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Introduction  

The structure of a system is what enables it to generate the system’s behaviour, from 
the behaviour of its components (see chapter 1). The architecture of a software system 
is an abstraction of the actual structure of that system. The identification of the system 
structure early in its development process allows abstracting away from details of the 
system, thus assisting the understanding of broader system concerns [62].  

One of the benefits of a well-structured system is the reduction of its overall 
complexity, which in turn should lead to a more dependable system. The process of 
system structuring may occur at different stages of the development or at different 
levels of abstraction. Reasoning about dependability at the architectural level has 
lately grown in importance because of the complexity of emerging applications, and 
the trend of building trustworthy systems from existing untrustworthy components. 
There has been a drive from these new applications for dependability concerns to be 
considered at the architectural level, rather than late in the development process. From 
the perspective of software engineering, which strives to build software systems that 
are rid of faults, the architectural consideration of dependability compels the 
acceptance of faults, rather than their avoidance. Thus the need for novel notations, 
methods and techniques that provides the necessary support for reasoning about faults 
at the architectural level. For example, notations should be able to represent non-
functional properties and failure assumptions, and techniques should be able to extract 
from the architectural representations the information that is relevant for evaluating 
the system architecture from a certain perspective.  

In addition to the provision of facilities that enable the reasoning about faults at 
the architectural level, there are other issues that indirectly might influence the 
dependability of systems, and that should be observed for achieving effective 
structuring. These include understandability, compositionality, flexibility, refinement, 
traceability, evolution, and dynamism [17] (see chapter 1). 



Architectural description languages (ADLs) are used within the software 
engineering community to support the description of high-level structure, or 
architecture, of software systems. A major advantage of this is the ability to analyze 
and evaluate trade-offs among alternative solutions. One can envision extending that 
definition to cover also non-technical aspects of a computer-based system’s structure. 
However, there is one problem in trying to generalise the scope of this definition in 
those terms, mainly that software architectures are explicitly (formally) modelled in 
order to support reasoning about and analysis of the system under discussion. 
Modelling all possible ways in which humans that are a part of a system may interact 
is almost impossible, as is modelling their potential behaviour. 

This chapter will discuss the role of ADLs for representing and analyzing the 
architecture of software systems. Since ADLs vary considerably on the modelling 
aspects that they cover, we will focus our discussion on how ADLs support 
structuring dependability issues. This discussion will be carried out from the 
perspective of the means to attain dependability. But first, we will provide a brief 
introduction to software architectures and ADLs.  

Software Architectures and ADLs 

The software architecture of a program or a software system is the structure or 
structures of the system, which comprises software components, their externally 
visible properties and their relationships [9]. It is a property of a system, and as such it 
may be documented or not. Being the result of some of the first and most important 
decisions taken about the system under development [13], it is recognized that the 
software architecture is a key point for the satisfaction of dependability related 
requirements.  

A software architecture is usually described in terms of its components, 
connectors and their configuration [55][66]. The way a software architecture is 
configured defines how various connectors are used to mediate the interactions among 
components. 

An architectural style imposes a set of constraints on the types of components and 
connectors that can be used and a pattern for their control and/or data transfers, thus 
restricting the set of configurations allowed. It simplifies descriptions and discussions 
by restricting the suitable vocabulary. A software architecture may conform to a 
single given style or to a mix of those. 

During system development and evolution, a software architecture can be used for 
specifying its static and dynamic structure(s), for supporting analysis, and for guiding 
development, acting as a roadmap for designers and implementers. A software 
architecture is used throughout the software life-cycle to facilitate communication 
among the various stakeholders involved. Concepts such as conceptual integrity find 
their realm in the architectural models.  

Software architectures can be thought of as high-level design or blue-print of a 
software system. They are derived from the various requirements and constraints 
imposed on the system, and later refined into lower level design and subsequently into 
an implementation. In Model Driven Architecture [53], a platform-independent 
software architecture is created (using an appropriate specification language) that is 



then translated into one or more platform-specific ones that are used to guide 
implementation. 

Architecture description languages (ADLs) aim at supporting architecture-based 
development by providing a (semi) formal notation to represent architectures, with 
their abstractions and structures. Some ADLs also provide a corresponding analysis 
and/or development environment. The number and variety of ADLs in existence 
today is quite considerable, but it should be noted that most have only been used in 
research environments and have not really been widely adopted by industry. Many 
ADLs only support a specific architectural style. 

Differing architectural styles focus on different system characteristics. Hence, the 
architectural style(s) that an ADL aims to support will establish the aspects that need 
to or can be expressed and limit the scope of valid descriptions. ADLs may also 
represent aspects that are not style specific (e.g., non-functional requirements). 
Furthermore, ADLs may concentrate only on the description of static aspects, but 
some also support the description of dynamic information about the architecture. Only 
a few ADLs explicitly support refinement, ensuring that higher level constraints are 
not violated at lower levels [52]. All these variations in ADLs imply that any specific 
ADL establishes the system features that it can describe, as well as what 
corresponding analysis can be performed. Although some good work exists that 
discusses different ADLs [16][50], there are not yet discussions and/or comparisons 
of ADLs with respect to dependability concerns.  

Much discussion about supporting different architectural views exists [44]. The 
main point being that it would be beneficial to have diverse representations of systems 
for the purpose of supporting different types of analysis while avoiding information 
overload on a single view. Therefore the objective would be to have ADLs with 
multiple views, yet in reality that is not the case. ADLs still tend to focus on a single 
graphical and single textual description for supporting a particular type of analysis 
[50]. UML, as an ADL, can be said to support different views based on the different 
models included, but the relationships between these views are only enforced in terms 
of the entities represented and not on their semantics. 

Architecting Dependability  

Although there is a large body of research in dependability, architectural level 
reasoning about dependability is only just emerging as an important theme in software 
engineering. This is due to the fact that dependability concerns are usually left until 
too late in the process of development. In addition, the complexity of emerging 
applications and the trend of building trustworthy systems from existing, 
untrustworthy components are urging dependability concerns be considered at the 
architectural level. 

In this section, we discuss the features that architectural description languages 
(ADLs) should possess for structuring dependable systems. System dependability is 
measured through its attributes, and there are several means for attaining these 
attributes, which can be grouped into four major categories [4].  Rigorous design, 
which aims at preventing the introduction or the occurrence of faults. Verification and 
validation, which aims at reducing the number or severity of faults. Fault tolerance, 



which aims at delivering correct service despite the presence of faults. System 
evaluation, which aims at estimating the present number, the future incidence, and the 
likely consequences of faults. Since system structuring is relevant across all the 
dependability means, the ensued discussion will be partitioned in terms of these four 
categories.  

Rigorous Design  

Rigorous design, also known as fault prevention, is concerned with all the 
development activities that introduce rigor into the design and implementation of 
systems for preventing the introduction of faults or their occurrence during operation. 
Development methodologies and construction techniques for preventing the 
introduction and occurrence of faults can be described respectively from the 
perspective of development faults and configuration faults (a type of interaction 
faults) [4].  

In the context of software development, the architectural representation of a 
software system plays a critical role in reducing the number of faults that might be 
introduced [28]. For the requirements, architecture allows to determine what can be 
built and what requirements are reasonable. For the design, architecture is a form of 
high-level system design that determines the first, and most critical, system 
decomposition. For the implementation, architectural components correspond to 
subsystems with well-defined interfaces. For the maintenance, architecture clarifies 
design, which facilitates the understanding of the impact of changes.  

One way of preventing development faults from being introduced during the 
development of software systems is the usage of formal or rigorous notations for 
representing and analysing software at key stages of their development. The starting 
point of any development should be the architectural model of a system in which 
dependability attributes of its components should be clearly documented, together 
with the static and dynamic properties of their interfaces. Also as part of these 
models, assumptions should be documented about the required and provided 
behaviour of the components, including their failure assumptions. This architectural 
representation introduces an abstract level for reasoning about structure of a software 
system and the behaviour of its architectural elements, without getting into lower 
level details. The role of architecture description languages (ADLs) is to describe 
software systems at higher levels of abstraction in terms of their architectural 
elements and the relationships among them [17]. 

Although UML, and now UML 2.0 [12], has become the de facto standard in 
terms of notations for describing systems’ design [17][31] (see chapter 1), there are 
several languages that could be more appropriate for representing the architecture of 
systems [50]. Nevertheless, industry still relies heavily on UML for obtaining models 
for their business, software architectures and designs, and also to obtain metamodels 
that allow defining dialects that are appropriate for describing their applications. 
However, UML offers a number of alternatives for representing architectures, and this 
lack of precision might lead to problems when obtaining a common understanding of 
an architectural model [17] [31].  

Beyond the rigorous “box-and-line” notations (components and connectors view 
type) like UML, there are ADLs that have a formal underpinning that allow precise 



descriptions and manipulations of the architectural structure, constraints, style, 
behaviour, and refinement [28]. In general, existing formal semantics for architectural 
notations can be divided into three categories [14]: graph, process algebra, and state.  
For example, in graph-based approaches, while a graph grammar is used to represent 
a style, a graph represents the actual architecture. 

In principle, system structuring should enforce high cohesion and low coupling 
(see chapter 1), this can be supported by the use of an ADL or a specific architectural 
style (constraints on the types of architectural elements and their interaction [66]). 
However, coupling and cohesion are not necessarily features imposed or can be 
enforced by ADLs or by architectural styles. The C2 ADL [69], for example, fosters 
the reduction of coupling, yet its usage has no impact with respect to cohesion. SADL 
[52] fosters an increase in cohesion and has no impact in terms of coupling. 
Languages such as Wright [2] or Rapide [45] should have no impact with respect to 
either coupling or cohesion. In UML, as an ADL, coupling and cohesion 
characteristics would be system specific and not enforced by the language itself [31]. 
A similar phenomenon can be observed with respect to architectural styles. The 
blackboard style enforces low coupling of computational units, high coupling of the 
data centre, and high cohesion; the event-based style fosters low coupling; layered 
encourages high cohesion; pipe and filter enforces low coupling. The vast majority of 
the other architectural styles has no impact on the coupling or the cohesion of specific 
systems. Consequently, coupling and cohesion are mainly application (usage) specific 
and constrained to the process of structuring the system itself. 

One of the major difficulties during software development is to guarantee that 
implementation conforms to its architectural representation. In case there are several 
representations between architecture and implementation, the process of relating 
representations is equally important to make sure that they are consistent. For 
instance, the implementation of architectural strategies that enforce security policies 
should guarantee that buffer overflows do not introduce vulnerabilities during system 
operation. In this direction there has been some work that relates, in a consistent way, 
dependability concerns from the early to late stages of software development by 
following the principles of Model Driven Architecture (MDA) [53][56]. The 
challenge is to define rules that transform an architectural model into code, 
guaranteeing at the same time that all the dependability properties are maintained 
[56][60].  

One way of preventing configuration faults from occurring during system 
operation is to protect a component, or the context of that component, against 
potential mismatches that might exist between them, i.e., architectural mismatches 
[28] (design faults). These vulnerabilities can be prevented by adding to the structure 
of the system architectural solutions based on integrators (more commonly known as 
wrappers) [23]. The assumption here is that the integrators are aware of all 
incompatibilities that might exist between a component and its environment [61]. 

Verification and Validation 

Verification and validation, also known as fault removal, is concerned with all 
development and post-deployment activities that aim at reducing the number or the 
severity of faults [4].  



The role of architectural representations in the removal of faults during 
development is twofold: first, it allows faults to be identified and removed early in the 
development process, and second, it also provides the basis for removing faults late in 
the process. The early removal of faults entails checking whether the architectural 
description adheres to given properties associated with a particular architectural style, 
and whether the architectural description is an accurate representation of the 
requirements specifications. The late removal of faults entails checking whether the 
implementation fulfils the architectural specification. While early fault removal is 
essentially obtained through static analysis, late fault removal is gained through 
dynamic analysis. Example of techniques for the static analysis of architectural 
representations is inspections and theorem proving, while model checking and 
simulation could be given as examples of dynamic analysis techniques. Testing is a 
dynamic analysis technique that has been mostly applied to uncover faults late in the 
development process, however depending of the ADL employed, it can also be 
employed for localizing any faults that might exist at the architectural description of a 
system [51]. 

Examples of architectural inspection techniques, like Architecture Tradeoff 
Analysis Method (ATAM) and Software Architecture Analysis Method (SAAM) 
[17], will be discussed under the section on system evaluation. In general, these 
techniques are based on questionnaires, checklists and scenarios to uncover faults that 
might exist on the architectural representation of the system. 

When building systems from existing components, it is inevitable that 
architectural mismatches might occur [29]. The static analysis approaches associated 
with the removal of this type of design fault aim at localising architectural 
mismatches during the integration of arbitrary components. Existing approaches for 
identifying architectural mismatches are applied either during the composition of 
components while evaluating the architectural options [26], or during architectural 
modelling and analysis [25]. 

Model checking analyzes systems behaviour with respect to selected properties. 
Its algorithms offer an exhaustive and automatic approach to analyze completely the 
system. Model checking provides a simple and efficient verification approach, 
particularly useful in the early phases of the development process. For example, from 
an architectural description, a corresponding state-based model is extracted for 
checking its correctness against the desired properties. There are two major 
limitations associated with model checkers, they are limited to finite-state systems, 
and they suffer from state explosion. Model checking has been successfully applied in 
analyzing software architectures that are described using ADLs based on process 
algebras, the most prominent ones being Wright [1][2] and Darwin [46]. Wright, 
which is based on CSP, allows behavioural checks to be performed using the model 
checker FDR [62]. Darwin, which is based on Pi-calculus for describing structural 
aspects and FSP for describing the behavioural aspects, checks properties expressed 
in Linear Temporal Logic using LTSA [43]. Another approach, which uses UML for 
describing an architecture, relies on an automated procedure for mapping architectural 
elements into constructs of PROMELA, the modelling language for the SPIN model 
checker [37]. Most of the work so far has been on static structures, the challenge 
ahead lies on model checking ADLs that provide mobility and dynamicity 
mechanisms [48]. 



Simulation, as a dynamic analysis technique, is not widely supported by existing 
ADLs. Rapide is one of the few ADLs that allows the simulation and behavioural 
analysis of architectures [43]. Rapide is an event based concurrent language, designed 
for prototyping architectures of distributed systems. It provides event pattern 
mappings, an approach for defining relationships between architectures, to define how 
a system is related to a reference architecture.  

The role of software architecture in testing is evident since an architectural 
description is a high-level design blueprint of the system that can be used as a 
reference model to generate test cases. Moreover, the testability of a system is related 
to its architecture. In addition to the documentation that architectures provide from 
which specification-based integration and system testing can be obtained, there are 
other features in an architectural description that promote testability: modularisation, 
encapsulation of components for information hiding, and separation of concerns. In 
software architecture based testing, the dynamic description of the architecture can be 
useful in the systematic derivation of test cases to be executed on the implemented 
system. In case the architectural description is a formal model, the synthesis of the 
test cases can be automated for architectural based conformance testing [6]. 

The role of architectural representation in the removal of faults after system 
deployment includes both corrective and preventative maintenance [4]. The software 
architecture, in terms of components and connectors, provides a good starting point 
for revealing the areas a prospective change will affect [17]. For example, an 
architecture might define the components and their responsibilities, and the 
circumstances under which each component has to change.  

Fault Tolerance 

Fault tolerance aims to avoid system failure via error detection and system recovery 
[4]. Error detection at the architectural level relies on monitoring mechanisms, or 
probes [8], for observing the system states for detecting erroneous states at the 
components interfaces or in the interactions between these components. On the other 
hand, the aim of system recovery is twofold. First, eliminate errors that might exist at 
the architectural state of the system. Second, remove from the system architecture 
those elements or configurations that might be the cause of erroneous states. From the 
perspective of fault-tolerance, system structuring should ensure that the extra software 
involved in error detection and system recovery provides effective means for error 
confinement, does not add to the complexity of the system, and improves the overall 
system dependability [57]. To leverage the dependability properties of systems, 
solutions are needed at the architectural level that are able to guide the structuring of 
undependable components into a fault tolerant architecture. Hence from the 
dependability perspective, one of the key issues in system structuring is the ability to 
limit the flow of errors. 

Architectural abstractions offer a number of features that are suitable for the 
provision of fault tolerance. They provide a global perspective of the system, enabling 
high-level interpretation of system faults, thus facilitating their identification. The 
separation between computation and communication enforces modularisation and 
information hiding, which facilitates error confinement, detection and system 



recovery. Moreover, architectural configuration is an explicit constraint that helps to 
detect any anomalies in the system structure. 

Architectural monitoring consists of collecting information from the system 
execution, analysing it and detecting particular events or states. However, there is an 
inherent gap between the architectural level and the information that is actually 
collected, and mapping solution is necessary for integrating the primitive events and 
the architectural (high) level composed events. Without incurring into a large volume 
of data, or limiting the analysis by collecting interesting events only, monitoring 
solutions should be based on languages that are able to define events independently of 
the system implementation, the purpose of the analysis, and the monitoring system 
[24].  

A key issue in dependability is error confinement, which is the ability of a system 
to contain errors (see chapter 1). The role of ADLs in error confinement needs to be 
approached from two distinct angles. On one hand is the support for fostering the 
creation of architectural structures that provide error confinement, and on the other 
hand is the representation and analysis of error confinement mechanisms. Explicit 
system structuring facilitates the introduction of mechanisms such as program 
assertions, pre- and post conditions, and invariants that enable the detection of 
potential erroneous states in the various components. Thus, having a highly cohesive 
system with self-checking components is essential for error confinement. However 
software architectures are not only composed of a set of components, connectors are 
also first class entities and as such also require error confinement mechanisms. Yet, 
since components and connectors do not exist on their own within systems, but as 
parts of a configuration of components and connectors, it is easier to include error 
confinement mechanisms within components and their ports rather than in arbitrary 
connectors. Some examples of mechanisms for error confinement at the level of 
interactions between components are coordinated atomic actions (CA actions) and 
atomic transactions [72], co-operative connectors [21], and monitored environments 
[74]. In particular, when dealing with components of the shelf (COTS) error 
confinement mechanisms might not have been originally included and are not easily 
added on. In these cases, error confinement mechanisms can be included in ‘smart 
connectors’ [7] or wrappers [36]. 

Some ADLs lend themselves to easily add (some) explicit error confinement 
checks, as in the work using the language C2 [69] that explicitly adds exception 
handling to specific software architectures, providing a coordinated (controlled) 
propagation of errors [35]. However, some languages might not offer the facilities to 
include checks that are fundamental for error confinement. Nevertheless, if there is a 
system description using an ADL, it helps highlight the connection points in the 
system where error confinement is relevant, and what behavioural variables (variables 
that describe the behaviour associated with a component interface) to check. 

Nevertheless, although some ADLs can be used to represent error confinement 
mechanisms, they do not yet provide embedded means for error confinement analysis, 
nor do they automatically include error confinement mechanisms into structures that 
they describe. The introduction of error confinement mechanisms in architectural 
structures and error confinement analysis must both be explicitly performed by the 
software architects on a case by case basis. 



For error handling during system recovery, exception handling has shown to be an 
effective mechanism if properly incorporated into the structure of the system. Such an 
architectural solution for structuring software architectures compliant with the C2 
architectural style [69] is the idealised C2 component (iC2C) [35]. This architectural 
solution is based on the idealised fault-tolerant component concept [3], which 
provides a means for system structuring which makes it easy to identify what parts of 
a system have what responsibilities for trying to cope with which sorts of fault. This 
approach was later extended to deal with commercial off-the-shelf (COTS) software 
components [36]. A more general strategy for exception handling for the development 
of component-based dependable systems is based on the integration of two 
complementary strategies, a global exception handling strategy for inter-component 
composition, and a local exception handling strategy for dealing with errors in 
reusable components [15]. Another means to obtain error recovery is to enforce 
transaction processing either based on backward or forward error recovery. In the 
particular context of dependable composition of Web services, one solution lies in 
structuring the system using Web Services Composition Actions (WSCA) [68].  

Outside the context of fault tolerance, compensation has been used to ensure 
dependable system composition and evolution when upgrading components, by 
employing an approach that makes use of diversity between old and new versions of 
components. While the core idea of the Hercules framework [19] is derived from 
concepts associated with recovery blocks [59], the notion of multi-versioning 
connectors (MVC) [57], in the context of architectures compliant with the C2 
architectural style [69], is derived from concepts associated with N-version 
programming [4]. 

Architectural changes, for supporting fault handling during system recovery, can 
include the addition, removal, or replacement of components and connectors, 
modifications to the configuration or parameters of components and connectors, and 
alterations in the component/connector network’s topology [54]. A good example of 
such an approach is the architectural mechanisms that allow a system to adapt at run-
time to varying resources, system errors and changing requirements [32]. Another 
repair solution of run-time software, which is architecturally-based, relies on events 
and connectors to achieve required structural flexibility to reconfigure the system on 
the fly, which is performed atomically [20][54]. Exception handling can be useful 
when dealing with configuration exceptions, which are exceptional events that have to 
be handled at the configuration level of architectures [38]. 

System Evaluation 

System evaluation, also known as fault forecasting, is conducted by evaluating 
systems’ behaviour with respect to fault occurrence or activation [4]. For the 
architectural evaluation of a system, instead of having as a primary goal the precise 
characterisation of a dependability attribute, the goal should be to analyse at the 
system level what is the impact upon a dependability attribute of an architectural 
decision [18]. The reason is that, at such early stage of development the actual 
parameters that are able to characterise an attribute are not yet known, since they are 
often implementation dependent. Nevertheless, the architectural evaluation of a 
system can either be done qualitatively or quantitatively.  



Qualitative architectural evaluation aims to provide evidence whether the 
architecture is suitable with respect to some goals and problematic towards other 
goals. In particular, the architectural evaluation of system dependability should be 
performed in terms of the system failure modes, and the combination of component 
and/or connector failures that would lead to system failure. Qualitative evaluation is 
usually based on questionnaires, checklists and scenarios to investigate the way an 
architecture addresses its dependability requirements in the presence of failures [18].  

The Architecture Tradeoff Analysis Method (ATAM) is a method for architectural 
evaluation that reveals how well an architecture satisfies particular quality goals, and 
provides insight into how those quality goals interact with each other [41]. It provides 
a way to articulate desired quality attributes and to expose the architectural decisions 
relevant to those attributes. For that, it uses questioning techniques that are based on 
scenarios, and template questions related to the architectural style being used and the 
attribute under analysis [18]. For guiding the process of architectural evaluation, a 
specialised architectural style called attribute-based architectural style (ABAS) is 
particularly useful in ATAM. Together with the style, there is an explanation on how 
quality attributes are achieved, and this explanation provides a basis for attribute-
specific questions associated with the style. An example of a domain specific ABAS 
was the definition of a specialised ABAS that facilitates the automated dependability 
analysis of software architectures [33]. 

Another example of an architectural evaluation method is Software Architecture 
Analysis Method (SAAM), which is useful to assess quality attributes, such as 
modifiability, as well as functional coverage [40]. Based on a description of the 
architecture, system stakeholders enumerate scenarios that represent known and likely 
system’s changes. In this context, a scenario is a short statement describing an 
interaction of a stakeholder with the system. As an outcome of the evaluation process, 
stakeholders gain more in-depth understanding of the architecture, and can compare 
two or more candidate architectures [18].  

Quantitative architectural evaluation aims to estimate in terms of probabilities 
whether the dependability attributes are satisfied. The two main approaches for 
probabilities estimation are modelling and testing. For the modelling approach, two 
techniques could be used: architectural simulation, and metrics extracted from the 
architectural representation. Examples of such metrics are, coupling and cohesion 
metrics for evaluating the degree of architectural flexibility for supporting change, 
and data-flow metrics for evaluating performance. However, in terms of 
dependability, most of the approaches rely on the construction of stochastic processes 
for modelling system components and their interactions, in terms of their failures and 
repairs. 

In terms of modelling approaches, instead of manipulating stochastic models at the 
architectural level, several approaches have used standardised design notations for 
representing architectures, like the Unified Modeling Language (UML) [37][46] and 
the Specification and Description Language (SDL) [33]. From these representations, 
stochastic models can be generated automatically from the attributes embedded in the 
architectural descriptions, which were created from the augmented standard notations. 
Quantitative architectural evaluation can then be performed on these stochastic 
models, which can be based on several different formalisms: Markov Chains [34], 
Stochastic Reward Nets (SRN) [33], Timed Petri Nets (TPN) [46], or state space 



models [37]. For the above approaches, it is assumed that there is complete 
knowledge of the parameters that characterise the failure behaviours of the 
components and connectors of the system, however at the architectural level the 
knowledge about the system operational profile might be partial. An alternative 
approach is to use Hidden Markov Models for coping with this imperfect knowledge 
[62]. 

A more radical approach in performance evaluation was the proposal of Æmilia, a 
performance-oriented ADL [10]. Æmilia combines a process-algebra-based ADL that 
incorporates architectural checks for deadlocks, and a stochastic process algebra that 
allows functional and performance evaluation of concurrent and distributed systems. 
In a later work, Æmilia has been combined with queuing networks for obtaining quick 
predictions when comparing the performance of different software architectures [6]. 

In terms of testing approaches for probabilities estimation, fault injection 
techniques have been proposed for evaluating the dependability of the system [51]. 
Software architecture provides the basis for planning the analysis early in the 
development process, since dependencies can be established before the source code is 
available. Relationships among components establish these dependencies based on the 
interactions through their provided and required interfaces. This can be helpful for fault 
injection because it determines the components that are worth injecting into. 

Also as part of fault forecasting is the analysis of service degradation. 
Architectural representation of systems plays a major role for measuring the 
degradation of services in the presence of multiple component faults [67]. 

In summary, if architectural decisions determine the dependability attributes of a 
system, then it should be possible to evaluate these architectural decisions in terms of 
their impact [18]. Architectural evaluation of a software system is a wise risk-
mitigation effort and is relatively inexpensive, comparing with the costs of fixing a 
system late in the development process. However, existing ADLs lack the support to 
specify quality attributes both at the component and connector level [50]. One of the 
few exceptions is MetaH [71], which allows the representation of attributes needed 
for real-time schedulability, reliability and security analysis.  

Tool Support 

Tool support exists for many ADLs, for example for C2, Rapide, xADL, and UML. 
All of them support the description of a software system in that language and some 
provide means for analysis, such as checking for deadlocks or even simulating the 
execution of the architecture. 

Unfortunately, no tool supports the analysis of a very comprehensive set of 
characteristics. They all focus on at most a few of those, and more frequently solely 
on the correctness of description with respect to the language. This means that to get 
the required coverage analysis, one needs to describe the same system in more than 
one language. 

The ACME ADL has been developed in an effort to help leverage from tool 
support offered by the various tool suites [30][64]. It is an interchange language that 
has very few elements of its own, such as components and connectors, with close to 
no attributes. It permits the addition of language specific attributes just by tagged 



fields. It attaches no semantics to the various elements/attributes and aims at 
transforming descriptions from one language into another. This transformation 
process requires human intervention on adding the attributes that are specific to the 
target language. The major drawback with ACME is its lack of semantics and the fact 
that there is no embedded support for checking the consistency among attributes that 
are specific to different languages (that is not a problem when the attributes are truly 
independent, yet that is not always the case). 

Conclusions 

The architecture of a software system is an abstraction of its structuring, and  
structuring is fundamental when developing dependable systems (see chapter 1). 
Architectural Description Languages (ADLs) provide the notation for representing 
software architectures that support effective structuring in terms of error confinement, 
coupling, cohesion and flexibility. Moreover, ADLs promote, among other properties, 
modularisation by structuring a system in terms of components, connectors and 
configurations, information hiding by restricting information access only through the 
interfaces of components and connectors, and strongly typed by using architectural 
styles.  

From the perspective of dependability, effective structuring should aim to build 
fault-free systems (fault avoidance) and systems that cope with faults (fault 
acceptance) [5]. At the architecture level, fault avoidance is achieved by describing 
the behaviour and structure of systems rigorously or formally (rigorous design), and 
by checking system correctness and the absence of faults (verification and validation). 
Fault acceptance is related to the provision of architectural redundancies that allow 
the continued delivery of service despite the presence of faults (fault tolerance), and 
the assessment whether the specified system dependability can be achieved from its 
architectural representation (system evaluation). There are no ADLs that are able to 
deal with a wide range of criteria for representing and analyze the dependability 
concerns of software systems. Architectural views or aspects might be a promising 
way forward for dealing with dependability concerns when providing the ability of a 
system to deliver the service that can be trusted, and obtaining confidence in this 
ability. 
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