Computing Laboratory

Safety Analysis of the Destruction System of a Sounding Rocket

Rogério de Lemos, Computing Laboratory - University of Kent at Canterbury, UK

(*) Collaboration between the University of Kent at Canterbury and the Institute of Aeronautics and Space, in Brazil. Sponsored by British Council and CAPES/Brazil.

Sounding Rocket VS-40X

- The VS-40X is a two stages sounding rocket used for performing scientific experiments, and testing new equipment for the Brazilian Satellite Launcher (VLS).
- The self-destruction system automatically destroys the rocket when its trajectory violates a pre-defined flight envelope.

Use case DestructionSystem

Use case SelfDestruction

Co-operative Architectural Style

- Captures the collaborative behaviour between architectural components:
 - · Components perform local computation (classes);
 - · class diagrams describe the relationships between components.
- Connectors encapsulate collaborative activity between the several components (CO actions);
- CO action diagrams describe the relationships between connectors.

Class Diagram for the Destruction System

CO Action Diagram for the SelfDestruction

Validation of the Architectural Representation of SelfDestruction Using Model Checking

Operational model

Property model

Diversity in the Safety Arguments

- · Fault trees analysis is employed for identifying component faults that could lead to the violation of either the safety or failure in SelfDestruction mission properties:
- · component failures in fault tree analysis are captured in the extended timed automata representation.

Fault Tree Analysis of SelfDestruction

For further information

Contact Rogério de Lemos (r.delemos@ukc.ac.uk), or visit website http://www.cs.ukc.ac.uk/people/staff/rdl/

UNIVERSITY OF KENT AT CANTERBURY