
Proving the Correctness of Algorithmic Debugging

for Functional Programs

Yong Luo

University of Kent, UK

4th October 2006

Aims and Outline

Aims

I Model the Haskell tracer Hat

I Provide theoretical foundation

I Guide implementation

Outline

I Augmented Redex Trail (ART). What? Why?

I Evaluation Dependency Tree (EDT).

I Replacing unevaluated parts. How?

I Correctness of algorithmic debugging

I Proofs

I Discussion

An example

The program:

doubleneg x = id (not x)

The starting term:

main = doubleneg (not True)

doubleneg

Truenot

False
id

not

True

Formalising ART (1)

doubleneg

Truenot

False
id

not

True

I An Augmented Redex Trail (ART) is a graph

I Starts from �main�

I a general function to add new graphs

I Sharing

Formalising ART (2)

doubleneg

Truenot

False
id

not

True

t

tl

tt ttt

tr

trl trr

trt

ttl ttr ttrt

ttrl

I Independence from evaluation order

I Node naming scheme

I not distinguish isomorphic graphs
I given parent node implicitly

Algorithmic Debugging

An Evaluation Dependency Tree (EDT) is generated

from an ART.
Example

doubleneg

Truenot

False
id

not

True

t

tl

tt ttt

tr

trl trr

trt

ttl ttr ttrt

ttrl

doubleneg False = True

main = True

not True = False

yes

no

no

yes

yes

faulty node

id True = Truenot False = True

Replacing Unevaluated Parts(1)

t

tl
tr

trl g

h c3
trrr

trrrttrrl

f

trr

trt

c1

tt

c2

trrrl trrrr

trtrtrtl

trtrl trtrrh2 c4

c5h1
t

tl
tr

trl g

f

trr

trt

c1

tt

c2
trtrtrtl

−

−

Condition 1: The head of the node must be a function.
Condition 2: No computation at the node.

Replacing Unevaluated Parts(2)

t tt

ttr

ttrr

ttt

ttl

c1f

tl
tr

c2

trl trr

c4

c3

c6

c5

tlrtll

tlt

tltl tltr

ttll ttlr

g

h

i

t tt

ttr

ttt

ttl

c1f

tl
tr

c2

trl trr

c4

c3

c6

tlrtll

tlt

tltl tltr

ttll ttlr

g

h

i

−

t tt

ttr

ttt

ttl

c1f

tl
tr

c2

c4

c6

tlrtll

tlt

tltl tltr

ttll ttlr

g

i

−

−

Condition 1: The head of the node must be a function.
Condition 2: No computation at the node.
Condition 3: Must not be the LHS of an application.

Replacing Unevaluated Parts(3)

The original EDT:

g c2 (h c3) = c6 f c1 = g c2

i c4 (h c3 c5) = c6

main = c6

t tl

tt

The new EDT:

f c1 = g c2

main = c6

g c2 _ = c6

i c4 _ = c6

t

tt

tl

Meaning of an equation

ART and EDT:
t

tl
tr

trl g

f

trr

trt

c1

tt

c2
trtrtrtl

−

−

t

main = c1

trg _ = c2 _f (c2 _) = c1

If the user says

I (g _ = c2 _) is intended semantics, s/he means

∀x∃y .(g x = c2 y)

I (g _ = c2 _) is NOT intended semantics, s/he means

∃x∀y .(g x 6= c2 y)

Correctness of Algorithmic Debugging

Faulty nodes

 f = R

 g1 = R1 g2 = R2 gn = Rn... ...

Yes Yes Yes

No

Correctness

I If the equation of a faulty node is f ... = R , then the de�nition
of the function f in the program is faulty

Proofs

No details here.

The di�culties

I suitable reduction principle

I more general induction hypothesis

I Dealing with ∀ quanti�er.

What have been proved:

I fa1...an →1 N. i.e. fa1...an computes to N in a single step.

I But N is not the intended semantics of fa1...an.

Discussion

I Add local rewriting rules

