ) = {(n, M nr)} U graph(nr, N) : | only .IS a node
{(n,nl N)} U graph(nl, M) , if only Vis a node

{(n, nl nr)} U graph(nl, M) U graph(nr, N), otherwise

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 25 / 47



Matching

Matching a node with an instance of the left-hand-side of an equation.

5

>
rl r matchg (e, sort (rlr:rr))
’( (2

rll

Definition

[n]g = if nt € dom(G) then [nt]g else if 3m.G(n) = m then [m]g else n

matchg (o, a) = (G(o) = a)
matchg (o, M N) = Im, n.(G(o) = mn) A
((m = M)V matchg([m]g, M)) A
((n= N) V matchg([n]g, N))

matchg (o, m) = false

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 26 / 47



Matching: Alternative Definitions

Matching a node with an instance of the left-hand-side of an equation.

Definition

matchg (o, a) = (G(o) = a)

matchg(o, M N) = 3m, n.(G(o) = mn) A
(if M is a node then (m = M) else matchg([m]|g, M)) A
(if N is a node then (n = N) else matchg([n]g, N))

matchg(o, m) = (o = m)

v

matchg(o, a) = (G(o) = a)
matchg(o, M N) = Im, n.(G(0) = mn) A
matchg(if M is a node then m else [m]g, M) A
matchg(if N is a node then n else [n]g, N)

matchg (o, m) = (o = m)

\

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 27 / 47



The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

Definition
D e [ mefg(n) = mefTg(G([n]g))
mefTg(a) = a

mefTg(nm) = mefg(n) mefg(m)

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 28 / 47



Redexes and Big-Step Reductions

—es Fo b
Py — B

redexg(t) = insert ’t’ []
bigstepg(t) = insert *t’> [1 = (:) ’t’> []

Definition

For any redex node n,

d =
i.e., nt € dom(G) redexg ()

mefg(m) mefg(o) , if G(n) =mo
,ifG(n)=a

bigstepg(n) = redexg(n) = mefg(n)

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 29 / 47



Properties of the ART

closed (no dangling nodes)

domain prefix-closed

acyclic

strongly confluent

no application contains a node ending in t
only a node ending in t can be an indirection
if nl € dom(G), then G(n) = nlm

if nr € dom(G), then G(n) = mnr

if nt € dom(G), then redexg(n) = Lo and reductg(n) = Ro
for some program equation L = R and substitution o

e © © 6 6 6 ¢ ¢ ¢

Give non-inductive definition of ART based on properties?

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



Reduct of a Small Step Reduction

reductg(e) = insert ’t’ (sort [1)
Definition

reductg(n) = reductPg(n, nt)

reductPg(p, n) = if parent(n) = p then reductTg(p, G(n)) else mefg(n)

—mefg( )
reductPg(p, n) reductPg(p, 0)

) =
)=
reductTg(p, a) =
reductT¢(p, m)
) =

reductTg(p, no

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 31/ 47



Algorithmic Debugging

sort "sort" = "os"? n
insert ’s’ "o" = "os"? y
sort "ort" = "o"? n
insert o’ "r" = "o"? n

Bug identified:
"Insert.hs":8-9:
insert x [] = [x]
insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 33 /47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

IIOSII

putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert ) o ) Ilrll = lloll
[
SOI't lltll = lltll insert )r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert ) t ) nn =

"t"||’r> > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

IIOSII

putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert ) o ) Ilrll = lloll
[
SOI't lltll = lltll insert )r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert ) t ) nn =

"t"||’r> > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" = "g"
sort "rt" = "r insert ’o0’ "r" = "o"
[
SOI't lltll = lltll insert )r) lltll = llrll 707 > 7r) = False
/
SOI‘t nn = nn insert ) t 2 nn =

"t" )r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
sort "rt" = "r insert ’o0’ "r" = "o"
[
SOI't lltll = lltll insert )r) lltll = llrll 707 > 7r) = False
/
SOI‘t nn = nn insert ) t 2 nn =

"t" )r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" =

lloll X

insert ’s’ "o" =

"os" |/

= True insert ’s’ ""

)S? > Jo7

= ngn
sort "rt" = "r insert ’o0’ "r" = "o"
[
sort "t" = "g" insert ’r’ "t" = "r"|[|’0’ > ’r’ = False
/
sort "" = ""||[insert ’t’ "" =

"t" )r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o"|[ X insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll insert ) o ) Ilrll = Iloll ><
[
SOI't lltll = lltll insert )r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert )t) nn = |Itll Jr) > Jt) = False

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o"|[ X insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert ) o J Ilrll = lloll X
[
sort "t" = "t"| |imnsert ’r’ "t" = "r >0’ > ’r’ = False|./
/
SOI‘t nn = nn insert ) t 2 nn =

"t" )r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

5th October 2006 35 / 47



The ART and the Evaluation Dependency Tree

sort (Ct’:[]1) = ’t’:[]

tr t
sort [] = [] insert ’t’ [] = ’t’:[]

@ Every redex node n yields a tree node n labelled bigstepg(n).
@ Tree node n is child of tree node parent(n).

@ Usually root label bigstep;(c) = main = ...

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its
equation is faulty.

sort (°t’:[]) = ’t’:[]

v sort [] = [] ‘ insert ’t’ [] = ’t’:[]

Definition

Tree node n incorrect < redexg(n) 2 mefg(n).
Tree node n faulty < redexg(n) % reductg(n).

If tree node n faulty, then for its program equation L = R exists
substitution ¢ such that Lo 2| Ro.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006



Correctness of Algorithmic Debugging: Main Theorem

Let n be a redex node. If for all redex nodes m with parent(m) = n we
have redexg(m) = mefg(m), then reductg(n) =2, mefg(n).

With redexg(n) 2 mefg(n) follows redexg(n) % reductg(n).

Q tt@

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 39 / 47



Correctness of Algorithmic Debugging: Proof

Generalise property: Let n € dom(G). If for all redex nodes m with
parent(m) = parent(n) we have redexg(m) = mefg(m), then
reductg(n) = mefg(n).

Induction over hightg(n) = max{|o| | o € {I,r}* A no € dom(G)}. O

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 40 / 47



Conclusions

@ Simple model amenable to proof.
@ Contains a wealth of information about computation.

@ Models real-world trace of Haskell tracer Hat.

:

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 41 / 47



