Proving the Correctness of Algorithmic Debugging for Functional Programs

Yong Luo

University of Kent, UK

4th October 2006

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

Aims and Outline

Aims

- Model the Haskell tracer Hat
- Provide theoretical foundation
- Guide implementation

Outline

Augmented Redex Trail (ART). What? Why?

・ロト ・ 理 ・ モ ・ ・ ヨ ・ ・ う へ つ ・

- Evaluation Dependency Tree (EDT).
- Replacing unevaluated parts. How?
- Correctness of algorithmic debugging
- Proofs
- Discussion

An example

The program:

doubleneg x = id (not x)

The starting term:

main = *doubleneg* (*not True*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formalising ART (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- An Augmented Redex Trail (ART) is a graph
- Starts from "main"
- a general function to add new graphs
- Sharing

Formalising ART (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Independence from evaluation order
- Node naming scheme
 - not distinguish isomorphic graphs
 - given parent node implicitly

Algorithmic Debugging

An Evaluation Dependency Tree (EDT) is generated from an ART. Example

Replacing Unevaluated Parts(1)

Condition 1: The head of the node must be a function. Condition 2: No computation at the node.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Replacing Unevaluated Parts(2)

Condition 1: The head of the node must be a function. Condition 2: No computation at the node. Condition 3: Must not be the LHS of an application.

Replacing Unevaluated Parts(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Meaning of an equation

If the user says

• (g _ = c2 _) is intended semantics, s/he means

$$\forall x \exists y. (g \ x = c2 \ y)$$

▶ (g _ = c2 _) is NOT intended semantics, s/he means

 $\exists x \forall y.(g \ x \neq c2 \ y)$

・ロト ・ 理 ・ モ ・ ・ ヨ ・ ・ う へ つ ・

Correctness of Algorithmic Debugging

Faulty nodes

Correctness

If the equation of a faulty node is f ... = R, then the definition of the function f in the program is faulty

・ロト ・ 理 ・ モ ・ ・ ヨ ・ ・ う へ つ ・

Proofs

No details here.

The difficulties

- suitable reduction principle
- more general induction hypothesis
- Dealing with \forall quantifier.

What have been proved:

▶ $f_{a_1...a_n} \rightarrow_1 N$. i.e. $f_{a_1...a_n}$ computes to N in a single step.

うつん 川川 スポット エリット ふしゃ

But N is not the intended semantics of fa1...an.

Discussion

Add local rewriting rules

