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Motivation

Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

Unfortunately, memory is not the only resource.

Operating system resources: Files, sockets, ...
Window system resources: Fonts, colors, ...
Application specific resources: Listeners, model view control
pattern, ...
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public class SomeView {
private SomeListener l;
private WorkbenchWindow w;

public void createPartControl(Composite parent) {
l = new Listener(this);
w.addPerspectiveListener(l);

}

public void dispose(){
w.removePerspectiveListener(l);

}
}
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If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.



The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.



The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.



The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point
And therefore almost never used in practice



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point
And therefore almost never used in practice



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called

Asynchronous with respect to last use point
And therefore almost never used in practice



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point

And therefore almost never used in practice



The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point
And therefore almost never used in practice



The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?
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reachability, we approximate last relevant use by interest
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Works even if disposing the resource has visible side effect
(e.g, disposal removes button from a window).
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becomes unreachable through interest links.
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Problem: Resource Sharing

A Font object is shared between two Window objects and should be
disposed when last window is closed by the user:

font

window1 window2
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CLOSER infers:

the set of higher-level resources

and later automatically synthesizes dispose methods.

CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

CLOSER automatically inserts any appropriate resource dispose calls
into source code.
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To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple 〈V,E, σV , σE〉 where:

V is a finite set of abstract memory locations

E is a set of directed edges between these locations

σV is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

σE is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge
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Example RIG

public class BufferPrinter {
. . .
public BufferPrinter(Buffer buf) {

this.buf = buf;
this.listener =

new BufferListener(this);
buf.addListener(listener);
this.socket = new Socket();
socket.connect();

}
}

A

DB C
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socket
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buf

σv(A) =?

1

σv(B) = 1

1

σv(C) = 1

1

σv(D) =?

1

σE (e) = 1

1

σE (e) = 0

1
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Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf ) w 1

σE(lT × f → lf ) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.
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Higher-Level Resource Example
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Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.
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Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.
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Inference of Solicitors

To compute a solicitor candidate for resource r:

CLOSER first computes a set of paths
P = 〈l, f1 ◦ . . . ◦ fn,May/Must〉 that reach r

It then applies a set of unification rules to determine the existence
of a canonical path l.f1...fn that may safely be used to dispose r

If such a unique path exists, then l.f1...fn is designated as a
solicitor candidate for r

If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of l
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Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()
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Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code

Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM
A Manager class keeps dynamic interest counts
The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER
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Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

∼ 7500 lines of code

Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code
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Case Study, Continued

Original Instrumented

# Resources 67 67
# Strong Static Dispose 116 117
# Weak Static Dispose 14 63
# Dynamic Dispose 0 0
# Number of Resource Bugs 1 0
# Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%
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User annotates only 5 resources.

CLOSER infers all the remaining 62 resources.
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Original Instrumented

# Resources 67 67
# Strong Static Dispose 116 117
# Weak Static Dispose 14 63
# Dynamic Dispose 0 0
# Number of Resource Bugs 1 0
# Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

Missing dispose call in the original code was a resource leak.

Programmer forgot to dispose a Transpose (resource in SWT).
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Case Study, Continued

Original Instrumented

# Resources 67 67
# Strong Static Dispose 116 117
# Weak Static Dispose 14 63
# Dynamic Dispose 0 0
# Number of Resource Bugs 1 0
# Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

More weak dispose calls because CLOSER is path-insensitive.

Inserts redundant null-checks even though one already exists.
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Case Study, Continued

private void paint() {
if(image == null) {

if(image!=null){
image.dispose();

}
image = new Image(...);

}
}
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Case Study, Continued

Original Instrumented

# Resources 67 67
# Strong Static Dispose 116 117
# Weak Static Dispose 14 63
# Dynamic Dispose 0 0
# Number of Resource Bugs 1 0
# Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

No shared resources in the application.

CLOSER successfully identified all resources as unshared.
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Case Study, Continued

Original Instrumented

# Resources 67 67
# Strong Static Dispose 116 117
# Weak Static Dispose 14 63
# Dynamic Dispose 0 0
# Number of Resource Bugs 1 0
# Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

CLOSER doesn’t cause code bloat or substantial runtime overhead.

And it is correct by construction.
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