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Abstract

The RISCSIM simulation engine provides a back-end engine to support tools that generate simulation models directly from object-based designs. It supports the linking of a number of simple sub-models to represent users, applications and the resources that support them. It includes a variety of features to support static and dynamic configurations, and to separate details of the infrastructure, such as routing policy or middleware options, from those of the application being investigated. 

MOTIVATION

RISCSIM is a modelling framework and supporting simulation engine designed for situations in which simulation models are to be derived automatically from existing object-based designs. Specifically, it is tailored to the needs of distributed computing system projects. It places emphasis on decomposition and on reuse of existing models for resources, and assumes that libraries of resource models and infrastructure configuration details will be built up over a period of time and will be available for reuse.

The initial motivation for the system was in the PERMABASE project (performed by BT and UKC) [Waters et al, 97] [Utton et al, 98]; this project developed techniques for the automatic derivation of performance models from object-oriented application designs expressed in UML [OMG, 98] [Rumbough et al, 99].

This work assumed that applications are designed to exploit a known range of hardware and software configurations, built from components for which sub-models already exist. It therefore produces its performance models by unifying information obtained from design tools and from network planning and configuration management tools by extracting a behavioural description from the design and placing the resulting application objects at particular points within the expected configuration. Specific performance questions can then be posed with respect to different predicted workloads and the impact of critical design choices assessed.

This project aims to achieve considerable reuse of existing sub-models. It is, therefore, particularly important to have good facilities for the composition of models and for handling the sharing of resources when a variety of application components are allocated to the same platform or network.

The name of the system reflects a desire to find a set of modelling abstractions that lend themselves to automatic model generation and simplify switching between the different design contexts in a composite model, drawing an analogy with compilation and the development of RISC processors.

MODELLING APPROACH

The way that distributed systems are viewed in this work is derived from the international standard framework for open distributed processing (ODP) [ISO, 1995a] [ISO, 1995b] [Linington, 1995]. ODP is a good starting point for a project which expects to combine pieces of specification from a number of design authorities, because it structures the description of distributed systems into distinct viewpoints in order to provide just such a separation of concerns. Indeed, one of the benefits of the ODP approach is in promoting a design style which can accommodate a wide range of specialized tools, all using relevant parts of the same collection of specifications; see [Linington, 99] for a discussion of the use of ODP in this way.

The modelling approach used assumes that systems are composed from interacting objects, each of which has behaviour and accesses resources. Different types of configuration are defined first and then these are instantiated as often as necessary. Basic behaviour is expressed using Petri Nets, since their behaviour corresponds closely to an intuitive picture of concurrent activities flowing through a distributed system.

Briefly, these nets define behaviour as the movement of a set of tokens. The nodes of the net are alternately either places or transitions, and transitions can fire only if there are tokens at all their input places. This absorbs the input tokens and then generates a new set of tokens at the transition’s output places. Strictly speaking, the tokens transferred to the output places are distinct from the input tokens, but we talk here, rather loosely, about a token as flowing through the net where this simplifies the description of the behaviour.

In RISCSIM, the behaviour of each configuration of objects is expressed as a fragment of a timed-transition coloured Petri Net (see [Jensen, 96] for an up to date review of these nets). The tokens are said to be coloured because they carry state and can therefore have distinct types. In this system they are austerely coloured, in that the state is rather limited, being restricted to the resource requirements of the activity represented by the token and information about navigation of the object configuration.

Roles in a Configuration

Each place or transition in the configuration type being defined is associated with a role. This assignment allows the resources needed to support the behaviour defined to be linked, via the role, to a particular object and thus to the resources which, in turn, support it. In the more abstract models, this usage of role has much in common with that in the ODP enterprise language definition of a community.

There are two styles of description used for distributed systems, representing the two ends of a design spectrum. In one, emphasis is placed on the configuration of a set of objects and its behaviour; in the other, emphasis is placed on the behaviour of single objects and knowledge of the configuration emerges from the communication and binding actions performed by the interacting objects. The first style gives a compact representation of statically configured systems, while the second gives an algorithmic description of the evolution of dynamic systems. Initially, we consider the static approach.

When the configuration is instantiated, each of the defined roles is bound to a specific object instance. Several roles in different configuration instances can be bound to the same object. Thus, for example, a simple client-server configuration might be instantiated three times, with a separate client but the same server in each instance, reflecting three clients competing for a shared server (see figure 1). 
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Figure 1 - Configuration type, instance and associated objects

Each instance can also have associated with it a distinct probability distribution for any non-deterministic aspects of the model. This allows the description of mixed user populations with, for example, different query complexities or probabilities of requiring reference to remote data.

Access to Resources

Each of the object instances uses a specific set of resources (in the current implementation, these are computational and communications resources). These resources are themselves modelled as configurations of objects, using the same technique. Whenever a Petri Net transition in one model fires, a child token is injected into another model corresponding to the resource of the appropriate kind owned by the object responsible for that transition (figure 2). This indirection, through both configuration instance and object, is one of the keys to the system’s flexibility.

It is with respect to this injection process that the models are fragments of Petri Nets, rather than complete nets. A complete net is closed, but the fragments used here have a number of dangling transitions, called entry and exit transitions, which link to the parent model. When a transition in the parent model fires, the child token leaves the corresponding entry transition. When the child token reaches an exit transition, the parent’s state is updated, if necessary, the child token is discarded and the parent transition terminates, sending new tokens to its output places. The time taken by the parent transition is derived from that taken to traverse the child model. The child model as a whole does not terminate, since it represents the resource being used. It thus has a continuing existence with its own state concerned with, for example, concurrency control.
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Figure 2 - Linking of Transition to Sub-models

Cost parameters are transferred to the child token from the parent token and the transition that it fired and these are used to initialize the new token in the supporting model. Scaling factors can be applied at this stage, as part of the mapping process, to reflect the different performance parameters of various platforms. The recursion is terminated by associating unmapped resources in the finest-grain models with the passage of real time. At each step there is provision for a linear scaling plus a fixed additional cost, allowing a single supporting model definition to be parameterized. It can therefore accommodate a variety of speeds and fixed overheads to be associated with different object instances.

The various costs and scaling parameters have to be quoted in suitable units, and care taken that the complete series of transformations from introduction of a cost to its eventual interpretation as a time delay is consistent. Thus, for example, a simple processor model might express its speed in terms of the reciprocal of its  SPECint measure. This would require application costs to be expressed in, say, SPECint-milliseconds per application function performed.

The approach taken here is chosen to avoid difficulties with the compositionality of Petri Nets. Instead, we treat the different sub-models as independent, with transitions in one model resulting in the injection of distinct tokens into other models. Each of these further models represents some part of the resource usage by the original transition, but the interpretation does not depend on any flattening to create a larger, equivalent notional model. This can be contrasted with the software design techniques proposed by, for example, [Bruno, 95], in which more tightly coupled hierarchical structures are used. The resulting looseness of coupling here gives additional flexibility when dealing with situations where the relationships between objects change dynamically.

The system can collect performance statistics from any transition in any model instance. Usually, the transitions representing use of the system in some workload model are monitored, together with key transitions concerned with resource usage, such as network or processor loading. The current version collects mean transition times, fraction of time the transaction is busy and mean number of tokens within the transition. There is also provision for collecting histograms or time series of these values.

Places and Transitions

At a more detailed level of behaviour specification, RISCSIM does not provide the full generality of guarded arcs into transitions and guarded transition firing found in coloured Petri Nets. Instead, a number of specific cases have been selected on the basis of their utility in distributed systems modelling. For example:

a) places can be either unstructured or provide FIFO queuing of tokens;

b) places can be associated with tests on cost, error status, or other state parameters and their outgoing arcs partitioned into sets based on the results of the test, allowing, for example, “repeat until done” control structures;

c) places can be associated with probability distributions, in which probabilities are allocated to each of the outgoing arcs that may participate in  offering a non-deterministic choice;

d) transitions can represent use of computational or communication resources; thus all a single object’s computational or networking activity is mapped to a single processor or network model;

e) transitions can represent the whole of the token’s cost, some fixed overhead cost, or a stated part of the token’s cost, allowing modelling of message fragmentation or time-slicing; where numeric values are defined with a transition, rather than taken from a token, a probability distribution about the given mean can also be specified;

f) other special forms of transition support dynamic linking of models (see below).

DYNAMIC CONFIGURATIONS

The modelling approach described so far works well for static configurations of objects, but has difficulty with cases where there is dynamic binding of objects, because this generates a potentially very large number of configuration instances. Such dynamic binding forms an essential part of any non-trivial distributed system, and there must be a way of expressing it. It occurs, for example, when clients are allocated dynamically to a pool of servers, or when a client specifies a callback to a helper object dynamically.

To overcome this problem, composition by linking between peer models is introduced. Each model retains its independence, but when a certain kind of transition in one model is entered, the result is the generation of a token at the exit of an associated transition in the other model. Strictly, the resulting networks are then no longer Petri Nets, in that some of the theoretical results bounding the behaviour of the net no longer hold, but these modified nets allow important classes of dynamic behaviour to be included in the models.

Two specific new kinds of transition are defined, corresponding roughly to client and server communication behaviour. The first kind results in the invocation of an instance of some peer model, and completes when the activity introduced into that model terminates. The peer model to be used can be determined by part of the token state in the source model; thus two different tokens executing a single transition may result in activity in different peers, depending on their states. The second new transition type provides the other end of the model linkage, and emits a token when the linkage is used. It retains, as part of its state, a handle, which is also propagated with the new token, and takes action when a token with matching handle triggers it again. This action releases the token from the transition in the originating model, allowing it to proceed.

Both the new kinds of transition are associated with communication costs, and are allocated to one of their model’s network roles, so that the real costs of the linkage being modelled can be taken into account in a straightforward way and message routing can be controlled (see below).
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Figure 3 - Dynamic invocation between peer models

This mechanism results in behaviour that corresponds closely to the properties of dynamic binding and object invocation in distributed systems. It differs from the hierarchical linkage described above in that the entire token state is passed between peers, so that, for example, the identity of further transitions, in other models, can be passed to extend the configuration further. The mechanism being provided thus acts like invocation at an ODP interface, and it is because of this that the new kinds of transitions are called client and server interface transitions (figure 3).

PROBLEMS WITH DISTRIBUTED PLATFORMS

The application configuration to be modelled is defined by mapping each application object to a specific node in the supporting infrastructure. However, this leads to two problems: the determination of the necessary network routing to be used, and the modelling of distributed middleware. 

Network Routing

The routing problem could be solved by providing a global routing matrix for the whole model, so that a route was defined for each possible combination of source and destination objects. However, there would clearly be scaling problems as the number of objects in the model increased. Using a single routing algorithm would be inflexible, since asymmetric or peculiar routing is often an important characteristic of the problem being investigated. It may, for example, be important to model the fact that communication flows through an application firewall, and a naïve routing algorithm might short-circuit such a component. In multimedia systems, different kinds of interaction need to be associated with different qualities of service, and this also requires finer-grain control of routing.

The approach taken here is a compromise between expressive power and scaling. Platform objects are grouped into equivalence classes, based on their routing behaviour, and routes between representative members of these equivalence classes enumerated by specifying the corresponding configuration of network and routing objects that make up the route. When transitions which have communications costs are triggered, the appropriate route is selected by identifying the route end-point classes of its source and destination places (via the objects modelling the computational costs of its source and destination roles), and the model representing that route is then executed.

Representing Middleware

The distributed infrastructure problem is solved in a similar way by introducing an additional indirection into the linkage between models. In an application model, the interaction between two application roles is seen as two simple communication events, one for the request and one for the response. This interaction is performed by a network role in that model. In the middleware, this involves marshalling and unmarshalling of parameters and communication of the resultant messages. It may also involve some path initialization actions if there is implicit binding, and can require routing of messages via middleware interceptors to provide checking or translation.

Thus, while an object in the middleware model may have a distinct identity, it will often represent activity, such as parameter marshalling, on a source or destination machine, wherever that machine may be. Such objects are bound not to their own resources, but to the resources supporting the source or destination places of the application transition being supported by the middleware (figure 4). Specific notation is provided to allow objects to be mapped by association with the support for a source or destination place, rather than directly to a particular supporting object.
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Figure 4 - Indirect Allocation of Resources

In this way, the distributed costs of the middleware in an arbitrarily complex distributed system can be captured with a single additional model with only a handful of places and transitions. Without the indirection mechanism, the model required would have complexity comparable with that of the complete application.

A SIMPLE EXAMPLE

The facilities described so far can be demonstrated in the following simple example. In the example, a system supports a number of users, each of whom accesses, from time to time, one of a number of servers. The servers are accessed on a session basis and are allocated dynamically from a central pool, with a variable number of requests per session being made before they are released. The servers all access a single large database machine, when necessary. The users each access the system via a desktop machine, which is either locally or remotely connected to a central site supporting the servers. Local desktops are on a different LAN from the servers. The central site is protected by a firewall.

The first step is to define a number of behavioural models, with places and transitions associated with appropriate roles.
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Figure 5 - Linked Workload Models

The user workload is defined in two stages (figure 5). First, a closed workload represents the alternation between idleness and session activity. The transition representing the session activity is mapped to a model of a single session, which describes sign-on, repeated use, and sign-off.

The client behaviour consists of three simple operations. One interacts with the service allocator to obtain a server reference, which it stores for use during the session. The second uses this interface reference to invoke the server, and the third interacts with the allocator to free the server at end of session.

The allocator is initialized with a number of tokens representing the availability of the servers, and, subject to token availability, makes a non-deterministic choice of a server to return to its client. If no server is available, the request is queued on a FIFO basis. When the server is freed, the availability token is regenerated and any queued request serviced. A simplified version of the behaviour model for the allocator is shown in figure 6.
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Figure 6 - The Allocator’s Behaviour

The server and the database are defined as parts of a fixed configuration, with a certain probability of a service request resulting in database activity. This results in a behavioural net and an instantiation structure similar to that shown in figure 1.

Models for the middleware, the supporting processors, networks and for the firewall are drawn from a library, and a suitable set of routes is defined to support the interaction of the application objects. The outline of the route equivalence classes is shown in figure 7; there would be eight small models defining the behaviour of traffic along the various simplex routes required.

Next, appropriate numbers of objects are defined to populate all the roles, and model instances created to describe how the objects fill roles. Since this example is based largely on dynamic linking, the only non-trivial mapping at this stage is in the server model, where each instance maps to a different server but the same database object. Reference relationships are then created between the server interface transitions and the allocator transitions that handle them, so that correct interface references can be returned. Fixed relationships are also established from the clients to the allocator’s release/claim entry points.
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Figure 7 – The Routing Framework

Finally, the hierarchical links between models are established by mapping statements, which define relative speeds and associate each object/resource type with an entry point to the model that represents it:

a) session workloads are associated with the working transition of the top-level workloads;

b) desktop client operations are associated with the session management and use operations in the  session workload;

c) computational usage by each application object is associated with the processor it is to execute on; there will generally be more than one object per processor;

d) communication usage by the application is associated with the middleware;

e) middleware communication usage is mapped to a set of routes

f) components of the various routes are mapped to individual networks, routers and the firewall.
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Figure 8 - Model Linkages in the Example

The different kinds of model linkage in the example are summarized in figure 8, which shows the full set of behaviour types involved above.

IMPLEMENTATION

RISCSIM runs on Windows platforms, and currently takes its model description from a set of text files, which are produced by a suitable front-end or included from a library. The input format includes some facilities for the representation of repeated groups of declarations, since the models generated often contain repeated structures, which can become quite bulky. The main results are written to file for collection and display in a user-oriented context by the front-end.

The simulator has a graphical user interface for controlling simulation and displaying animations or summary results. However, the graphical user interface is largely provided to support the tool development process, since, when acting in support of other tools, the engine will operate primarily in a background mode. All the control operations can, for this purpose, be performed by commands embedded in the data stream.

The simulation engine is written in C. It runs at about sixteen thousand Petri Net transitions per second on a 330MHz Pentium II.

Library Provision

Creating library components suitable for first-approximation modelling is not too time-consuming. The reusable models that have been created during development include:

a) simple open and closed workloads;

b) session oriented hierarchical workload;

c) basic CORBA-style middleware, including marshalling and unmarshalling costs;

d) simple service locator/allocator;

e) processor with run to completion scheduler with a single level of priority;

f) processor with time-sliced scheduler and active task limit;

g) message segmentation and re-assembly;

h) basic FIFO network, capable of giving a coarse-grained approximation to small shared-media networks;

i) basic CSMA/CD network with random back-off and zero persistence;

j) simple long distance point-to-point link;

k) single processor bridge/router.

Variational Analysis

In addition to simulation of performance with a specific set of input parameters, the implementation can, on somewhat longer runs, support sensitivity analysis, returning the gradient of the performance with respect to each of a nominated subset of the model’s parameters. This mode of  operation is intended to support direct feedback to the user of the degree to which variation in the efficiency of various components or the speed of different platform elements will effect the response of the complete system.

The parameter space is explored by making small variations to changing subsets of the parameters of interest, so as to build up an over-all picture as quickly as possible. The sets of parameters to be increased or decreased are determined dynamically as the simulation progresses to give the maximum discrimination between them.

FUTURE DEVELOPMENTS

RISCSIM is a vehicle for testing structural ideas and, as such, is subject to change. Some of the developments that are currently in progress, or in prospect, are:

a) the inclusion of direct support for continuous media, such as variable bit rate (VBR) video. Streaming media will be included without the need for detailed simulation of all of their constituent events by reserving part of the supporting resources corresponding to their short-term mean usage. Two new types of token will be introduced: one that allocates initial peak resources, and another that adjusts the current resource reservation, so that VBR sources can be modelled as an initial claim followed by occasional changes in mean loading.

b) the generalization of the resource mapping mechanisms to allow arbitrary categories of resource, particularly to cover storage and data access costs.

c) explicit inclusion of units of measure and verification of correctness of transformations applied when mapping between models.

d) the conversion of the current ad-hoc input format to a more systematic XML-based format, to simplify library and model interchange.

e) the provision of an OMG CORBA-based interface for communication with other parts of the tool-chain. This would allow the simulation engine to dispense with communication through the file-store, and become a genuinely independent back-end processor, accessible from any part of a distributed tool environment. 

CONCLUSIONS

The modelling approach has proved flexible in allowing the rapid construction of models for a variety of distributed systems problems, using a simple component library. It supports specification in a hybrid style, in which dynamic changes of configuration are only considered if the problem under investigation needs it.

The use of a simulation structure which corresponds to the common configuration control and service discovery techniques used in the design of distributed systems makes it well suited to the derivation of performance models directly from such designs.

Copies of the simulation engine can be downloaded for experimental use, without any continuing support commitment, from the author’s web pages.
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