In the mid-80’s Joel Birnbaum of HP Labs first talked about pervasive/utility computing. In the second half of the 90’s HP Labs began work on “e-services computing.” Anyone remember e-speak? In the late 90’s HP Labs began work on planetary scale computing. Invent a utility that allocates globally connected resources on demand, anytime, anywhere. Realize service centric computing.

Planetary scale computing

- A new computing model that allocates IT resources on demand, anywhere
 - Static or dynamic
 - Economical
 - Commodity computing
 - Self-aware with proactive control
 - Programmatically configured
 - Rather than re-cabling...
 - Federated “bricks” of server and storage
 - Federating on a planetary (geographic) scale
 - $O(10^5)$ element data centers

IT infrastructure becomes a virtual resource service
- Description, specification
- Provisioning
- Management
- Billing
- Trust

Conceptual target:
- thousands of resources per service, thousand of services per data center, thousands of data centers
Resulting challenge

- "pay as you grow" is attractive
- horizontal scaling enables it
- managing the sheer number of devices that results (>10k node data centers) is a problem
 - the largest cost in IT is data center operations and management

```
Source: Giga May 2001
```

basic idea: consumer/supplier

intelligent provisioning: effective use of physical resources
intelligent brokering: match service demand with resource capacity

```
Planetary Computing
```

Basic idea (cont.)

Layer 3 Services
- Services consist of application components on virtual resources
- Service semantics / SLAs

Layer 2 Virtual Resources
- Intelligent provisioning of virtual resources to physical service cores
- Resource planning based on QoS/power/cost/geography/administration

Layer 1 Physical Resources
- Servers, storage and switches
- Software images, licenses
- Data center resources: power, floor space, economics

```
```
Scalable commodity open source platform

- ia-64 Linux kernel design and implementation

- http://www.gelato.org

Dynamic thermal management in large scale data centers

- Power Density -
 - Microprocessor: 200 W/cm² (by 2003, today 60 W/cm²)
 - System - 300 W, thin 1U form factor 10 to 15 kW per EIA Rack footprint
 - Room - 2700 W/m² (~300 W/ft²)
- Use 3D modeling to understand thermal characteristics of data centers
- Exploit this for dynamic resource allocation

Planetary scale storage

- iShadow

- from islands of isolated data to anywhere, anytime access to data

Hippodrome: automatic storage management

- Design system to meet workload requirements
- Learn workload performance characteristics
- Configure devices & migrate data
- Analyze workload
- Implement design

- Benefit: "autonomic" storage

Dynamic thermal management in large scale data centers

Planetary scale storage

Hippodrome: automatic storage management

Self aware services

- How to manage 50,000 servers, 1 million objects?
 - centralized management, human-centered operation, polling architectures don't scale
- services monitor own health and the health of local dependents to determine the root cause of failures
 - based upon statistical measures and bayesian network reasoning

"Self-Aware Services: Using Bayesian Networks for Detecting Anomalies in Internet-based Services"; Bronstein, Alexandre; Cohen, Ira; Das, Jaydeep; Duro, Manoj; Friedrich, Richard; Kleyner, Gary; Mueller, Martin; Singhal, Sharad in Proceedings of Integrated Network Management VII (IM-2001), 14-18 May2001, Seattle, IEEE/IFIP

SmartFrog: service description and deployment

- Configuration description language
 - precise, desired configuration of applications composed of sets of components running across a distributed system
- Service deployment architecture for massive systems
 - realize application description
 - monitor and manage the resulting applications through their lifecycles

web services everywhere

- Internet
 - XML, WSDL, WSFL supporting application platforms
- mechanisms and services for business interactions
 - Biz Router, UDDI, Rater, SLA Manager
- ESP, ESP, ESP
- Enterprise
- MMO, JEE, MQS
- Internet

business verticals:
 - procurement
 - HR
 - utility computing
reusable, core service blocks:
 - services
 - proxies
 - app APIs

exactly-once transactions

Client ↔ Service ↔ Environment
(Travel Agent) (Car Broker) (AVIS/Hertz/Alamo)

Contract:
 - idempotence
 - non-blocking
 - testable
From research to reality

- HP announced the Utility Data Center (UDC) Nov 2001
- Based on HP Labs research on adaptive internet data center:
 - ability to direct resources to any application dynamically
 - self healing, policy driven.
 - Open system: Windows, Linux, HP-UX, Sun Solaris

... to create a dynamically configurable utility fabric that can be programmed per service or customer, based on SLAs and demand...

creating a service with the UDC

1. Architect new service:
 - Svc “A”
 - FW
 - LB
 - WEB
 - WEB
 - WEB
 - APP

2. Build a service template:
 - APP
 - FW
 - 1U Linux
 - 2U NT
 - Svc “A” appliance
 - HP-UX
 - LB
 - WEB
 - WEB
 - WEB
 - APP

3. Ignite the service
 - Install apps
 - Discover and apply free resources
 - Specify connectivity
 - Auto-configure network and storage
 - Auto-load OSes

conclusion

- HP focus on service-centric (utility) computing
- self-management research at all layers (for all the known reasons, but also to deal with new dynamism):
 - storage self-management
 - utility data-center resource allocation
 - self-aware services
 - service lifecycle management
 - exactly-once multi-party web service conversations
 - ...