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Abstract

This paper addresses the problem of how best to visualize network data
grouped into overlapping sets. We address it by evaluating various exist-
ing techniques alongside a new technique. Such data arise in many areas,
including social network analysis, gene expression data, and crime analy-
sis. We begin by investigating the strengths and weakness of four existing
techniques, namely Bubble Sets, EulerView, KelpFusion, and LineSets, using
principles from psychology and known layout guides. Using insights gained,
we propose a new technique, SetNet, that may overcome limitations of earlier
methods. We conducted a comparative crowdsourced user study to evaluate
all five techniques based on tasks that require information from both the net-
work and the sets. We established that EulerView and SetNet, both of which
draw the sets first, yield significantly faster user responses than Bubble Sets,
KelpFusion and LineSets, all of which draw the network first.

Keywords: Set visualization, graph visualization, combined visualization,
clustering, networks.

1. Introduction

There has been a rapid rise in the volume of network data where the data
items form overlapping groups. Data of this type arise in many situations
such as in criminal investigations where networks represent relationships be-
tween those under investigation and groups represent organizations to which
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people belong or locations they frequent. Similar complex data occur in
biological settings [18, 40] where the interaction between genes forms a net-
work and genes with shared features are in common groups. In this paper,
we focus on social networks, where networks represent connections between
people, and groups represent shared interests [47].

Reflecting the importance of understanding such data, which we call
grouped network data, there have been a number of techniques proposed for
visualizing it, such as [3, 12, 35]. Existing layout methods typically draw
either the data items first or the sets first, thus assigning primacy to one or
the other. Primacy is acknowledged by Collins et al. [12], who introduce the
concept of spatial rights in respect of the fact that spatial positioning can
be “the most salient feature of possible visual encodings”, backed up by [9].
Collins et al. state that set relations have spatial rights when the sets are
the primary relations. Under these circumstances, a visualization of the sets
is first found, after which the network is laid out. The network has primary
spatial rights when it is visualized first, with the sets laid out afterwards.

Visualizing the sets first can lead to a poor network visualization. Sim-
ilarly, drawing the network first can seriously compromise the layout of the
sets. However, when primacy is assigned to the network, the visualization
techniques can be applied more generally, in particular when the data items
are required to take specific locations such as when data items are points
on a map. At present, we have no insight into the relative effectiveness of
visualization techniques that make different choices about which of the sets
and the network has primary spatial rights. This paper addresses this gap
in understanding by comparing the relative strengths of these approaches.

Fig. 1 illustrates the five visualization techniques that we evaluate. Eu-
lerView [41] and SetNet, introduced in this paper, both assign primary spatial
rights to the sets but SetNet refines the layout of the sets to account for the
network structure. Bubble Sets [12], KelpFusion [28] and LineSets [3] as-
sign primary spatial rights to the network. The techniques visualize the sets
in different ways, as explained in Sect. 3. All of the approaches represent
networks with node-link diagrams. Our main contributions are:

• A theoretical analysis (Sect. 3) of Bubble Sets, EulerView, LineSets
and KelpFusion using existing theories of effective set visualizations
(Sect. 2).

• A novel technique, SetNet, that optimizes the set visualization using
these theories (Sect. 4).

2



KelpFusion

EulerViewSetNet

LineSets

Bubble Sets

Figure 1: The five visualization techniques evaluated in this paper, depicting the same
grouped network data about twitter networks.

• An empirical study (Sect. 5) to test the hypotheses that follow from the
theoretical analysis. We evaluate the effectiveness of all five techniques
when performing common tasks, derived from [38], that require both
information from the networks and the sets. These tasks build on
taxonomies for network-only tasks [2] and set-only tasks [5].

In Sect. 6 we present the results of our empirical evaluation, along with
a discussion of our hypotheses and comparison with previous evaluations of
grouped network data. Scalability issues associated with all five techniques
are explored in Sect. 7. Sect. 8 concludes our work and summarizes the
limitations of our study along with possibilities for future work. The Set-
Net software is available from [1] along with all of the study material and
a video preview of our work. This includes the diagrams, questions and
the performance data collected. The study’s diagrams are also available as
supplementary material.

2. Principles in Psychology and Layout Guides

This section summarizes relevant theories and guides that allow us to
analyze the qualities of the evaluated visualization techniques. We have
omitted a detailed discussion around graph layout choices and their impact
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on comprehension; these are widely studied in contrast with similar choices
for the visualization of sets.

2.1. Gestalt Principles and Well-Matchedness

The following is a summary of two general Gestalt principles [26] as well
as the related principle of well-matchedness [19] that apply to the evaluated
visualization techniques.
Principle of Proximity This principle states that people tend to perceive
objects that are close together as part of the same group. Likewise, objects
that are far apart are perceived to be in different groups. Visualizations that
meet this principle can reduce the time it takes for people to distinguish
groups because they process a smaller number of stimuli. Consequently, a
visualization meeting this principle is expected to be easier to internalize and
understand.

Applying this principle to grouped network data requires nodes in a com-
mon group to be located in close proximity to one another, while nodes not
in that group should be located further away. Visualization techniques that
give primary spatial rights to the network may not consider the principle of
proximity: the placement of the nodes need not correspond to the groupings
of the data items. By contrast, when the sets have primary spatial rights, it
should be possible to locate data items in common groups so that they are
in close proximity.

Fig. 2 illustrates this issue with two hand-drawn diagrams, where the
nodes are represented by numbers to ease comparison. The diagram on the
left adheres well to the principle of proximity: the nodes in common groups
are drawn close to each other. By contrast, the diagram on the right has
located the node ‘5’ far from the other two nodes in the group called A.

Figure 2: Well-matched diagrams and the principle of proximity.

Principle of Good Form There is a tendency for people to group together
graphical objects that share some property, like colour, pattern, or shape.
Similarly, graphical objects that have different properties will typically be
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considered, by people, as being in different groups. This suggests that differ-
ent semantic constructs should be represented by different graphical objects.
Graphs, when representing networks, meet this principle: items are all rep-
resented by nodes and relationships are all represented by edges. It would
also seem sensible to represent sets with common syntax and colour could
also be used if we want to give visual clues about semantic commonality or
distinctness.
Principle of Well-Matchedness Gurr proposed that visualizations which
are well-matched to their semantics are effective [19]1. A notation is well-
matched when its spatial relationships directly mirror the semantic relation-
ships being visualized. In our context, a well-matched visualization of sets
would ensure that subset, disjointness and intersection relations are repre-
sented by enclosure, non-overlap, and overlap respectively. In terms of net-
works, their representation using graphs can be considered well-matched: a
connection at a syntactic level (node adjacency) corresponds to a connection
at the semantic level. When combining visualizations of sets and networks,
well-matchedness will be achieved when element containment and exclusion
in sets at the semantic level is mirrored at the syntax level.

In Fig. 2 both diagrams are well-matched: subset (B ⊆ A) and disjoint-
ness (A ∩ C = ∅ and B ∩ C = ∅) are visualized by curve containment and
non-overlap respectively; the nodes are inside the curves corresponding to the
sets containing the represented elements. Syntactically, edges connect nodes
that are semantically connected, and their absence indicates no semantic
connection. In Fig. 2, for example, 1 is connected to 2 but not to 3.

2.2. Layout Guides for Region-Based Visualization

Sets are often visualized using closed curves whose spatial relations convey
information about the sets’ relationships. The regions within such curves
represent the corresponding sets. Such notations are commonly known as
Euler diagrams which are often incorrectly called Venn diagrams: in Venn
diagrams, for each subset of the curves, there must be a non-empty region
inside those curves but outside the remaining curves. Thus, every Venn
diagram is an Euler diagram, but not vice versa. Euler diagrams support the
interpretation of grouping information since elements in a common set are
located in the same region [31].

1This is similar to epistemic fidelity theory described in [23].
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There have been a number of empirical studies conducted to ascertain
the effect of different Euler diagram layout choices on user comprehension
which provide a starting point for effectively laying out Euler diagrams with
graphs. We summarize these results, presented as a series of layout guides
by Blake et al. [10]:
Well-formed Draw Euler diagrams that are well-formed [37]. The well-
formedness properties include: only simple curves, sets represented by unique
curves, no concurrency between curves, no 3-points, and curves that cross
and do not brush2. The sixth well-formedness property is that diagrams must
ensure that the regions which represent set intersections are connected. An
Euler diagram is well-formed if it possess all six properties.
Smooth Curves Draw Euler diagrams with smooth curves [7].
Diverging Lines Draw Euler diagrams with diverging lines which means
that the crossing angle at points of curve intersection approaches 90 de-
grees [7].
Shape Draw Euler diagrams with circles [10]3.
Symmetry Draw Euler diagrams with highly symmetrical curves [10].
Shape Discrimination Draw Euler diagrams such that the regions are dis-
cernable from the curves via their shape but not at the expense of symme-
try [10].
Meeting the Shape guide implies that the Symmetry and Shape Discrimina-
tion guides are also met.

2For space reasons, we omit the formal definitions which are not necessary for this
paper; they can be found in [43]. Briefly, the properties are as follows. Simple curves: no
curve self-intersects. Unique curves: no set is represented by more than one curve. No
concurrency: no pair of closed curves intersect in a non-discrete set of points. No 3-points:
no points are passed through more than twice by the curves. Only crossings: whenever two
curves intersect, they cross each other. Connected regions: the regions which represent
set intersections, typically called zones, are connected components of the plane.

3It is observed in [10], when using circles to draw Euler diagrams, that the regions
formed from intersecting circles have non-circular, non-smooth boundaries, promoting
shape discriminability (i.e. the regions are discriminable from the circles). Moreover, the
regions formed when intersecting rectangles are themselves rectilinear, inhibiting shape
discriminability. The authors of [10] further observe, using similarity theory [13], that the
reduced ability to discriminate implies the use of rectangles leads to worse performance
as compared to circles. These insights support the results of the empirical study in [10],
which establishes that circles outperform rectangles.
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3. Visualizing Grouped Network Data

The primary purpose of this section is to introduce and theoretically ana-
lyze the four techniques that we evaluated: EulerView [41], Bubble Sets [12],
LineSets [3], and KelpFusion [28]; they are illustrated in Fig. 1. Whilst the
networks and sets were automatically drawn, we manually added the labels
to all visualizations included in the paper.

3.1. EulerView (EV)

EulerView [41] uses closed curves to represent sets, assigning primacy to
the sets. The method converts a description of the non-empty set intersec-
tions into a graph, called a zone graph, from which the Euler diagram is
created. The method, in essence, fattens the edges of the zone graph and
then uses these fattened edges to route the curves. The network is then vi-
sualized in the drawn Euler diagram. EulerView uses a colour fill inside the
curves and is the only technique discussed here that also uses a texture to
aid identification of the set intersections.

Figure 3: An EulerView visualization of grouped network data.

As EulerView assigns primacy to the sets, the principle of proximity is
adhered to, as seen in Fig. 3. The data items inside only ‘Games’ and ‘Web’
are located in close proximity. One could also argue that the principle of good
form is met by EulerView. Here, each set has its own colour and texture.
The use of the texture through the different regions that, between them,
represent the entire set is designed to help user interpretation. For example,
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in Fig. 3, the texture inside ‘Relaxation’ (diagonal lines) is crucial, in our
opinion, for determining that there are three regions that make up this set.

EulerView also produces well-matched diagrams: in an Euler diagram,
well-matchedness is achieved when all of the regions correspond precisely to
the non-empty set intersections. However, the diagrams are far from well-
formed: sets are not necessarily represented by unique curves; curves are
nearly always concurrent; points can be passed through an arbitrary number
of times by the curves; when curves meet there is no guarantee that they
cross; and the region that represents the complement of the represented sets
can be disconnected. Moreover, the curves do not diverge when they intersect
and they are not circular or, generally, symmetric. Lastly, the regions to
which the curves give rise take similar shapes to the curves so the shape
discrimination guide is not met either.

Fig. 3 exhibits concurrency (e.g. Relaxation is concurrent with iPhone,
Games and Web), a 4-point (e.g. where the four just mentioned curves all
meet), and wherever any pair of curves meet they do not cross. None of the
curves are circular and they generally lack symmetry. The regions in this
diagram are often irregular shapes, like the curves.

3.2. Bubble Sets (BS)

Bubble Sets is a flexible technique because it can be applied to a variety
of domains [12]. The method routes closed curves around the nodes of an
already drawn graph to form ‘bubbles’, assigning primacy to the network.
Fig. 4 shows an example, which represents the same data as Fig. 3. Thus,
Bubble Sets can be seen as using Euler diagrams augmented with graphs to
represent grouped network data.

Bubble Sets aim to satisfy the following:

(a) for each set, all set members are to be enclosed by the closed curve
representing that set,

(b) for each set, non-set members, if possible, are to be excluded from the
closed curve representing that set,

(c) where non-members appear within curve boundaries, visual and inter-
active hints can be given to clarify membership, and

(d) to provide rendering to allow for interactive adjustment.

Thus, from (b), we can see that Bubble Sets can, in principle, produce in-
correct visualizations. As our empirical study is based on static layouts, we
do not discuss (d) or the interactive aspect of (c) any further.
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Figure 4: Routing curves around set members in Bubble Sets.

As Bubble Sets layout starts with an already drawn graph, there is no
guarantee that visualizations will adhere to the principle of proximity. For
example, in Fig. 4, the four data items that are in only the set ‘Web’ are not
drawn in close proximity. The relationship between ‘Games’ and the other
sets is unclear. Perhaps more obviously, Fig. 5 shows that the Bubble Sets
technique can give rise to visualizations where set membership and exclusion
is hard to identify. Even though a unique colour has been used for each set, in
the overlaps the colours blend so identifying set membership could be difficult
for users. Thus, whilst Bubble Sets attempt to adhere to the principle of good
form, the technique has features that are potentially problematic.

Figure 5: Problematic layout features of Bubble Sets.

Bubble Sets can fail to deliver well-matched diagrams in two respects.
First, they can include additional regions that represent empty sets. This
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Figure 6: Visualization errors in Bubble Sets and LineSets, correctly displayed by Eu-
lerView and KelpFusion.

can be seen in Figs 4 and 5. However, as the data items are explicitly
represented, the likelihood of confusion is perhaps reduced. More concerning,
though, is the inclusion of data items in sets of which they are not members;
this possibility is acknowledged by property (c), although attempts are made
to avoid it (see property (b)). This non-well-matched feature will cause
misinterpretation. Similar erroneous behaviour can be seen in Fig. 6: there is
exactly one node inside only ‘Computers’ in the Bubble Sets visualization yet
there should be two such nodes, which is correctly displayed in the EulerView
visualization.

Bubble Sets can also fail to be well-formed. In our figures, the following
are exhibited: concurrency between curves, points passed through more than
twice by the curves, curves meeting but not crossing, and disconnected re-
gions. For example, in Fig. 4, the region inside ‘Web’ and ‘Games’ but outside
the other curves comprises multiple components and it is not immediately
obvious how many data items are in the intersection. Also, the curves are

10



not always diverging, they are not circular or, generally, symmetric. Lastly,
the boundaries of the regions are similar in shape to the curves themselves
so the shape discrimination guide is not met.

3.3. LineSets (LS)

LineSets were introduced to overcome problems associated with visual
clutter that is seen in Euler diagrams [3]. As the name suggests, LineSets
use lines to represent sets, rather than closed curves. Clutter associated
with intersecting sets, arising from overlapping graphical objects, is reduced
through the use of lines. LineSets assign primacy to the network and their
layout begins with a distribution of already drawn nodes. An example can be
seen in Fig. 7, which represents the same data as the EulerView and Bubble
Sets visualizations in Figs 3 and 4. LineSets aim to avoid self-intersecting
lines and to minimize bends in the (smooth) lines used to represent sets. As
with Bubble Sets, the LineSets implementation has interactive features that
we do not consider in our study. Moreover, the LineSets implementation does
not draw lines for sets containing exactly one element. An example can be
seen in Fig. 1, where the line representing ‘Economics’ was manually drawn
after the rest of the visualization had been automatically produced.

Figure 7: Using lines to visualize sets with LineSets.

As the LineSets technique starts with an already drawn graph there is
no guarantee that visualizations adhere to the principle of proximity. This
can be observed in Fig. 1, where the ‘Web’ line must join up three nodes
that are not located in close proximity. Considering the principle of good
form, LineSets use lines to represent both connections between items and set
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membership, which is against this principle. However, as colour is used to
distinguish sets from connections it is unclear whether LineSets meet the
principle of good form.

In terms of well-matchedness, the set theoretic properties of subset, dis-
jointness and intersection are not visualized by spatial relationships. This is
because the spatial positioning of lines is not important. Rather, it is the
topological property of intersection (or otherwise) between lines that indi-
cates shared membership or disjointness. For instance, in Fig. 6, ‘Food’ is a
subset of ‘News’. However, because lines do not permit direct visualization
of containment, this aspect of LineSets is not well-matched. For intersec-
tion, one might expect lines connecting common elements to be visualized as
a concurrent segment in order to be closer to well-matched. Lastly, whilst
lines pass through nodes in the represented sets, they can also pass through
nodes that are not in the set. This can be seen in Fig. 6, where one node in
the LineSets visualization that should be in only the set ‘Computers’ is also
on the line for ‘News’. As LineSets are not based on Euler or Venn diagrams,
we do not consider the guides in Section 2.2.

3.4. KelpFusion (KF)

KelpFusion is a blend of curve-based and line-based techniques for visu-
alizing sets around an already drawn graph and, so, assigns primacy to the
network. Sets are represented by fattened paths that can include cycles. An
example can be seen in Fig. 6: the set ‘News’ is represented by the orange
‘fattened’ edges and contains cycles. Unlike LineSets, these fattened edges
properly contain some of the graph edges that represent connections between
the data items in the visualized set.

KelpFusion’s adherence to the principles of proximity, good continuation,
and good form is much the same as for LineSets. However, KelpFusion some-
times overcomes the non-well-matchedness of LineSets: by using fattened
edges to represent sets, KelpFusion can exploit spatial relationships to assert
subset, disjointness and intersection. However, the layout method does not
ensure that well-matched visualizations are produced. This can readily be
seen on the right of Fig. 6, where ‘Food’ is a non-contained subset of ‘News’.
Lastly, as KelpFusion does not directly use Euler diagrams as a basis, we do
not compare its layout properties with the guides in Section 2.2.
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3.5. Other Notable Techniques
An early attempt to combine sets and networks in a single visualization

relied on first drawing an Euler diagram then placing a graph inside it [30],
however the sets were often visualized with convoluted, difficult to follow
curves. In addition, only limited kinds of set data could be shown as the
system was limited to well-formed Euler diagrams. Compound graphs can
be used to represent restricted kinds of grouped network data [8]. Graph
clusters are visualized with transparent hulls by Santamaria and Theron [39].
However, the technique removes edges from the graph and it is not sufficiently
sophisticated for arbitrary overlapping sets. Itoh et al. [24] proposed to
overlay pie-like glyphs over the nodes in a graph to encode multiple categories.
Each set is hence represented using disconnected regions that are linked by
having the same colour. This causes difficulties with tasks that involve finding
relations between sets such as T1, T3 and T4 in Section 5.3. A related class
of techniques visualize grouping information over graphs using convex hulls,
such as Vizster [22]. However, they do not support visualizing set overlaps.

Riche and Dwyer introduced two Euler diagram-based techniques, ComEd
and DupEd, designed to visualize sets using simple regions and to draw in-
dividual data elements as text-annotated nodes [35]. Unlike the methods de-
scribed in detail above, Riche’s and Dwyer’s two methods lay out the network
with regard to the set structure. ComEd represents each set as one or more
rectangles connected with concave curves, assigned a unique colour. The use
of rectangles and irregular curves could impose cognitive difficulties in per-
ceiving the sets, as they might give the impression of different semantics [45].
Another issue with ComEd is the artifacts caused by overlaps between the
curves that connect the rectangles. These overlaps do not correspond to
actual set intersections which impacts well-matchness properties, and might
impair usability [37]. ‘DupEd’ uses only rectangles to represent sets which
is a shape with good properties. However, the visualizations do not use the
spatial properties of containment and disjointness to represent subset and set
disjointness information, so the diagrams are not well-matched. This leads
to elements being represented by duplicated nodes joined by edges to assert
identity.

It is possible to visualize grouped network data using ComEd and DupEd
by drawing edges between the nodes [35]. An incremental constrained graph
layout, IPSep-CoLa [14], has been employed to create such a visualization
by defining the grouping of the nodes into sets as constraints on the graph
layout. This results in a balanced layout with respect to sets and to the
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network structure. Our new technique, SetNet, shares this property with
ComEd, as explained in Sect. 4. However, instead of using the set informa-
tion to adapt the graph layout, it adapts the set layout to account for the
network information. Moreover, it uses circles to represent the sets, instead
of rectangles connected with concave curves. Further techniques for visual-
izing similar data are described in [18, 40, 44] and a recent survey on set
visualizations [5].

3.6. Previous Empirical Comparisons

Bubble Sets, KelpFusion and LineSets, which assign primacy to data
items, have been subject to rigorous empirical evaluation. Alper et al. [3]
evaluate LineSets as compared to Bubble Sets with three categories of grouped
network data: 50 items, 3 sets and 5 set intersections; 100 items, 4 sets and
10 set intersections; and 200 items, 5 sets and 30 set intersections. They did
not indicate how many connections existed between the items (or, therefore,
how many edges were in the corresponding graphs). The tasks that users
were asked to perform focused on set-theoretic properties and were of the
form: how many sets are there? ; which of these two sets is largest? ; which
sets do both x and y like? ; and how many elements of this set are also in these
other sets? LineSets were shown to yield significantly more correct answers
and to permit significantly faster responses than Bubble Sets. However, the
tasks did not utilize both the network and the set information in conjunction,
which perhaps explains why there was no mention of the number of edges in
the graphs.

Meulemans et al. evaluated KelpFusion against both LineSets and Bubble
Sets [28]. Their study used visualizations of grouped data (with no network
information) with the following characteristics: 4 sets with 15 to 49 items;
5 sets with 12 to 29 items. As this study focused on data items that were
locations on a map, connection information through a graph-based visualiza-
tion was not present. As such, the tasks again were focused on set-theoretic
concepts, such as cardinality; e.g. How many elements are there in these two
sets? (paraphrased here). The study found that KelpFusion and LineSets
both yielded significantly better accuracy than Bubble Sets. With regards
to completion time for the tasks, KelpFusion performed fastest, followed by
LineSets and, lastly, Bubble Sets. Thus, overall, KelpFusion was the most
effective visualization technique.

A further related study has been conducted to compare four techniques
for displaying group information over graphs [25]: coloured nodes, Bubble
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Sets, LineSets and GMap [17]. The error performance of these techniques
was compared on ten tasks, grouped into: 4 group tasks, 2 network tasks,
3 combined group-network tasks, and one task on the memorability of node
locations. Bubble Sets was the most effective technique for group tasks.
Similar to our study, the combined group-network tasks involved questions
on node degree in a specific group and tracing paths over groups, although
the tasks themselves were different. In [25], each node belonged to only one
group and, in addition, the groups were all disjoint. This meant that no
set overlaps were present. By contrast, for our study the nodes belonged to
multiple groups and there were richer relationships between the groups such
as subset and intersection.

3.7. Summary

The visualization techniques all have limitations and the degree to which
they impact comprehension is only partly known. Tables 1 and 2 summarize
which of the principles and layout guides are met for the five evaluated vi-
sualization techniques4 (SN is SetNet introduced in the next section). The
entries are interpreted as follows: ‘×’ the property is not possessed; ‘X’ the
properties is possessed; ‘?’ it is unclear whether the property is possessed.
We have place a ‘?’ against LineSets and KelpFusion for the well-matched
property. In the case of LineSets, this is because they use lines for set con-
tainment and for network connections, which can be seen as breaking the
property. However, the sets are coloured whilst the graph is not, so it is
unclear whether this means that LineSets, are in fact, well-matched. In the
case of KelpFusion, it is unclear whether the method ensures that the regions
present in the diagrams are precisely those that represent non-empty sets.
For this reason, we are unable to determine whether KelpFusion guarantees
well-matchedness.

Table 1: How the evaluated techniques meet the general principles and guides.
BS EV KF LS SN

Proximity × X × × X
Good Form X X ? ? X
Well-Matchedness × X × × ×

4It is known that no Euler diagram drawing method which is capable of visualizing any
finite collection of sets can ensure all six well-formedness properties hold as well as being
well-matched [16].
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Table 2: How the evaluated region-based techniques meet the specific principles and guides.
BS EV SN

Well-formed: Simple Curves ? X X
Well-formed: Unique Curves ? × ×
Well-formed: No Concurrency × × X
Well-formed: No 3-points × × X
Well-formed: No Brushing Curves × × X
Well-formed: Connected Regions × × X
Smooth Curves X X X
Shape × × X
Diverging Lines × × X
Symmetry × × X

The empirical studies described in section 3.6 have two primary limita-
tions. First, the compared visualization techniques all assign primacy to the
data items. By contrast, the study in this paper compares five techniques,
three of which assign primacy to the network and two that assign primacy
to the sets. Second, the tasks undertaken by the participants in the first
two studies focus on set-theoretic questions, with the exclusion of questions
that rely on the combination of both the network connections. If one is only
interested in information about the sets (or the network) then simpler vi-
sualization techniques can be used. The third study did not have any set
overlaps. These are serious limitations. Thus, it is important to compare
these visualization techniques in the context of tasks that require informa-
tion from both the network and the sets when overlaps are present, as we do
in this paper.

Lastly, of the four previously devised techniques that we evaluate, the
only technique that assigns primacy to sets is EulerView. In section 3.1,
we argued that there are significant problematic features of EulerView that
could compromise its effectiveness as a visualization of grouped network data.
This motivates our development of SetNet, which we introduce in the next
section.

4. The SetNet Visualization Technique

It is not possible for any visualization technique that exploits Euler dia-
grams to meet all of the principles and guides in Table 2 whilst being able to
visualize any grouped network data. However, it is certainly possible to meet
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more of them than existing techniques: our novel technique, SetNet (SN),
meets 11 of them, as summarized in Tables 1 and 2.

4.1. The Method

To visualize the sets, SetNet builds on an Euler diagram drawing tech-
nique [42], called iCircles. The iCircles method draws a single or multiple
circles to visualize each set. Since iCircles is capable of visualizing any finite
collection of sets, it enables the representation of complex overlapping groups
whilst preserving the simplicity of the region shapes. An extension of iCircles
to include graphs has already been given in [36], which we further extend in
this paper.

News

Figure 8: The initial layout. Figure 9: The layout after circle relocations.

Cars

Internet

News

Figure 10: The final layout after optimizations.

Firstly, SetNet draws the circles using iCircles, giving the sets primary
spatial rights. See [42] for details of how the iCircles tool works. To add the
nodes, the largest rectangular area within each region is found. The nodes
are drawn in a grid pattern within this region, giving an initial layout. Nodes
outside all circles are placed at a suitable distance from all circles. Fig. 8
illustrates the process where the rectangular regions are superimposed.
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The new aspect of SetNet is that it reduces the potential negative impact
of set primacy on the network visualization5. The technique improves on [36]
by adding a processing step. The aim is to adjust the layout of the Euler
diagram to account for the inclusion of the nodes. The location of each
circle is moved using a hill climbing search. On each iteration, the method
tests alternative surrounding locations for each circle in turn and picks the
best position based on a fitness score. If none of the alternative positions is
better than the current location, the circle is not moved. The surrounding
locations are eight points on a square with the circle at its centre. Iterations
continue (with a decreasing size of square) until no more improvement can be
found. Moves that place circles too close together or that change the relative
topological arrangement of the circles are not performed.

To prevent the topological arrangement from changing, the system per-
forms ‘structure checking’ each time a circle is moved. This test establishes
whether the moved circle still intersects with all and only the same circles as
before, for instance. A more detailed description on how structure checking
is performed is in [46].

An outline of the algorithm used by SetNet is given here:

1. Parse the data to create a list of nodes, edges and regions to be drawn.

2. Send the list of all regions to iCircles and await reply.

3. For each circle given by iCircles, draw the circle on screen.

4. For each circle, start by setting the best score to be the fitness score (see
below) for the circle with its current centre point and then:

for each point in grid around circle centre:

Move the circle centre to the point.
If the structure of the diagram has not changed then calculate
the fitness score. If this score is smaller, then this score becomes
the best score and the point becomes the best circle centre,
otherwise the best score and best circle centre are unchanged.
Move the circle so that its center point is the best circle centre.

Otherwise, keep the center point the same.

5. For each region6 formed by the circles, find the largest rectangle in this
region and arrange the relevant nodes in a grid pattern in this rectangle.

5Note that the techniques in [35] attempt to reduce the potential impact of assigning
primacy to one component of the visualization as well.

6Here, by region we strictly mean zone.
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6. For each edge, draw the edge between the relevant nodes.

7. For each region, apply a force directed layout to the nodes and edges in
the region.

Fitness is measured by a weighted sum of two criteria: firstly, the square
of the distance between connected regions and, secondly, a rating of the area
of each region. The details of these calculations are given the in enumerated
list below. Calculating region area may require finding the area of two circle
intersections and finding the area left after the area of any contained circles
are removed. The fitness score itself and the parameters for the aspects of
the layout method were developed by ad-hoc experimentation, before running
the SetNet layout method on the test data given in this paper.

A sketch of the algorithm used to compute the fitness score is given here:

1. Fitness score: This is defined to be ClosenessRating + AreaRating .

2. Closeness Rating: Each circle has an individual closeness rating and the
sum of these is the closeness rating. Given a circle, to compute its indi-
vidual closeness rating, for each region inside it and for each region that is
topologically adjacent to the original region, calculate the distance between
the largest rectangles inside them and square it; sum these distances for
the circle.

3. Area Rating: Each circle has an individual area rating and the sum of
these is the area rating. Given a circle, to compute its individual area
rating, for each region inside it, calculate

AreaOfRegion − ((1 + NumberOfNodesInRegion)× AreaWeighting)

and that the sum of the square of these values. The area of each region is
approximated by the area of its largest contained rectangle. The number
AreaWeighting is a constant set to 200, a value derived through informal
experimentation.

Continuing with the initial layout in Fig. 8, the result of this hill climbing
search is depicted in Fig. 9. A key difference is that the region inside both
‘News’ and ‘Internet’ has enlarged, reflecting the fact that the number of
nodes located here is relatively large. As a consequence, the two regions
inside ‘News’ only and inside ‘Internet’ only respectively have reduced in
size, congruent with the fact that they both contain fewer nodes. Once an
improved layout has been determined, the final processing step is a force-
directed layout of nodes. This is a standard spring embedder [15], with
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linear attractive forces and the addition of a repulsive node-circle force that
pushes nodes away from circle borders. For each node and circle, a vector
of inverse square distance is calculated (much like the node-node repulsion
in the standard spring embedder). The distance is between the node centre
and the nearest point on the circle to the node. The direction of the vector
is away from the circle centre if the node is outside the circle, otherwise it
is towards the circle centre. The node-circle force for a node is calculated
from the sum of these vectors for all circles. We note that if the number of
circles is less than the number of nodes (which is typically the case), then
this force should be calculated more quickly than the node-node repulsion.
So this new force, although adding some extra computation time, does not
have a major adverse effect on performance.

When applying this force layout, nodes are not allowed to leave their
region, but may move outside the starting rectangle. This is achieved by
preventing node movements that would place them in the wrong region. As
a result, nodes are inside precisely the curves corresponding to the sets that
include the represented elements (unlike Bubble Sets) and that they do not
cluster tightly on the inside of circles.

The final visualization of our running example can be seen in Fig. 10. The
nodes have been moved so that the edge lengths are more uniform. However,
this approach is not guaranteed to remove unnecessary edge crossings. It can
also result in nodes being extremely close to edges with which they are not
incident or close to circles. An example of a visualization produced using
SetNet is in Fig. 11, which represents the same data as Fig. 6.

4.2. Meeting the Principles and Guides

We consider the principles and guides in the context of SetNet, summa-
rized in Tables 1 and 2. Because the circles are used to group the nodes, data
items within common set intersections are drawn within close proximity. For
example, in Fig. 11, one can see that the nodes representing items in the set
‘Food’ (and not in any other sets) are located near to each other. In Fig. 11
it is hard to follow the edges at points where they intersect, in part because
of the density of some of the crossing points. Whilst edge crossings are not
always avoidable when laying out graphs, forcing nodes to take particular lo-
cations – which occurs when primary spatial rights are assigned to the curves
– is likely to increase their occurrence.

The use of iCircles means that some data cannot be visualized in a well-
matched fashion. Circles impose geometric constraints on the representation
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Figure 11: A complex network visualized using SetNet.

of sets which sometimes requires additional regions that represent empty sets
to be included, thus violating well-matchedness. This occurs in Fig. 1, where
‘Book’ is drawn inside ‘iPhone’. In fact, these two sets are equal (they contain
exactly the same elements) and so the circles could be drawn concurrently,
similar to the Bubble Sets, EulerView and LineSets visualizations in Fig. 1.
However, to avoid breaking this well-formedness property, iCircles arbitrarily
chooses one circle to be drawn inside the other.

The iCircles tool ensures that nearly all of the well-formedness properties
hold: circles are simple, there is never concurrency, no points are passed
through more than twice by the curves, whenever two curves meet they cross,
and the regions representing the sets are connected. However, sometimes
sets are represented with more than one circle. This phenomenon arises
in Fig.11, where ‘Web’ is represented by two circles. This is not a feature
specific to SetNet as such: when using circles, sometimes sets have to be
represented using multiple circles which brings with it usability problems.
However, circles have the advantage of being a cognitively beneficial shape.
The principle of good form is utilized to reduce any potential negative impact,
by using colour: for any given set, all circles representing it adopt the same
colour and no other circles share that colour. The visualizations also have
diverging lines wherever two circles intersect. The guideline to use circles is
clearly met as are the symmetry and shape discrimination guides.
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5. Hypotheses and Experiment Design

The aim of our study is to identify which of the existing visualization
techniques, along with SetNet, allows users to most effectively obtain infor-
mation about grouped network data. We judge ‘most effective’ in terms of
task performance measuring accuracy and time; the tasks we use are given
in Section 5.3. Of these two performance measures we view accuracy as
more important than completion time, consistent with other researchers,
such as [3]. Thus, we view one technique as outperforming another, over-
all, as follows:

1. if technique A has a significantly higher accuracy rate than technique
B then A outperforms B,

2. if techniques A and B do not significantly differ in terms of accuracy
but technique A has a significantly lower mean time than technique B
then A outperforms B.

Otherwise, there is no overall performance difference between the two tech-
niques.

Our discussions in the previous sections lead us to the following hypothe-
ses:

H1 Of the techniques that assign primary spatial rights to the network, we
expect KelpFusion to outperform LineSets which, in turn, will outper-
form Bubble Sets.

H2 Of the techniques that assign primary spatial rights to the sets, we
expect SetNet to outperform EulerView.

H3 Of non-Euler diagram-based techniques, we expect KelpFusion to out-
perform LineSets.

H4 Of the Euler diagram-based techniques, we expect SetNet and Eu-
lerView to outperform Bubble Sets.

H1 and H3 are derived from the previous empirical studies discussed in Sec-
tion 3.6. H2 and H4 are derived from Tables 1 and 2. These hypotheses
directly address our research problem of how to best visualize network data
that are grouped into overlapping sets.

It is unclear which of the techniques will perform best overall in terms of
accuracy and time. Our experiment design, described below, will allow us
to provide a ranking of the visualization methods in terms of both time and
accuracy data. To compare the relative effectiveness of these visualization
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methods, we adopted a between-groups design, with five groups each answer-
ing 16 questions: 4 question types × 4 repetitions. Of these 16 questions, four
were used for training (one of each question type), leaving 12 questions for
analysis (three of each question type). Using a between-groups design meant
participants only needed to be trained to interpret one visualization tech-
nique. It would be unfeasible to train participants to interpret five different
visualizations, as would be required if a within-groups design was used.

5.1. Data for Visualization

We derived eight data sets from Twitter ego-networks, obtained from the
SNAP network data set collection [27]. This collection contains ego-networks
of 1000 Twitter users. The nodes of each network are users connected to
the ego user. The edges correspond to ‘follow’ relationships between these
users. Additionally, a number of user groups (i.e. social circles) are available
for each network, representing users that subscribed to the same Twitter
list. We selected eight ego-networks that contain at least three groups, with
varying number of nodes (people) and edges (follows relations), summarized
in Table 3; the task types mentioned in the table are explained later. In
Table 3, the i-set intersection rows indicate the number of sets that contain
data items that are in exactly i sets7. We excluded people that belong to
no group in order to reduce the complexity of the respective graphs and to
focus on set information defined by the social circles as this is a key aspect
of all the visualization techniques.

Table 3: Data set sizes used in the study.
Data Set 1 2 3 4 5 6 7 8
Nodes 15 45 11 19 15 16 18 64
Edges 83 121 42 85 59 119 77 162
Sets 3 6 6 7 3 3 5 7

1-set intersections 2 3 3 4 3 3 4 6
2-set intersections 3 3 1 0 2 1 2 5
3-set intersections 0 2 2 1 1 0 1 0
4-set intersections 0 0 1 0 0 0 1 0

Total intersections 5 8 7 5 6 4 7 11

Task Type T1 T2 T1 T2 T1 T2 T2 T1
T3 T4 T3 T3 T4 T4 T3 T4

7As with the study in [28], our data includes up to a maximum of 4-set intersections.
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As study participants need not be familiar with Twitter, the questions
used in the study were not presented in this context. Moreover, to avoid any
possibility of previous knowledge of the data impacting the results, all set
names were changed, but keeping a real-world scenario: people in a social
network and their interests. For example, in Fig. 1, all of the visualizations
show that there is only one person interested in both ‘Books’ and ‘iPhone’
and this person has connections with five other people8.

5.2. Visualizations Used in the Study

Using the eight data sets, we generated visualizations using each of the
five techniques; all of the diagrams are available from [1] as well as in the
supplementary material. The process of producing the visualizations was
kept as consistent as possible across techniques, as follows:
Graphs The graphs were drawn in black, except for SetNet which has blue
nodes and black edges. In order to avoid problems of clutter in all visual-
ization methods, no node labels were included as they were not necessary
to complete the tasks. For the techniques that assign primary spatial rights
to the network, the graphs were laid out using Gephi’s ForceAtlas 2 layout
algorithm [6]; the same graph layout was used for these three techniques.
Gephi was not used for EulerView or SetNet, which assign primary spatial
rights to the sets; they use their own graph layout method.
Sets The colour assigned to sets was the same across visualizations, except
for EulerView which has a colour selector over which we had no control.
For the remaining techniques, a palette of colours was generated using a
qualitative colour scale from colorbrewer2.org [20].
Set Names The names were all coloured black and they were manually
placed closest to the curve or line that they were labelling. If there was a
possibility of ambiguity when placing the names (i.e. potential for confusion
about the syntactic item being labelled), an arrow was added to indicate the
syntactic item being named. When two or more equal sets were represented
by a single curve or line, the label was the conjunction of the names of the
sets, such as ‘iPhone & Books’ in Fig. 1 (see EulerView, Bubble Sets, LineSets
and KelpFusion).

8Although ‘follows’ is a directed relationship, the visualizations just use undirected
edges to indicate that a connection exists between people. This decision reduced visual
complexity and removed the need to teach participants the meaning of directed edges.
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For each visualization technique, in order to generate 16 visualizations,
the original eight visualizations were rotated (as with LineSets in [3]). The
rotation was chosen to be 140 degrees, an oblique value randomly generated
between 60 and 320. The eight rotated visualizations had different names for
the sets than those used in the original version, in order to reduce learning
effect. We expected that participants would not recognize the rotated visu-
alizations, evidenced in part by Plimmer et al.’s study were participants saw
rotated graphs but, when asked, were unaware of this fact [33]. Lastly, all
of the visualizations in this paper, except for Figs 2, 8, 9 and 10, are scaled
versions of those used in the study, although some labels have been resized
and moved for readability in the paper.

For SetNet and EulerView, the sets, nodes, and edges were completely
automatically generated; the SetNet software was developed by us and the
EulerView software was provided to us by the developers. For BubbleSets,
KelpFusion, and LineSets, the nodes and the edges were generated using
Gephi and exported as SVG files. The node coordinates were provided to
Bubble Sets and LineSets using the available software. The developers of
KelpFusion produced the diagrams used in the study, after we have them the
Gephi-generated graphs. After generation, the Gephi-generated nodes and
edges were laid over the generated Bubble Sets, LineSets, and KelpFusion
diagrams.

We note that Bubble Sets, KelpFusion, and LineSets have been imple-
mented in an interactive environment. However, in this study we used static
visualizations since many uses of visualizations are not interactive, such as
diagrams used in printed documents or on websites. Using static visualiza-
tions also allowed us to evaluate all five visualization techniques, as not all
methods are integrated into interactive software. If we were to mix interac-
tive and static visualizations, the results of the study would become less clear
as any effects might be due to the visualization, the interface or the function-
ality provided. Finally, by using static visualizations, we can be confident
that the effects we see are a result of only the visualization.

5.3. Tasks to be Performed by Participants

Previous work has provided a classification of tasks on grouped network
data, according to the information required to solve them: group-only, group-
node, group-link and group-network [38]. Our tasks fall into the group-link
(T1 and T3 described below) and group-network class (T2 and T4). This
means that each of our tasks required participants to use both the set and
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network information to perform the task, justified by the fact that this is
the type of information visualized by the notations in the study. We did not
include any tasks from the group-only or group-node classes. If one is only
interested in information about sets (with corresponding tasks falling in to
the group-only class) then one does not need to visualize the network. A
similar point holds for group-node tasks. We take this view because simpler
visualizations (e.g. those that do not visualize the network, only the sets)
can be used for simpler tasks. Hence, group-link and group-network tasks
are those most appropriate for evaluating visualizations of grouped network
data.

We felt that it was important to have a diversity of group-link and group-
network tasks in order to provide a rounded insight into the relative perfor-
mance of each visualization technique. Moreover, we also wanted our choice
of tasks to be practically relevant. With this in mind, we appealed to [47],
which presents tasks that people need to perform when analyzing social net-
works. Inspired by these tasks, we devised four types of questions that arise
when extracting information about both the network and the sets:

T1 How many people with interests in X have n connections to other peo-
ple? This task is about examining how many direct connections people
have, measuring their network activity with a focus on particular in-
terest groups.

T2 What are the interests of the person who, if removed, leaves n people
disconnected from all the other people? This task identifies the interests
of key players in the social network [11].

T3 How many direct connections are there between people interested in X
and people interested in Y ? This measures the social cohesion between
two groups [34].

T4 What is the fewest number of people you need to pass through to get
from people interested in X to people interested in Y ? (Do not include
the people at the start and end of the path). This identifies the shortest
path between two interest groups.

An instance of each question type is as follows:

T1 How many people with interests in only Hifi or people with interests
in all of Hifi, Internet and Android have exactly three connections to
other people?

T2 What are the interests of the person who, if removed, leaves at least
two people disconnected from all the other people?
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T3 How many direct connections are there between people interested in all
of Economics, Cars and Web and people interested in all of Relaxation,
Cars and Web?

T4 What is the fewest number of people you need to pass through to
get from people interested in only Web to people interested in only
Computers? (Do not include the people at the start and end of the
path)

T3 was asked of the visualizations in Fig. 1. The assignment of tasks to data
sets is given in Table 3, where data sets 1 and 2 were used for training the
participants in the study. The questions were designed by the investigators
so that they required cognitive effort to answer and so that the answer was
unique. Typically this left very little choice of question. All of the questions
used in the study are available online: the actual study can be taken at [1].

All of the questions were presented as multiple choice, with four possible
answers. The unique correct answer could be selected by participants using
radio buttons in our data-collection software. When using multiple choice
questions, there is always a possibility that participants may guess the an-
swer. It is anticipated that correct guesses (and, therefore, incorrect guesses)
are approximately evenly distributed across the groups, thus not impacting
on the statistical analysis of the collected data in substantial way. In addi-
tion, if guessing was rife amongst participants, we would expect the accuracy
rates to be approximately 25%. As we shall see later, the lowest accuracy
rate for five visualizations was 58.8% which is well above 25%.

5.4. Data Collection Method
We adopted a crowdsourcing approach, using Amazon Mechanical Turk

(MTurk) [32] to automatically out-source tasks. There is evidence that
crowdsourcing is a valid approach for collecting data because this method
has now gained recognition within the scientific community [21, 32]. The
tasks, called HITs (Human Intelligence Tasks), are completed by anonymous
participants who are paid on completing the HIT. The HITs were based on
the templates provided by Micallef et al. [29].

Every question, in the training and main study phases, was displayed on
a separate page of the HIT. Participants were asked to “answer questions
without delay”. Previous pages could not be viewed and subsequent pages
were not revealed until the question on the current page was answered. Un-
like the training questions, in the main study the questions were randomly
sequenced.
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There is little control in MTurk over who participates in the study and,
so, some participants may fail to give questions their full attention or have
difficulties with the language; we call these participants inattentive. In an
attempt to avoid language issues, a system qualification was used, allow-
ing only participation from workers based in the USA with a HIT approval
rate of 95%. Another recognized technique for identifying participants who
cannot understand the language used is to include questions that require
careful reading, yet are very simple to answer. In our study, we included
two such questions which asked participants to click on a specific area in
the diagram, whilst still presenting the participants with (redundant) radio
buttons for typical answers as seen for the 12 main study questions; these
catch questions appeared as the first and seventh questions after the train-
ing phase. Participants were classified as inattentive if they clicked a radio
button on either of the two inattentive participant-identifying questions. All
data obtained from inattentive participants was removed before analysis.

5.5. Experiment Execution

A pilot study ran with 25 participants of which one was inattentive. The
pilot study proved the experimental design to be robust, with a few minor
changes made to the wording of the questions. We also changed one question
(not the diagram) as it appeared to be too hard with a 29% success rate,
close to the number of correct answers that might be expected with random
guesses. A further 500 participants took part in the main study. All partic-
ipants were randomly allocated to one of the five groups in equal numbers.
There were 32 inattentive participants and the data from a further partic-
ipant was corrupted, leaving 467 participants in total, whose demographics
were as follows:

• gender: 259 M, 208 F,

• location: 467 in USA,

• age range, in years: 18 to 70, 32.4 mean,

• qualification level: 17 not stated, 5 some high school, 40 high school
graduate, 140 some college, 46 associates degree, 162 Bachelors degree,
0 Masters degree, 57 doctorate degree.

In each group, the number of participants was: Bubble Sets: 91, EulerView:
96, KelpFusion: 95, LineSets: 92, and SetNet: 93.
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Each participant who either started or completed one of our HITs had
their ID recorded, allowing us to prevent multiple participation. The partic-
ipants performed the experiment at a time of their choosing and in a setting
of their choosing. They were told that the experiment would take approx-
imately 20 minutes, based on the time taken during the pilot study. All
participants were paid $1 for taking part; $1 for 20 minutes work is higher
than is typical for MTurk workers [32]. The data for the main study was
collected over two days, with HITs made available in sequential batches.

Participants were instructed to read the questions carefully and were ad-
vised that they had to answer “some key questions” correctly in order to be
paid (i.e. not classified as inattentive). Moreover, they were told that the
first four pages of the HIT were training (the first phase of the experiment).
During training, participants attempted questions. For every training ques-
tion, the answer was explained to the participant after they had attempted
it. After completing the training, participants entered the main study phase.
During this main phase, participants were not given the correct answer to
the problems. They were provided with a URL where the correct answers
would be revealed after a certain date (this date was one we were confident
would be after the data collection was completed).

6. Results

We analyzed accuracy and time data to establish which of our hypotheses
hold and to rank the visualization techniques. We regarded p-values of less
than 0.05 as significant. A secondary analysis, by task type, is also presented.

6.1. Accuracy

The following results are based on 500 − 33 = 467 participants each an-
swering twelve questions, giving 467× 12 = 5604 observations. There were a
total of 1866 errors, giving an accuracy rate of 66.7%. The mean accuracies
for the visualization techniques are in Table 4, along with the standard de-
viations, where the abbreviations correspond to the visualization techniques.
Whilst these data are not normal, the skewness is -0.65; given the size of the
data set, it is robust to conduct an ANOVA. We found a significant effect of
visualization technique (p = 0.036). Performing a pairwise comparison, using
a Tukey test revealed the only significant difference in accuracy was between
EulerView and LineSets: participants were significantly more accurate with
EulerView than with LineSets. Fig. 12 is an interval plot for the accuracy
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means, showing that the only non-overlapping pair of confidence intervals
(and, therefore, only significant difference) is between EulerView and Line-
Sets. On average, participants were nearly 70% accurate with EulerView,
dropping to nearly 59% accurate with LineSets.

Table 4: Average accuracy results for all tasks.
BS KF LS EV SN

Mean 68.0 68.2 58.8 69.9 68.6
Std Dev. 29.1 26.4 26.4 27.0 24.4

Figure 12: Mean accuracy with 95% confidence intervals.

6.2. Time

Consistent with Meulemans et al. [28], we only analyze the correct an-
swers. Removing incorrect responses left 3738 observations (Bubble Sets:
742, EulerView: 805, KelpFusion: 777, LineSets: 649, and SetNet: 765).
The grand mean for this reduced data set is 39.3 seconds per question (stan-
dard deviation: 29.2). The average completion times by technique are given
in seconds in Table 5, along with the standard deviations.

In order to establish whether there is significant overall variation across
visualization methods, we conducted an ANOVA. The analysis is performed
using log10(time); whilst normality is not achieved, the skewness of the data
is -0.19 so our analysis is robust. We found a significant effect of visualiza-
tion technique (p = 0.003). Performing a pairwise overall comparison, using
a Tukey test revealed that EulerView and SetNet significantly outperform
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Table 5: Average time results for all tasks.
BS KF LS EV SN

Mean 41.8 41.6 44.05 33.9 36.1
Std Dev. 31.9 27.8 36.9 24.4 23.5

Bubble Sets, KelpFusion, and LineSets. Fig. 13 shows an interval plot for
the mean times: as faster is ‘better’, we can clearly see that EulerView and
SetNet outperform Bubble Sets, LineSets and KelpFusion. Within these two
groups of techniques, there are no significant differences. The mean times in
Table 5 indicate the scale of the differences.

Figure 13: Mean time with 95% confidence intervals.

6.3. Interactions with Task Type

Here we present an indication of relative performance by task type is
now given which should, however, be treated with caution: the study only
contained three questions of each type. As a result, it is not scientifically ro-
bust to draw general conclusions about the interaction between visualization
technique and question type. To identify potential significant differences in
general, we make use of plots (Figs 14 and 15) showing 95% confidence in-
tervals for the means, broken down by question type. Any pair of confidence
intervals that do not overlap illustrate a significant difference in our data,
taking p = 0.05.

Fig. 14 shows 95% confidence intervals for the mean accuracy rates. It
can be seen that no significant differences in accuracy exist for question types

31



Figure 14: Mean accuracy by task with 95% confidence intervals.

Figure 15: Mean time by task with 95% confidence intervals.

1 and 2. For type 3, KelpFusion outperforms LineSets. For type 4, Bubble
Sets, EulerView and SetNet outperform LineSets and, in addition, EulerView
outperforms KelpFusion. Fig. 15 shows the 95% confidence intervals for the
mean times. For type 1, SetNet outperforms Bubble Sets, KelpFusion and
LineSets. No significant differences exist for type 2 questions. For type 3, Eu-
lerView and KelpFusion outperform LineSets. Lastly, for type 4, EulerView
outperforms all other methods. In all cases, either EulerView or SetNet are
not significantly different from the visualization technique with the highest
mean accuracy or the visualization technique with the lowest mean time,
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supporting the results concerning overall performance. All of these observa-
tions require further study before any firm conclusions can be drawn about
which techniques significantly differ when performing specific tasks.

6.4. Relationship to Hypotheses and Discussion

In terms of our hypotheses from Section 5, we reach the following conclu-
sions, based on the overall accuracy and time analysis:

1. We do not have sufficient evidence to accept H1. No pair of KelpFusion,
LineSets and Bubble Sets are significantly different in terms of accuracy
or time.

2. We do not have sufficient evidence to accept H2. SetNet and EulerView
are not significantly different in terms of accuracy or time.

3. We do not have sufficient evidence to accept H3, again because Kelp-
Fusion and LineSets did not yield significantly different performance.

4. We can accept H4: both EulerView and SetNet outperform Bubble
Sets. Whilst they are not significantly different in terms of accuracy,
the analysis of time data allows us to accept this hypothesis.

We conclude that EulerView and SetNet outperform Bubble Sets,
KelpFusion, and LineSets, for the group-link and group-network
tasks undertaken in our study, when static visualizations are used.

These results indicate that both EulerView and SetNet improve perfor-
mance for grouped network data tasks. This suggests that Euler diagrams
are an effective visualization for conveying information about overlapping
sets. Moreover, our results suggest that assigning spatial rights to the sets is
beneficial for the effectiveness of the visualizations, as compared to assigning
spatial rights to the network. Lastly, with reference to Tables 1 and 2, the
only feature that distinguishes both EulerView and SetNet from the other
techniques, but not from each other, is the principle of proximity. We spec-
ulate, therefore, that adhering to this principle when visualizing grouped
network data may be particularly important.

It is perhaps surprising that only one of our four hypotheses is supported
by our analysis, as they were informed by previous empirical studies (al-
beit with different tasks performed by participants) and insights gained from
perceptual theories. It is interesting to recall that these previous studies
were inconsistent with their findings. One found Bubble Sets outperformed
LineSets [24] whereas another found that KelpFusion outperformed LineSets
which, in turn, outperformed Bubble Sets [28]. Our study did not reveal any
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significant difference between these three techniques. It may be that the type
of task is crucial when deciding between these techniques.

Of particular note, though, is that our tasks differed significantly from
those used in previous studies [3, 25, 28]. All of our questions required the
participants to access information about both the sets and the network. The
tasks used in [3, 28] did not include any network or group-network tasks.
Thus, our results suggest that, as the complexity of the task increases, the
difference in effectiveness of Bubble Sets, KelpFusion and LineSets becomes
insignificant. Not being able to accept H3 perhaps has a similar explanation.
Therefore, we have demonstrated that the previous results do not generalize
to group-link and group-network tasks.

Likewise, since these techniques are visualizing rich information (data
items, intersecting sets, and networks) our results point towards limitations
of the perceptual theories discussed in Section 2. These theories consider
aspects of visualizations in isolation, such as the syntax used to group items.
Moreover, those discussed in Section 2.1 do not fully take into account graph-
ical features, including those that are geometric, which can have a profound
impact on the usability of visualizations. Thus, our results suggest that even
if a notation has properties known to be beneficial, the importance of finding
an effective layout when visualizing data is, unsurprisingly, important. We
deduce that, whilst visualization design should respect perceptual theories,
the importance of graphical properties should not be underestimated.

In the case of [25], the set visualization was simpler to the one we used
as there were no group overlaps. That study included two tasks that use
both group and network information. The first of these tasks presented a
visualization which highlighted the groups of interest, so the only cognitive
effort required to perform the task arose from interpreting the network. For
the other task, there was no significant difference between Bubble Sets and
Line Sets in their simpler setting of only visualizing disjoint sets, congruent
with our study.

Concerning H2, the result that EulerView and SetNet are not significantly
different is particularly surprising. The layout guides indicate that SetNet
should visualize sets more effectively than EulerView (at least on the basis
of the summary in Tables 1 and 2). However, the results suggest that SetNet
may be overly compromising the layout of the network. The use of circles
limits the spatial arrangement of the curves and the shapes of the regions to
which the curves give rise. These limitations may be forcing the network to
take a layout which is less effective than in EulerView, thus cancelling out any

34



benefit of meeting more Euler diagram layout guides described in Section 2.
The force model applied to the graph in SetNet and the initial placement of
the nodes could also be improved. In addition, the well-formedness conditions
are not equal in their effect on understanding. Visualizing any given set
with more than one curve, as in SetNet, has been shown to be worse than
concurrency [37], present in EulerView; three quarters of the SetNet diagrams
used more than one curve for a set whereas none of the EulerView diagrams
did so. Also, EulerView uses texture alongside colour, so this extra encoding
may aid understanding.

Concerning H4, we have seen that SetNet and EulerView outperform
Bubble Sets. Again, this significant result would suggest that the layout of
the sets has more impact on performance than the layout of the network,
since SetNet and EulerView assign primacy to the sets whereas Bubble Sets
assigns primacy to the network.

With regard to the previous study of Meulemans et al. [28], their key
findings when comparing KelpFusion with LineSets and Bubble Sets were as
follows:

1. “Using a graph holds up well compared to a single continuous path
technique.” Meulemans et al. had hypothesized that LineSets would
have advantages over the “branching graph” geometry seen in KelpFu-
sion, but this was not supported by their study.

2. “Using a mix of hulls and links has benefits over a single concave hull
technique.” In particular, their study found that KelpFusion (which
uses a “mix of hulls and links”) outperformed Bubble Sets which uses
“single concave hulls”.

Our study supports their first key finding, as we did not establish any signif-
icant difference between KelpFusion and LineSets. Unlike our study, Meule-
mans et al. found KelpFusion outperforms LineSets in terms of completion
time. Their second key finding is not supported by our study: their finding
does not generalize to the tasks considered in this paper. We observed no
significant difference between Bubble Sets and KelpFusion. Moreover, Eu-
lerView represents sets using hulls which are often concave and outperformed
KelpFusion.

Meulemans et al. indicated that they limited the number of data items in
their study (to 49 items) and that they did not ensure strong spatial grouping
of the nodes. They conjectured that increasing the number of elements and
ensuring stronger spatial grouping of the nodes would be “likely to confirm
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the benefits of KelpFusion [over Bubble Sets and LineSets]”. We have partly
refuted this conjecture in that our study had up to 64 data items and we
saw no significant differences between these three techniques. However, as
we used a stand-alone tool to visualize the network, no attempt was made
to ensure stronger spatial grouping. Moreover, our questions required the
participants to use both the network and sets, so it remains open to explore
the truth of this conjecture with the simpler tasks used in Meulemans et al.’s
study.

7. Scalability of the Techniques

The five techniques that we have evaluated represent the state-of-the-art
in set and network visualization methods currently available. They are all
capable of providing effective visualizations of sets and networks, but as the
data grows in size, this effectiveness can be diminished. Two key questions
relating to scalability, for any visualization technique, are:

• How well does the technique scale in terms of being able to theoretically
visualize large data?

• How well does the technique scale in terms of being able to effectively
visualize large data?

All five techniques evaluated in this paper can, theoretically, visualize
arbitrarily large data in every sense: there is no theoretical limit to the
number of sets, nodes and edges that can be visualized9. For instance, our
method – SetNet – exploits the iCircles technique that is theoretically proven
to be able to visualize any finite collection of sets [42]. From this, it follows
that any network data can be overlayed in the drawn Euler diagram.

Of course, from a practical perspective, the second question is more im-
portant than the first: if a visualization of a particular data set is not ef-
fective, preventing users from gaining an understanding of their data, then
its usefulness (for that particular data) is questionable. The effectiveness
of all five techniques can diminish as the size of the data increases. Here,

9We acknowledge that in practice the techniques will not necessarily be able to produce
visualizations in acceptable run times due to the computational complexity of the drawing
methods employed.
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effectiveness can be linked with the level of clutter exhibited by the visual-
ization under consideration, and other properties already discussed such as
well-formedness. Clutter arises from the sets and the network being visual-
ized, including the interplay between the two (such as how many data items
are in each set intersection).

Regarding set visualization, Euler diagrams – the underling notation for
SetNet, Bubble Sets and EulerView – exhibit high levels of clutter when
there are lots of intersections between the sets. Increasing the number of
sets being visualized does not necessarily cause scalability problems. Indeed,
it is increasing levels of clutter in Euler diagrams that has been shown to
have a negative impact on task performance [4]. Therefore, Euler diagrams
can sometimes scale well to large numbers of sets, provided the intersections
present do not yield highly cluttered diagrams.

We expect that clutter manifests in a similar way when using KelpFusion
to visualize sets; KelpFusion uses surfaces with multiple boundaries to rep-
resent sets, generalizing the use of closed curves and their interiors seen in
Euler diagrams. We conjecture that increased clutter, arising from many in-
tersecting sets, will lead to a decrease in effectiveness, as has been shown for
Euler diagrams. Establishing a measure of clutter and the impact of clutter
on effectiveness when using surfaces with multiple boundaries to visualize
sets remains an interesting avenue of future work, in part because it will
provide insight about when KelpFusion scales to large data.

LineSets exploit a rather different way of visualizing the sets, using lines
rather than closed curves or surfaces. They require each set-line to pass
through all the data items (nodes) that lie in the represented set. As a con-
sequence, data items in many sets are passed through by many lines, leading
to a manifestation of clutter. Currently, there is no formal understanding
about what constitutes a cluttered LineSets diagram, but there is likely to
be a relationship between what people perceived to be cluttered and the num-
ber of data items in each set intersection. Again, establishing a measure of
clutter and its relationship with task performance is an interesting problem
for future work.

Scalability issues also arises through the number of data items and the
number of links between them in the network. When graphs are sparse
(i.e. the number of edges is low compared to the number of vertices), the
visualization techniques can scale well. However, as the number of edge
crossings increases, the effectiveness of the visualization is likely to decrease.
Obtaining layouts of the graph with few edge crossings is complicated by the
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fact that, when using closed curves or surfaces, the location of nodes may be
constrained by the visualization of the sets. Of course, significant research
has been undertaken to evaluate layout properties of graphs and their impact
on task performance. However, layout choices for graphs in the context of
set visualization is unexplored.

Highly relevant to our work is the interplay between the network and the
sets. There is currently no understanding about how the layout properties
arising from visualizing sets and networks together impacts visual clutter or
task performance as data increase in size. We expect that useful insights
about diagram clutter stand to be provided by examining how the graph
edges pass through closed curves (in the case of Euler diagrams), surfaces
(for KelpFusion), or lines (for LineSets) and how many are nodes present in
each set intersection. By developing a rounded theory of clutter for these
combined visualizations of sets and networks, we can begin to empirically
explore the effect of increasing levels of clutter on task performance. As a
result, we will gain important insight into the relative scalability of these five
techniques.

8. Conclusion and Future Work

Using perceptual theories and empirically supported layout criteria, we
analyzed four existing visualization techniques, namely BubbleSets, EulerView,
LineSets and KelpFusion, alongside a new technique, SetNet, for visualizing
grouped network data. SetNet, like EulerView, assigns primacy to sets but it
possesses more features known to aid comprehension. We performed a con-
trolled experiment to compare user task performance, in terms of accuracy
and time, of these five techniques using real social network data displayed as
static visualizations. Key results for our study are summarized as follows:

(a) EulerView and SetNet outperformed Bubble Sets, KelpFusion and Line-
Sets overall when participants undertook group-link and group-network
tasks.

(b) Visualizations that assign primary spatial rights to sets outperform
those which assign primary spatial rights to the network.

(c) Adhering to the principle of proximity is seen as particularly important
for effectiveness.

(d) Contrary to previous studies, we found no significant differences be-
tween Bubble Sets, KelpFusion and LineSets, indicating that earlier
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results do not generalize to group-link and group-network tasks – i.e.
tasks which use both the network and the sets, for which these visual-
ization techniques were designed.

As with any empirical study, these results are valid within the constraints
imposed by the study. In our case, the results are valid for the task types
undertaken by our pool of participants drawn from the general population.
It is an interesting avenue of future work to see whether these results hold
when the participants are from a pool of technically trained people.

The automated layout of this complex type of data can be further im-
proved. This may be assisted by additional studies on diagrammatic fea-
tures that are highlighted by our results as potentially impacting on task
performance such as texture and node layout within sets. It would also be
interesting to devise a new approach that attempts to visualize both the set
and network simultaneously, thus assigning primary spatial rights to neither
the network or the sets. This is motivated by the indication that, whilst
SetNet was perceived to better visualize the sets than EulerView (based on
the analysis in Section 3), it overly compromised the layout of the network.
In addition, a network layout method that explicitly optimizes graph layout
guides (such as reducing crossings) could be implemented in place of the
current force-directed approach.

We would like to see further studies exploring the generality of these
results using different data and different tasks as well as alternative visual-
ization techniques. In many cases, the assignment of primary spatial rights
to either the sets or network may be task or application dependent. The
generality of our results could be further investigated, with this choice in
mind. It would also be interesting to perform further empirical studies to
explore the use of multiple unjoined circles, as with SetNet, as compared to
the use of multiple joined convex shapes as in [35].

Exploring interaction with the visualization techniques is also a valuable
avenue for future research. Examples of interactive features include zoom-
ing, filtering, highlighting and providing details on demand. The ability of
visualization techniques to support these features will be important for their
wide-scale applicability, allowing one to exploit the value of interaction and
enable new analysis possibilities.
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