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Why Tracing?

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]
insert x (y:ys) =

if x > y then y : insert x ys
else x : ys

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)

main = getLine >>= putStrLn . sort

program

sample text alms

input computation output

Locate a fault (wrong output, run-time error, non-termination).

Comprehend a program.
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Two-Phase Tracing: A Trace as Data Structure

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Enables views based on different execution models.
(small-step, big-step, interpreter with environment, denotational)

Enables compositional views.
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The Haskell Tracer Hat (www.haskell.org/hat)

Multi-View Tracer

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

Trace = Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of this trace and its views.
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Overview

1 Definition of the Trace through Graph Rewriting

2 Properties of the Trace
3 Views of the Trace

Observation of Functions
Following Redex Trails
Algorithmic Debugging

4 Correctness of Algorithmic Debugging

5 Future Work & Summary
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The Programming Language

Launchbury’s and related semantics

Subset of λ-calculus plus case for matching.

Any program can be translated into this core calculus.

For tracing

Close relationship between trace and original program essential.

Language must have most frequently used features:
named functions
pattern matching
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The Programming Language

Launchbury’s and related semantics

Subset of λ-calculus plus case for matching.

Any program can be translated into this core calculus.

For tracing

Close relationship between trace and original program essential.

Language must have most frequently used features:
named functions
pattern matching

⇒ Higher-order term rewriting system

sort [] = [] or sort = foldr insert []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 8 / 47



What is a Good Trace?

Program + input determine every detail of computation.
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What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

Term rewriting: A sequence of expressions.
t1 → t2 → t3 → t4 → t5 → . . . → tn

Natural semantics: A proof tree.
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What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

Term rewriting: A sequence of expressions.
t1 → t2 → t3 → t4 → t5 → . . . → tn

Natural semantics: A proof tree.

But

Lots of redundancy.

Much structure already lost.
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Graph Rewriting I

sort (’t’:[])

’t’:

[]• •

• •sort

• •

sort [] = []

sort (x:xs) = insert x (sort xs)
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Graph Rewriting I

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.
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Graph Rewriting I

’t’

[] sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.

Some old nodes become garbage.

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 11 / 47



Graph Rewriting II

’t’ []sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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Graph Rewriting II

’t’ []sort

• •

insert

• • → []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.
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Graph Rewriting II

’t’insert

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.
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Graph Rewriting III

’t’

[]

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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Graph Rewriting III

’t’

[]

insert

• •

• •
→

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) Foundations for Tracing 5th October 2006 15 / 47



Graph Rewriting III

’t’ :

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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The Trace

’t’:

[]• •

• •sort

• •
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The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.
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The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.
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The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.
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The Node Labels

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

term constructor T := a atom
| n m application of nodes

atom a := f | C | 42 | . . . defined variable, data constructor
atomic literal, . . .

pointers instead of edges
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The Node Naming Scheme

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes
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The Node Naming Scheme

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Solution

standard representation with node describing path from root

path at creation time (sharing later)

path independent of evaluation order
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The Node Naming Scheme II

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

Reduction edge implicitly given through existence of node.
Node encodes parent = top node of redex causing its creation:

parent(nt) = n
parent(nl) = parent(n)
parent(nr) = parent(n)
parent(ε) = undefined

Easy to identify right-hand-side of rule: same parent.
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Projections

Reduction edge implicitly given through existence of node.
Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

&&

r

• •
l

• •

ε

• •
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Projections

Reduction edge implicitly given through existence of node.
Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

&&

r

• •
l

• •

ε

• •
t

•

term constructor T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .
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Projections

Reduction edge implicitly given through existence of node.
Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

&&

r

• •
l

• •

ε

• •
t

•
rt

False

term constructor T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .
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The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n 7→ T , defined by

The unshared graph representation of M, graph(ε, M), is a trace.

If G is a trace and

L = R an equation of the program P ,
σ a substitution replacing argument variables by nodes,
matchG(n, Lσ),
nt /∈ dom(G),

then G ∪ graph(nt, Rσ) is a trace.

No evaluation order is fixed.
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Unshared Graph Representation

For the initial term and right-hand-sides of equation.

graph(t, insert rlr (sort rr)) = rr

rlr

trl

sort

tr

• •

tll

insert

tl

• •

t

• •

Definition

graph(n, a) = {(n, a)}
graph(n, m) = {(n, m)}

graph(n, M N) =







{(n, M N)} , if M, N are nodes

{(n, M nr)} ∪ graph(nr, N) , if only M is a node

{(n, nlN)} ∪ graph(nl, M) , if only N is a node

{(n, nl nr)} ∪ graph(nl, M) ∪ graph(nr, N), otherwise
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Matching

Matching a node with an instance of the left-hand-side of an equation.

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

matchG(ε, sort (rlr:rr))

Definition

⌈n⌉G = if nt ∈ dom(G) then ⌈nt⌉G else if ∃m.G(n) = m then ⌈m⌉G else n

matchG(o, a) = (G(o) = a)

matchG(o, M N) = ∃m, n.(G(o) = m n)∧
((m = M) ∨ matchG(⌈m⌉G , M))∧
((n = N) ∨ matchG(⌈n⌉G , N))

matchG(o, m) = false
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Matching: Alternative Definitions

Matching a node with an instance of the left-hand-side of an equation.

Definition

matchG(o, a) = (G(o) = a)

matchG(o, M N) = ∃m, n.(G(o) = m n)∧
(if M is a node then (m = M) else matchG(⌈m⌉G , M))∧
(if N is a node then (n = N) else matchG(⌈n⌉G , N))

matchG(o, m) = (o = m)

Definition

matchG(o, a) = (G(o) = a)

matchG(o, M N) = ∃m, n.(G(o) = m n)∧
matchG(if M is a node then m else ⌈m⌉G , M)∧
matchG(if N is a node then n else ⌈n⌉G , N)

matchG(o, m) = (o = m)
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The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

mefG(tr) = []

mefG(ε) = (:) ’t’ []

Definition

mefG(n) = mefTG(G(⌈n⌉G))

mefTG(a) = a

mefTG(n m) = mefG(n) mefG(m)
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Redexes and Big-Step Reductions

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

redexG(t) = insert ’t’ []

bigstepG(t) = insert ’t’ [] = (:) ’t’ []

Definition

For any redex node n,
i.e., nt ∈ dom(G)

redexG(n) =

{

mefG(m) mefG(o) , if G(n) = m o

a , if G(n) = a

bigstepG(n) = redexG(n) =mefG(n)
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Properties of the ART

closed (no dangling nodes)

domain prefix-closed

acyclic

strongly confluent

no application contains a node ending in t

only a node ending in t can be an indirection

if nl ∈ dom(G), then G(n) = nlm

if nr ∈ dom(G), then G(n) = m nr

if nt ∈ dom(G), then redexG(n) = Lσ and reductG(n) = Rσ
for some program equation L = R and substitution σ

Give non-inductive definition of ART based on properties?
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Reduct of a Small Step Reduction

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

reductG(ε) = insert ’t’ (sort [])

Definition

reductG(n) = reductPG(n, nt)

reductPG(p, n) = if parent(n) = p then reductTG(p,G(n)) else mefG(n)

reductTG(p, a) = a

reductTG(p, m) = mefG(m)

reductTG(p, n o) = reductPG(p, n) reductPG(p, o)
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Algorithmic Debugging

sort "sort" = "os"? n

insert ’s’ "o" = "os"? y

sort "ort" = "o"? n

insert ’o’ "r" = "o"? n

Bug identified:

"Insert.hs":8-9:

insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
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The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False
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The Evaluation Dependency Tree
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The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False
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The ART and the Evaluation Dependency Tree

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

ε

sort (’t’:[]) = ’t’:[]

tr

sort [] = []
t

insert ’t’ [] = ’t’:[]

Every redex node n yields a tree node n labelled bigstepG(n).

Tree node n is child of tree node parent(n).

Usually root label bigstepG(ε) = main = . . .
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Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its
equation is faulty.

ε

sort (’t’:[]) = ’t’:[]

tr

sort [] = []
t

insert ’t’ [] = ’t’:[]

Definition

Tree node n incorrect ⇔ redexG(n) 6∼=I mefG(n).
Tree node n faulty ⇔ redexG(n) 6∼=I reductG(n).

If tree node n faulty, then for its program equation L = R exists
substitution σ such that Lσ 6∼=I Rσ.
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Correctness of Algorithmic Debugging: Main Theorem

Theorem

Let n be a redex node. If for all redex nodes m with parent(m) = n we

have redexG(m) ∼=I mefG(m), then reductG(n) ∼=I mefG(n).

With redexG(n) 6∼=I mefG(n) follows redexG(n) 6∼=I reductG(n).

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ε

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •
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Correctness of Algorithmic Debugging: Proof

Proof.

Generalise property: Let n ∈ dom(G). If for all redex nodes m with
parent(m) = parent(n) we have redexG(m) ∼=I mefG(m), then
reductG(n) ∼=I mefG(n).

Induction over hightG(n) = max{|o| | o ∈ {l, r}∗ ∧ no ∈ dom(G)}.
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Conclusions

Simple model amenable to proof.

Contains a wealth of information about computation.

Models real-world trace of Haskell tracer Hat.
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