
Comprehending Finite Maps for Algorithmic
Debugging of Higher-Order Functional

Programs⋆

Olaf Chitil and Thomas Davie

University of Kent, UK

Abstract. Bernie Pope introduced the idea of representing functional
values as finite maps instead of partial applications into algorithmic de-
bugging of higher-order functional languages. He implemented it in his
Haskell debugger Buddha. Here we give an implementation-independent
formal definition of algorithmic debugging for both representation in a
single framework, even though the computation trees for the two repre-
sentations have rather different structures. On this basis we prove the
soundness of algorithmic debugging with finite maps. Our model shows
how a single implementation can support both forms of algorithmic de-
bugging. The proof exposed that algorithmic debugging with finite maps
does not handle arbitrary functional programs, but in current practice
the problematic ones are excluded by Haskell’s type system. Both model
and proof suggests variations of algorithmic debugging with finite maps
and thus are tools for further improvement of this form of debugging.

1 Introduction

Algorithmic debugging is a semi-automated method of locating faults in declar-
ative programs. Consider the following Haskell program1. The function allOdd

shall determine whether all numbers in a given tree are odd. The worker function
allOddC uses a continuation to traverse the tree from left to right.

data Tree a = Branch (Tree a) (Tree a) | Leaf a

allOdd :: Tree Int -> Bool

allOdd t = allOddC id t True

allOddC :: (Bool -> Bool) -> Tree Int -> Bool -> Bool

-- specification: allOddC c t b = b && c (allOdd t)

allOddC c (Leaf n) b = b && c (odd n)

allOddC c (Branch l r) b = allOddC (allOddC c r) l b

odd :: Int -> Bool

odd x = x ‘mod‘ 3 == 1

⋆ This work has been partially supported by the United Kingdom under EPSRC grant
EP/C516605/1.

1 We disregard that main should have the type IO ().

id :: a -> a

id x = x

main = allOdd (Branch (Leaf 7) (Leaf 5))

Evaluation of main yields the unexpected answer False. So which fault causes
this erroneous behaviour? A standard algorithmic debugger asks us, the user,
a series of questions about the computation, namely whether given equations
agree with our intentions or not. Our answers are highlighted in italics.

1. main = False ? no

2. allOdd (Branch (Leaf 7) (Leaf 5)) = False ? no

3. allOddC id (Branch (Leaf 7) (Leaf 5)) True = False ? no

4. allOddC (allOddC id (Leaf 5)) (Leaf 7) True = False ? no

5. odd 7 = True ? yes

6. allOddC id (Leaf 5) True = False ? no

7. odd 5 = False ? no

Fault in definition: odd x = x ‘mod‘ 3 == 1

Soon the debugger identifies a faulty definition that needs to be modified. In-
specting the definition we find that 3 needs to be replaced by 2.

Standard algorithmic debugging works, but question 4 indicates a problem: it
contains already three occurrences of function symbols (id and twice allOddC).
To answer such question, we have to consider the intended meaning of all function
symbols that appear in the question concurrently.

Standard algorithmic debugging represents functional values as function sym-
bols and their partial applications. The number of function symbol occurrences
in a single functional value is unbounded. For many higher-order functional pro-
grams, especially those using continuations, combinator libraries or monads, the
questions of the standard algorithmic debugger become incomprehensible and
thus unanswerable. Hence Pope [8, 9] and later independently Davie and Chitil
[3] proposed representing a functional value as a finite map from arguments to
results.

With finite maps an algorithmic debugging session looks as follows:

1. main = False ? no

2. allOdd (Branch (Leaf 7) (Leaf 5)) = False ? no

3. id False = False ? yes

4. allOddC {False 7→ False} (Branch (Leaf 7) (Leaf 5)) True =

False ? no

5. allOddC {False 7→ False} (Leaf 5) True = False ? no

6. odd 5 = False ? no

Fault in definition: odd x = x ‘mod‘ 3 == 1

A finite map includes only arguments to which the function was applied during
the computation. When answering a question, the user assumes that the function
maps any other argument to the undefined value ⊥. Every question contains

2

only one function symbol. With a different function representation the meaning
of question changes and hence questions have to be asked in a different order.

Most questions are far easier to understand with finite maps than with partial
applications, as plenty of examples in [8, 9, 3] demonstrate. Furthermore, no algo-
rithmic debugger supported λ-abstractions meaningfully before the introduction
of finite maps. We discuss another advantage in Section 7.

Pope gives a detailed technical description of his implementation of finite
maps in the algorithmic debugger Buddha [9]. This description is specific to
his implementation and thus does not support proper comprehension of the
principles, proof of correctness and exploration of variations and extensions. For
example, if the function id was also used in other parts of our program, would
the argument of allOddC in question 4 look like {False 7→ False, True 7→
True, 42 7→ 42, ’c’ 7→ ’c’, . . .}? Surely we want to have less argument-
result pairs, but which ones do we have to include? To answer such questions we
formally define a comprehensible model of algorithmic debugging with a finite
map representation of functional values.

Our model relates algorithmic debugging to a simple graph reduction seman-
tics. Although we use Haskell’s syntax, all definitions and theorems are indepen-
dent of whether the language semantics is strict or non-strict. Even though algo-
rithmic debugging with functions as partial applications and algorithmic debug-
ging with functions as finite maps use rather differently structured computation
trees, we describe them in a single framework. On the practical side this integra-
tion shows how a single implementation can support both forms of algorithmic
debugging. On the theoretical side it clarifies the differences between both vari-
ants of algorithmic debugging. We prove that algorithmic debugging with finite
maps is sound; on the way we observe that finite maps are well-defined only if
certain programs are excluded, as they are by Haskell’s type system. Model and
soundness proof allow simple experimentation with variations and extensions of
algorithmic debugging; we outline a number of useful ones.

To keep this paper self-contained we have to recapitulate definitions and
propositions of the augmented redex trail [2] and algorithmic debugging with
functions as partial applications [4].

2 The Augmented Redex Trail (ART)

To relate algorithmic debugging to the computation of a program, we need a
formal description of the computation. We use the augmented redex trail (ART)
[2], a data structure that describes the computation of a functional program in
detail, including all reductions, intermediate terms and sharing. This ART is a
model of the trace used by the Haskell tracer Hat [10]. The ART is a graph
whose structure was inspired by standard graph reduction implementations of
functional languages. Basically an ART describes a state of a graph reduction
machine, except that when a graph reduction step happens, the redex is not
overwritten by the reduct, but the reduct is added to the ART and redex and
reduct are connected via a reduction edge. Because nothing is overwritten, the

3

•
ε
main

raaa
5

raaf
Leaf

raa
• •

rafaa
7

rafaf
Leaf

rafa
• •

raff
Branch

raf
• •

ra
• •rf

allOdd

r
• •

rrffa
id

rrfff
allOddC

rrff
• •

rrf
• •

rra
True

rr
• •

rrrffaff
allOddC

rrrffaf
• •

rrrffa
• •

rrrfff
allOddC

rrrff
• •

rrrf
• •

rrr
• •

Fig. 1. The ART P of a partial computation of the tree traversal program

whole history of a computation is preserved. The graph structure ensures space
efficient sharing.

2.1 Term Graphs

Figure 1 shows the ART P for the computation of our example program after
three reduction steps. A dotted arrow indicates a reduction. Each node’s label,
which may refer to further nodes, is depicted inside an oval. Nodes themselves
are (possibly empty) strings of the letters f, a and r, that is, n, m, o ∈ {f, a, r}∗.
Thus nodes alone partially describe the graph structure: f means going to the
function component of an application, a means going to the argument component
of an application, and r means following a reduction edge to the reduct.

Definition 1 (Term graph).

label L := a atom
| n m application
| n indirection

A term graph is a partial function from nodes to labels, G : n 7→ L. The domain
dom(G) of term graph G is the set of nodes for which the function is defined. We
sometimes regard a term graph G as a set of tuples {(n,G(n)) | n ∈ dom(G)}.

Reduction edges are given implicitly: If and only if node nr exists in the
graph, then there is a reduction edge from node n to node nr. The reduction of
a projection such as id x = x is recorded by adding an indirection node.

We will often need to follow a chain of reduction and indirection edges:

Definition 2 (Last node). Let G be a term graph and n ∈ dom(G). Then

n ≻G m ⇐⇒ m = nr ∨ G(n) = m

⌈n⌉G = m ⇐⇒ n ≻∗
G m ∧ ∄o. m ≻G o

4

For example, in the term graph P of Figure 1, ⌈ε⌉P = rrr.

2.2 Programs

We still have to define how we construct an ART for a particular program. Our
programs are applicative term rewriting systems such as the program in the
introduction. An atom a is a function symbol f or a data constructor C. Each
atom a is associated with a natural number, its arity.

Definition 3 (Term, label term, program term, computation term).

term M, N := a atom
| n node
| x variable
| M N application

Terms contain both nodes and variables. A label term is a term that does not
contain variables. A program term is a term that does not contain nodes. A
computation term is a term that contains neither variables nor nodes.

A pattern P is a program term without function symbols. fP1 . . . Pn = R
is a rewrite rule, provided that f is a function symbol of arity n and P1 . . . Pn

are patterns and R is a program term such that the variables of R are a subset
of the variables of fP1 . . . Pn. A program is a set of rewrite rules. We assume
that the meaning of each predefined function such as (&&) and mod is given by
a possibly infinite set of rewrite rules.

2.3 Augmented Redex Trails

Augmented redex trails (ARTs) are defined inductively. The graph representa-
tion of an initial term M , graph(ε, M), is an ART. If G is an ART and G reduces
in one step with program P to G′, that is, G →P G′, then G′ is an ART:

Definition 4 (Augmented redex trail). Let P be a program and M a com-
putation term. A term graph G with graph(ε, M) →∗

P
G is an augmented redex

trail (ART) for initial term M and program P .

Figure 2 defines all functions used in our definition of ARTs. Detailed expla-
nations are given in [2].

Figure 1 shows one of many ARTs for our example program. The reduction
relation is non-deterministic and hence ARTs can describe computations of strict
and non-strict languages and aborted computations. In later examples F denotes
the ART of the full computation of our tree traversal program.

3 Constructing Terms and Equations

It is a central property of the ART that every reduction step performed in its
construction can easily be reconstructed from it by traversing a small part of
the graph.

5

The graph for a given label term:

graph(n, a) = {(n, a)}
graph(n, m) = {(n,m)}

graph(n, M N) =

8

>

>

>

<

>

>

>

:

{(n, M N)} , if M , N are nodes

{(n, M na)} ∪ graph(na, N) , if only M is a node

{(n, nf N)} ∪ graph(nf, M) , if only N is a node

{(n, nf na)} ∪ graph(nf, M) ∪ graph(na, N), otherwise

Matching is defined inductively over the structure of the matched label term:

matchG(o, a) = (G(o) = a)

matchG(o, M N) = ∃m, n.(G(o) = m n) ∧
matchG(if M is a node then m else ⌈m⌉G , M) ∧
matchG(if N is a node then n else ⌈n⌉G , N)

matchG(o, m) = (o = m)

The reduction relation →P on term graphs for program P is defined as follows. If

– G is a term graph with n ∈ dom(G) and nr /∈ dom(G),
– L = R is a rewrite rule of the program P ,
– σ is a substitution replacing variables by nodes,
– matchG(n, Lσ),

then G →P,n G ∪ graphG(nr, Rσ) with rewrite rule L = R and substitution σ.

Fig. 2. Definitions for the ART

3.1 Most Evaluated Forms

Because of reduction edges, a single node of a term graph usually represents many
computation terms. An algorithmic debugger mostly shows values and hence we
are interested in the most evaluated form represented by a given node. Because
an ART may contain unevaluated expressions (incomplete, aborted computation
or lazy evaluation) we speak of “most evaluated forms” and not of values. The
most evaluated form of the node ε in Figure 1 is allOddC . . . (Leaf 7) True,
in the ART F it is False. We have to decide whether we want to represent
functional values as partial applications (P) or finite maps (M). For example,
mefPF (rrffa) = id and mefMF (rrffa) = {False 7→ False}.

Definition 5 (Most evaluated form with partial applications).

mefPG(n) = mefTP

G(G(⌈n⌉G))

mefTP

G(a) = a

mefTP

G(m n) = mefPG(m) mefPG(n)

6

The most evaluated form always follows reduction and indirection edges. It
is well-defined, because ARTs are acyclic (see Proposition 7.2 in [2]).

For finite maps we have to extend computation terms by the syntactic alter-
native {N1 7→ M1, . . . , Nk 7→ Mk} for k ≥ 0.

Definition 6 (Most evaluated form with finite maps).

mefMG (n) =

fMapG(n) , if M = f N1 . . .Nk ∧ 0 ≤ k < arity(f)

{} , if M = f N1 . . .Nk ∧ k ≥ arity(f)

M , otherwise

where M = meaG(n)

meaG(n) = meaTG(G(⌈n⌉G))

meaTG(a) = a

meaTG(m n) = meaG(m) mefMG (n)

fMapG(n) = {mefMG (o) 7→ mefMG (m) | G(m) = n′ o ∧ n′ ≻∗
G n ∧ mefMG (m) 6= {}}

The most evaluated applicative form meaG(n) always contains an atom in
the left-most position (it is an application of an atom or just an atom).

The definition of the most evaluated form mefMG (n) distinguishes three cases.
A partial application of a function symbol is represented as a finite map. A
full or over-application of a function symbol identifies an unevaluated term and
is simply represented as {}. Hence our soundness proof will also demonstrate
that information about unevaluated terms is unnecessary for algorithmic debug-
ging2. An empty map {} represents both an unevaluated term and a functional
value that was never applied to sufficient arguments. Distinguishing the two
cases just complicates the formalisation. Finally a most evaluated form can be
a data constructor or an application of a data constructor. This representation
is left unchanged. So not all functional values are represented as finite maps.
Partial applications of data constructors are still simply represented as partial
applications of data constructors.

A function map fMapG(n) is defined recursively, locating arguments and the
result by locating all applications of the function at node n. To keep finite maps
small, a finite map comprises applications of a specific node, not of a function
symbol. For the code

main = map increase [1,2] ++ map increase [3,4]

the ART contains two nodes for increase and hence we will obtain the equations

2 We could drop this case and thus include unevaluated terms as we do in the definition
of mefP

G . Or we could define mefP

G(m n) = {}, if mefP

G(m) mefP

G(n) = f N1 . . . Nk ∧
k ≥ arity(f) and thus exclude unevaluated terms there as well.

7

• ε
main

ra
id

rf
g

r
• •

rra
4

rrf
• •

rr
• •

rrfr
•

rrr
•

Fig. 3. The ART I of the full computation of a program requiring rank-2 types

map {1 7→ 2, 2 7→ 3} [1,2] = [2,3]

map {3 7→ 4, 4 7→ 5} [3,4] = [4,5]

and not the longer equations

map {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5} [1,2] = [2,3]

map {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5} [3,4] = [4,5]

In the definition the condition mefMG (m) 6= {} avoids superfluous collection of
partial applications. The definition yields finite maps of the form {1 7→ {2 7→
3, 3 7→ 4}}, but in practice we may prefer to display them as {1 2 7→ 3, 1

3 7→ 4}.

3.2 Equations

From a redex node n, that is, a node n with nr ∈ dom(G), we can reconstruct an
equation to be displayed as a question in an algorithmic debugging session. An
equation is a pair of a redex, that is an application of a function symbol, and a
most evaluated form:

Definition 7 (Redexes and equations). Let n be a redex node in G.

equationP

G(n) = redexP

G(n) = mefPG(n)

equationM

G (n) = redexM

G (n) = mefMG (n)

redexP

G(n) = mefTP

G(G(n))

redexM

G (n) = meaTM

G (G(n))

3.3 Well-Definedness of Finite Maps

For partial applications the most evaluated form is well-defined, because ARTs
are acyclic. However, the definitions of mefMG and fMapG are mutually recursive
and may not be well-founded. The following program exposes the problem:

main = g id

id x = x

g h = (h h) 4

8

Figure 3 shows the ART I of the full computation. We have:

mefI(ra) = fMapI(ra)

= {mefI(ra) 7→ mefI(rrf), mefI(rra) 7→ mefI(rr)}
= {mefI(ra) 7→ {4 7→ 4}, 4 7→ 4}

So mefI(ra) is clearly not well defined. However, the above program is not ac-
cepted by the Haskell 98 type system nor any other type system based on the
Hindley-Milner type system [5]. Such type systems disallow applying a param-
eter to itself as occurs here in function g. The Hindley-Milner type system and
its extensions for Haskell 98 or ML have the property that every polymorphic
function is instantiated monomorphically at every occurrence where it is used
in the program. Hence we can also type an ART by assigning a monomorphic
type to each node. In the definition of fMapG for a node n the nodes o and m,

to which mefMG is applied recursively, have types that are components (argument
and result type respectively) of the functional type of n. So the arguments of
the recursive applications are strictly smaller and thus mefMG is well-defined.

Alternatively we could define finite maps for any program if we modified our
definition of ARTs. Instead of using indirection nodes only for projections we
would insert an indirection for all variables (or just all of functional type). The
additional indirections would enable us to distinguish different instances of the
same function. Such additional indirections would also make some finite maps
smaller and thus simplify questions. For example, for the standard recursive
definition of the function map the evaluation of map odd [2,7,4] yields the
equations

map {2 7→ False, 7 7→ True} [2,7] = [False, True]

map {2 7→ False, 7 7→ True} [7] = [True]

map {2 7→ False, 7 7→ True} [] = []

because there is only one shared node for the function odd. With additional
indirections we would have separate nodes and thus obtain:

map {2 7→ False, 7 7→ True} [2,7] = [False, True]

map {7 7→ True} [7] = [True]

map {} [] = []

4 The Computation Tree

Algorithmic debugging is based on the representation of the computation, which
yielded the erroneous result, as a computation tree. Each node of a computation
tree must be labelled with a subcomputation that on its own can be judged to
be either correct (

√
), that is agreeing with the user’s intentions, or incorrect

(×). The user’s yes/no answers direct a path through the tree to a node that is
associated with the faulty definition [6].

9

ε

main = False

×

r

allOdd (Branch (Leaf 7) (Leaf 5)) = False

×

rr

allOddC id (Branch (Leaf 7) (Leaf 5)) True = False

×

rrr

allOddC (allOddC id (Leaf 5)) (Leaf 7) True = False

×

rrrraa

odd 7 = True

√
rrrra

allOddC id (Leaf 5) True = False

×

rrrraraa

odd 5 = False

× rrrrara

id False = False

√

ε
main = False

×

r

allOdd (Branch (Leaf 7) (Leaf 5)) = False

×

rrrrara

id False = False

√
rr

allOddC {False7→False} (Branch (Leaf 7)(Leaf 5)) True=False
×

rrrra

allOddC{False7→False}(Leaf 5)True=False
× rrr

allOddC{True7→False}(Leaf 7)True=False

√

rrrraraa

odd 5 = False

× rrrraa

odd 7 = True

√

Fig. 4. EDT and FDT for the full computation of the tree traversal program

Figure 4 shows two computation trees for our tree traversal program, the
standard evaluation dependency tree (EDT) [7], where functions are represented
as partial applications, and the function dependency tree (FDT), where functions
are represented as finite maps. Each node is labelled with the big-step reduction
of a function symbol with argument values to its result value. Each node is
associated with the definition of this function symbol.

If in a computation tree all the child nodes of an incorrect node are correct,
then this node is said to be faulty. A tree is a computation tree, if for every faulty
node its associated slice is faulty, that is, the program slice disagrees with the
user’s intentions. Reformulated: if all the subcomputations of the children of a
node are correct and the slice associated with the node is correct (not faulty),
then the subcomputation of the node itself must be correct. So a computation
tree must be compositional. If the root node of a computation tree is incorrect,
then algorithmic debugging will locate a faulty node in the tree (Propositions 1
and 3 in [6]).

Both EDT and FDT have a node for each redex node in the ART (excluding
reductions of trusted predefined functions such as (&&) and mod). In the pre-

10

ceding section we defined the equations of the nodes, which differ only in how
functional values are represented. The main difference between EDT and FDT
is their structure. In the EDT a node g M ′

1
. . .M ′

k′ = N ′ is a child of a node
f M1 . . . Mk = N , if g M ′

1
. . .M ′

k
was called from function f , more precisely,

if the application g M ′
1
. . .M ′

k′ appears in the right hand side of the definition
of f . In contrast, in the FDT a node g M ′

1
. . .M ′

k′ = N ′ is a child of a node
f M1 . . . Mk = N , if the function symbol g appears in the right hand side of
the function f . Intuitively the function symbol is relevant, because the node
f M1 . . . Mk = N considers g to be equivalent to its finite map representation,
which is justified by children such as g M ′

1
. . . M ′

k′ = N ′.
So we have to relate instances of right hand sides to instances of left hand

sides. The structure of ART nodes makes it easy to determine for a given node
the redex node that caused its creation:

Definition 8 (ART parent node).

parent(nr) = n

parent(nf) = parent(n)

parent(na) = parent(n)

parent(ε) = undefined

For example, in Figure 1 parent(rr) = r and parent(rrfff) = r.

We can identify the function node of a redex node:

Definition 9 (Function node). Let n be a redex node of an ART G.

funG(n) =

{

n , if G(n) = a

funG(⌈m⌉G) , if G(n) = m o

Definition 10 (EDT, FDT). The set of tree nodes, treeNodesG, is the set of
redex nodes n such that funG(n) is not a predefined function symbol.

The evaluation dependency tree (EDT) for an ART G consists of the tree
nodes treeNodesG labelled with equationP

G and related via parent [4].
The function dependency tree (FDT) for an ART G consists of the tree nodes

treeNodesG labelled with equationM

G and related via parentFDTG = parent · funG.

The root of any non-empty EDT or FDT is ε.
The EDT is basically the proof tree of a natural semantics for a call-by-value

computation that may skip some subcomputations. The structure of the EDT is
determined by the parent of the application of a redex, the structure of the FDT
is determined by the parent of the function symbol of a redex. In a first-order
program function symbol and application always appear together in the right
hand side of a definition. Hence then the EDT and the FDT are identical (there
are also no functional arguments to be displayed as finite maps).

11

5 Soundness Proof

To prove that the FDT has the fault location property, that is, the function
definition associated with a faulty node is faulty, we first have to clarify what
we mean by a reduction or a function definition being correct. We say that a
reduction f M1 . . .Mk = N is correct if and only if f M1 . . . Mk ⊒ N for some
binary relation ⊒ that we call the intended semantics. The intended semantics
may exist in the mind of the user or be derived from some form of specification.

Definition 11. An intended semantics is a binary relation on computation
terms ⊒ with the following consistency properties:

1. Reflexivity: M ⊒ M
2. Transitivity: M ⊒ N ∧ N ⊒ O =⇒ M ⊒ O
3. Closure: M ⊒ N =⇒ M O ⊒ N O ∧ O M ⊒ O N
4. Least element: M ⊒ {}
5. Application: {N1 7→ M1, . . . , Nk 7→ Mk}Ni ⊒ Mi

6. Abstraction: ON1 ⊒ M1 ∧ ... ∧ ONk ⊒ Mk ⇒ O ⊒ {N1 7→M1, ..., Nk 7→Mk}
The last two properties state that a finite map is a function as described by

its entries. ⊒ is a partial order with {} as least element. So M ⊒ N can be read
as “N approximates the value of M”. The definition leaves much freedom. For
example, for a set library both insert 2 [1] ⊒ [2,1] and insert 2 [1] ⊒
[1,2] may hold. A runtime error is represented as a special data constructor
Error and hence head [] ⊒ Error may hold. In the following we just assume
that an intended semantics exists.

We already defined redexM

G (n) for a redex node n. We still need to define
how we can also reconstruct from a redex node n the reduct of the reduction,
that is, the instance of the right hand side of the program equation used for the
reduction.

Definition 12 (Reduct of a redex node).

reductMG (n) = reductBM

G (nr)

reductBM

G (n) =

a , if G(n) = a

mefMG (m) , if G(n) = m

reductBM

G (nf) reductBM

G (na), if G(n) = nfna

reductBM

G (nf) mefMG (o) , if G(n) = nf o and o 6= na

mefMG (m) reductBM

G (na) , if G(n) = m na and m 6= nf

mefMG (m) mefMG (o) , if G(n) = m o, m 6= nf and o 6= na

E.g., reductMF (r) = allOddC {False7→False} (Branch (Leaf 7) (Leaf 5)) True.

Definition 13 (Correctness and faultiness in the FDT).

Tree node n correct ⇐⇒ redexM

G (n) ⊒ mefMG (n)

Tree node n faulty ⇐⇒ redexM

G (n) 6⊒ reductMG (n)

Program equation L = R faulty ⇐⇒ ∃σ. Lσ 6⊒ Rσ

12

The expected connection between faulty nodes and program equations holds:

Proposition 1. If a tree node is faulty, then its associated program equation is
faulty.

Proof. Analogous to Proposition 8.9 of [2]. �

Proposition 2 makes a statement about the intended semantics of a function
symbol and Proposition 3 about the intended semantics of application. Based on
these two propositions we prove that algorithmic debugging with finite maps is
sound (Corollary 1). So for any future variation of algorithmic debugging with
finite maps we will aim to ensure that Propositions 2 and 3 still hold and then
soundness of that variation is guaranteed.

The complete proofs are in the appendix. For simplicity we assume that every
redex node is a tree node.

Proposition 2. Let n ∈ dom(G) with n /∈ treeNodesG and G(n) = f for some
function symbol f with arity(f) > 0. If for all m ∈ treeNodesG it is the case
that parentFDTG(m) = parent(n) implies redexM

G (m) ⊒ mefMG (m) , then f ⊒
fMapG(n).

Proof. We prove the more general property that if n ∈ dom(G) with n /∈
treeNodesG and meaG(n) = f N1 . . .Nk for some function symbol f and compu-
tation terms N1 . . . Nk with arity(f) > k ≥ 0, then

(∀m∈treeNodesG . parentFDTG(m)=parentFDTG(n) ⇒ redexM

G (m)⊒mefMG (m))

=⇒ meaG(n) ⊒ mefMG (n)

Let j = arity(f) − k. Proof by induction on j.

Proposition 3. In the FDT application is in the intended semantics, that is,

G(n) = p o =⇒ mefMG (p) mefMG (o) ⊒ mefMG (n)

Proof. Proof by case analysis on meaG(p).

Proposition 4 (Correctness of the Reduct). If n is a tree node and all its
children are correct, then reductMG (n) ⊒ mefMG (n).

Proof. reductMG (n) = reductBM

G (nr). reductBM

G (nr) ⊒ mefMG (n) follows from the
more general property

∀n ∈ dom(G).

(∀m ∈ treeNodesG . parentFDTG(m) = parent(n) ⇒ redexM

G (m) ⊒ mefMG (m))

=⇒ reductBM

G (n) ⊒ mefMG (n)

Proof by induction on heightG(n) = max{|o| | o ∈ {f, a}∗ ∧ no ∈ dom(G)}.

13

Corollary 1 (FDT is a computation tree).
If a tree node is incorrect and all its children are correct, then the tree node is
faulty, that is,

∀n ∈ treeNodesG . (redexM

G (n) 6⊒ mefMG (n)) ∧
(∀m ∈ treeNodesG . parentFDTG(m) = n =⇒ redexM

G (m) ⊒ reductMG (m))

=⇒ redexM

G (n) 6⊒ mefMG (n)

Proof. According to Proposition 4 we have reductMG (n) ⊒ mefMG (n). Assume

redexM

G (n) ⊒ reductMG (n). By transitivity redexM

G (n) ⊒ mefMG (n) in contradiction

to our hypothesis. Hence redexM

G (n) 6⊒ reductMG (n). �

6 Related Work

Naish [6] gives an abstract description of algorithmic debugging, independent of
any particular programming language. He proves that algorithmic debugging is
complete in the sense that if the program computation produces a wrong result,
then algorithmic debugging will locate a fault. No such general proof exists for
the soundness of algorithmic debugging, that is, the property that the indicated
fault location is indeed faulty, because soundness depends on the exact definition
of the computation tree.

For lazy functional programming languages Nilsson and Sparud [7] intro-
duced the evaluation dependency tree (EDT) as computation tree. The EDT
has the property that the tree structure reflects the static function call structure
of the program and all arguments and results are in their most evaluated form.
For many years the EDT was considered to be the only useful computation tree
for functional programs.

Caballero et al. [1] give a formal definition of the EDT for a lazy functional
logic language and outline a soundness proof of algorithmic debugging. They
introduced the formalisation of the intended semantics that we extend. Their
approach relies on the EDT being defined through a high-level non-deterministic
big-step semantics. This big-step semantics is unsuitable for defining the FDT,
because it would be hard to relate the occurrence of a function symbol in an
argument with an application of the function symbol. In contrast, the augmented
redex trail (ART) [2] records such information directly in its graph structure and
as an explicit data structure it is also easier to manipulate. A formal definition
of the EDT based on the ART together with a soundness proof are already
given in [4]. The soundness proof for the FDT is similarly structured but longer,
because it has to handle the finite map representation and its properties (cf.
Propositions 2 and 3). Without additional work it also covers the representation
of unevaluated subexpressions by a special symbol (here {}).

Pope [8, 9] introduced the idea of representing functional values as finite
maps into algorithmic debugging of higher-order functional languages and im-
plemented it in the Haskell debugger Buddha. He demonstrates its usefulness

14

and describes the implementation but gives no formal model. He does not use
the name FDT but considers it as a variant of the EDT.

7 Summary and Future Work

We formally defined the function dependency tree (FDT), a computation tree
for algorithmic debugging of higher-order functional programs that represents
functional values as finite maps. We defined the FDT in terms of the augmented
redex trail (ART) a trace that describes the graph reduction computation of
a functional program in detail. Thus we proved the soundness of algorithmic
debugging with the FDT, that is, that every located fault is indeed a fault.

Every occurrence of a function symbol in the right hand side of an equation
creates at every reduction of this equation a new function node in the ART. The
finite map of such a function node contains only the arguments (and results)
to which this node was applied, not all arguments (and results) of the function
symbol. This smaller set is sufficient for soundness. A function that is passed as
a parameter does not create a new node in the ART and hence self-application of
a function passed as parameter creates an ART for which the “finite” map of the
function is ill-defined; because of cyclic dependencies it would be infinite. This
is not a problem for Haskell 98 or Standard ML, because the Hindley-Milner
type system excludes such self-application. Alternatively we could modify the
definition of the ART to include more indirection nodes: thus we could obtain
finite maps for any program and even smaller, more specific finite maps for many
programs.

The ART is a model of the trace used by the Haskell tracer Hat. Thus this
paper shows how little effort is needed to extend Hat such that it supports algo-
rithmic debugging with both partial applications and finite maps. A prototype
exists, but in practise construction of the finite maps is time consuming and
hence we are working on more efficient algorithms.

There is a clear symmetry between the definitions of the standard evaluation
dependency tree (EDT) and the FDT. The close relationship suggests that sound
mixtures of the two computation trees exist and further variations, for example
with equations that do not respect the arity of the original function definitions,
are worth exploring.

The FDT also enables algorithmic debugging of top-level definitions indepen-
dent of local definitions made in where- or let-clauses. The idea is that algorith-
mic debugging could ask only questions about functions defined at the top-level.
When a faulty function is identified, the fault is either in the definition of that
function itself or its local function definitions. This kind of low granularity al-
gorithmic debugging requires less questions and it is still possible to locate the
fault more precisely by later questions about locally defined functions. Such low
granularity algorithmic debugging is unsound for the EDT, because the call site
for a function passed out of a local scope can be anywhere in the program. In
contrast, locally defined function symbols can only occur within the surrounding

15

definition. To prove the soundness of this algorithmic debugging scheme, we will
have to extend our ART model to programs with local function definitions.

References

1. Rafael Caballero, Francisco J. López-Fraguas, and Mario Rodŕıguez-Artalejo. The-
oretical foundations for the declarative debugging of lazy functional logic programs.
In Herbert Kuchen and Kazunori Ueda, editors, Functional and Logic Program-

ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001,

Proceedings, LNCS 2024, pages 170–184. Springer, 2001.
2. Olaf Chitil and Yong Luo. Structure and properties of traces for functional pro-

grams. In Ian Mackie, editor, Proceedings of the 3rd International Workshop on

Term Graph Rewriting, Termgraph 2006, ENTCS 176(1), pages 39–63, 2007.
3. Thomas Davie and Olaf Chitil. Display of functional values for debugging. In

Draft Proceedings of IFL 2006, pages 326–337, Budapest, Hungary, September
2006. Eötvös Loránd University. Technical Report No 2006-SO1.

4. Yong Luo and Olaf Chitil. Proving the correctness of algorithmic debugging for
functional programs. In Trends in Functional Programming, volume 7, pages 19–34.
Intellect Books, 2007.

5. Robin Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, 17:348–375, December 1978.
6. Lee Naish. A declarative debugging scheme. Journal of Functional and Logic

Programming, 1997(3), 1997.
7. Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy

functional debugging. Automated Software Engineering: An International Journal,
4(2):121–150, April 1997.

8. Bernie Pope. Declarative debugging with Buddha. In V. Vene and T. Uustalu,
editors, Advanced Functional Programming, 5th International School, AFP 2004,
LNCS 3622, pages 273–308. Springer Verlag, September 2005.

9. Bernie Pope. A Declarative Debugger for Haskell. PhD thesis, The University of
Melbourne, Australia, 2006.

10. Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Proceedings of the 2001 ACM SIGPLAN

Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001.

16

A Complete Proofs

The following lemma will be used several times.

Lemma 1. An application that is not the application of a function symbol f to
arity(f) arguments cannot be a tree node, that is

G(n) = p o ∧ meaG(p) = a N1 . . .Nk ∧ (a = C ∨ arity(a) 6= k + 1)

=⇒ n /∈ treeNodesG

Proof. Assume n ∈ treeNodesG . Then redexM

G (n) = meaTG(p o) = meaG(p) mefMG (o) =

a N1 . . .Nk mefMG (o). Following Lemma 8.9 of [2] redexM

G (n) is an instance of the
left hand side of a rule. The left hand side of a rule is an application of a function
symbol f to exactly arity(f) patterns. Because of this contradiction our original
assumption that n ∈ treeNodesG must be wrong. �

Proof of Proposition 2
We prove the more general property that if n ∈ dom(G) with n /∈ treeNodesG
and meaG(n) = f N1 . . . Nk for some function symbol f and computation terms
N1 . . .Nk with arity(f) > k ≥ 0, then

(∀m∈treeNodesG . parentFDTG(m)=parentFDTG(n) ⇒ redexM

G (m)⊒mefMG (m))

=⇒ meaG(n) ⊒ mefMG (n)

Let j = arity(f) − k. Induction on j.

case j = 1:
Let m ∈ dom(G) with G(m) = n′ o and n′ ≻∗

G n and mefMG (m) 6= {}.
Assume m /∈ treeNodesG . Then we have meaG(m) = f N1 . . . Nk mefMG (o).

Because arity(f) = k + 1 we get mefMG (m) = {} in contradiction to our

hypothesis that mefMG (m) 6= {}. Hence our assumption is wrong and m ∈
treeNodesG .
We have redexG(m) = meaTG(G(m)) = meaTG(n′ o) = meaG(n′) mefMG (o) =

f N1 . . .Nk mefMG (o). Furthermore parentFDTG(m) = parentFDTG(n). There-

fore the hypothesis gives us redexG(m) ⊒ mefMG (m) and so we know that

meaG(n) mefMG (o) ⊒ mefMG (m).
Because we have this for any m, the abstraction property of the intended
semantics gives us meaG(n) ⊒ {mefMG (o) 7→ mefMG (m) | G(m) = n′ o ∧ n′ ≻∗

G

n ∧ mefMG (m) 6= {}}. Therefore meaG(n) ⊒ fMapG(n) = mefMG (n).
case j > 1:

Let p ∈ dom(G) with G(p) = n′ o and n′ ≻∗
G n.

From arity(f)−k = j > 1 follows arity(f) > k+1. Together with meaG(n′) =
meaG(n) = f N1 . . .Nk Lemma 1 gives us p /∈ treeNodesG , so pr /∈ dom(G).
So mea(p) = meaG(n′) mefMG (o) = meaG(n) mefMG (o) = f N1 . . .Nk mefMG (o).
Because we have arity(f)−(k+1) = j−1 and so arity(f) > k+1, we can apply

17

the induction hypothesis. For all m ∈ treeNodesG with parentFDTG(m) =
parentFDTG(n) we know that parentFDTG(m) = parentFDTG(p). So for
all m ∈ treeNodesG we have parentFDTG(m) = parentFDTG(p) implies

redexG(m) ⊒ mefMG (m). Hence meaG(p) ⊒ mefMG (p).

Together with meaG(p) = meaG(n) mefMG (o) we obtain that meaG(n) mefMG (o) ⊒
mefMG (p).
Because we have this last relationship for any p we obtain with the abstrac-
tion property of the intended semantics meaG(n) ⊒ {mefMG (o) 7→ mefMG (p) |
G(p) = n′ o ∧ n′ ≻∗

G n ∧ mefMG (p) 6= {}}. The condition mefMG (p) 6= {} is
not necessary, but the relationship still holds with additional conditions. We
conclude that meaG(n) ⊒ fMapG(n) = mefMG (n). �

Proof of Proposition 3
Case analysis on meaG(p):

case meaG(p) = f N1 . . . Nk and arity(f) > k ≥ 0:
So mefMG (p) = fMapG(p) = {mefMG (o′) 7→ mefMG (m) | G(m) = p′ o′ ∧ p′ ≻∗

G

p ∧ mefMG (m) 6= {}}.
case mefMG (n) = {}:

Trivially mefMG (p) mefMG (o) ⊒ {} = mefMG (n).

case mefMG (n) 6= {}:
Then mefMG (o) 7→ mefMG (n) ∈ fMapG(p). With the application property

we get mefMG (p) mefMG (o) = fMapG(p) mefMG (o) ⊒ mefMG (n).
case meaG(p) = f N1 . . . Nk and arity(f) ≤ k:

According to Lemma 1 n /∈ treeNodesG . So meaG(n) = meaG(p) mefMG (n) =

f N1 . . .Nk mefMG (n) and arity(f) ≤ k. Therefore mefMG (n) = {}. Trivially

mefMG (p) mefMG (o) ⊒ {} = mefMG (n).
case meaG(p) 6= f N1 . . . Nk:

Then meaG(p) = C N1 . . . Nk for some constructor C and terms N1 . . . Nk.
According to Lemma 1 n /∈ treeNodesG . So meaG(n) = meaG(p) mefMG (n) =

C N1 . . . Nk mefMG (n). Hence mefMG (n) = meaG(n). Therefore we know that

mefMG (p) mefMG (o) = meaG(p) mefMG (o) = meaG(n) = mefMG (n). �

Proof of Proposition 4 (Correctness of the Reduct)
reductMG (n) = reductBM

G (nr). reductBM

G (nr) ⊒ mefMG (n) follows from the more
general property

∀n ∈ dom(G).

(∀m ∈ treeNodesG . parentFDTG(m) = parent(n) ⇒ redexM

G (m) ⊒ mefMG (m))

=⇒ reductBM

G (n) ⊒ mefMG (n)

Induction on heightG(n) = max{|o| | o ∈ {f, a}∗ ∧ no ∈ dom(G)}.

case heightG(n) = 0:

18

case G(n) = a:
case n ∈ treeNodesG :

Because parentFDTG(n) = parent(n) we have redexM

G (n) ⊒ mefMG (n).

So reductBM

G (n) = a = redexM

G (n) ⊒ mefMG (n).
case n /∈ treeNodesG :

case G(n) = f :
If arity(f) = 0 then reductBM

G (n) ⊒ {} = mefMG (n) else reductBM

G (n) =

f = meaG(n) and with Proposition 2 we obtain that reductBM

G (n) ⊒
mefMG (n).

case G(n) = C:
reductBM

G (n) = C = mefMG (n).
case G(n) = m:

By definition reductBM

G (n) = mefMG (n).
case G(n) = p o:

reductBM

G (n) = mefMG (p) mefMG (o). With Proposition 3 we obtain reductBM

G (n) ⊒
mefMG (n).

case heightG(n) > 0:
Then G(n) = p o and p = nf or o = na.
case p = nf and o 6= na:

reductBM

G (n) = reductBM

G (nf) mefMG (o). According to the induction hy-

pothesis reductBM

G (nf) ⊒ mefMG (nf). So with context closure of the in-

tended semantics reductBM

G (n) ⊒ mefMG (p) mefMG (o) follows and with

Proposition 3 we obtain reductBM

G (n) ⊒ mefMG (n).
case p 6= nf and o = na:

reductBM

G (n) = mefMG (p) reductBM

G (na). According to the induction hy-

pothesis reductBM

G (na) ⊒ mefMG (na). So reductBM

G (n) ⊒ mefMG (p) mefMG (o)

and thus reductBM

G (n) ⊒ mefMG (n).
case p = nf and o = na:

reductBM

G (n) = reductBM

G (nf) reductBM

G (na). From the induction hy-

pothesis we obtain reductBM

G (nf) ⊒ mefMG (nf) and reductBM

G (na) ⊒ mefMG (na).

Therefore reductBM

G (n) ⊒ mefMG (p) mefMG (o) and consequently reductBM

G (n) ⊒
mefMG (n). �

19

