
The CLOSER: Automating Resource Management in Java

The CLOSER: Automating Resource
Management in Java

Isil Dillig Thomas Dillig
Computer Science Department

Stanford University

Eran Yahav Satish Chandra
IBM T.J. Watson Research Center

ISMM 2008

The CLOSER: Automating Resource Management in Java

Motivation

Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

Unfortunately, memory is not the only resource.

Operating system resources: Files, sockets, ...

The CLOSER: Automating Resource Management in Java

Motivation

Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

Unfortunately, memory is not the only resource.

Operating system resources: Files, sockets, ...

The CLOSER: Automating Resource Management in Java

Motivation

Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

Unfortunately, memory is not the only resource.

Operating system resources: Files, sockets, ...

The CLOSER: Automating Resource Management in Java

Motivation

Operating System Resources

public void transferData()
{

Socket s = new Socket();
s.connect(. . .);
. . .
s.close();

}

The CLOSER: Automating Resource Management in Java

Motivation

Operating System Resources

public void transferData()
{

Socket s = new Socket();
s.connect(. . .);
. . .
s.close();

}

The CLOSER: Automating Resource Management in Java

Motivation

Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

Unfortunately, memory is not the only resource.

Operating system resources: Files, sockets, ...
Window system resources: Fonts, colors, ...

The CLOSER: Automating Resource Management in Java

Motivation

Window System Resources

public void draw()
{

Font f = new Font();
. . .
f.dispose();

}

The CLOSER: Automating Resource Management in Java

Motivation

Window System Resources

public void draw()
{

Font f = new Font();
. . .
f.dispose();

}

The CLOSER: Automating Resource Management in Java

Motivation

Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

Unfortunately, memory is not the only resource.

Operating system resources: Files, sockets, ...
Window system resources: Fonts, colors, ...
Application specific resources: Listeners, model view control
pattern, ...

The CLOSER: Automating Resource Management in Java

Motivation

Application Specific Resources

public class SomeView {
private SomeListener l;
private WorkbenchWindow w;

public void createPartControl(Composite parent) {
l = new Listener(this);
w.addPerspectiveListener(l);

}

public void dispose(){
w.removePerspectiveListener(l);

}
}

The CLOSER: Automating Resource Management in Java

Motivation

Application Specific Resources

public class SomeView {
private SomeListener l;
private WorkbenchWindow w;

public void createPartControl(Composite parent) {
l = new Listener(this);
w.addPerspectiveListener(l);

}

public void dispose(){
w.removePerspectiveListener(l);

}
}

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource r is an instance of any type whose specification has the following
requirement:

If a method m is called with r as the receiver or parameter

Then a matching method m′ must be called after the last use of r.

We call m the obligating method and m′ the fulfilling method.

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point
And therefore almost never used in practice

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point
And therefore almost never used in practice

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called

Asynchronous with respect to last use point
And therefore almost never used in practice

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point

And therefore almost never used in practice

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

Manual Resource Management

Same drawbacks as manual memory management: leaks,
double disposes, ...

Finalization

In current JVM implementations, program might run out of
non-memory resources before finalizers are called
Asynchronous with respect to last use point
And therefore almost never used in practice

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

Dispose resource after its last use (read or write).

The CLOSER: Automating Resource Management in Java

Is This Really ”Ideal Resource Management”?

Observer Listener Observed

The CLOSER: Automating Resource Management in Java

Is This Really ”Ideal Resource Management”?

Observer Listener Observed

The CLOSER: Automating Resource Management in Java

Is This Really ”Ideal Resource Management”?

Listener Observed

listener.notify()

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

Dispose resource after its last relevant use.

Unfortunately, determining last use is impossible to do
dynamically and difficult to approximate statically, especially in
the case of open programs.

Solution: Just as last use is approximated by traditional notion of
reachability, we approximate last relevant use by interest
reachability.

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

Dispose resource after its last relevant use.

Unfortunately, determining last use is impossible to do
dynamically and difficult to approximate statically, especially in
the case of open programs.

Solution: Just as last use is approximated by traditional notion of
reachability, we approximate last relevant use by interest
reachability.

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

Dispose resource after its last relevant use.

Unfortunately, determining last use is impossible to do
dynamically and difficult to approximate statically, especially in
the case of open programs.

Solution: Just as last use is approximated by traditional notion of
reachability, we approximate last relevant use by interest
reachability.

The CLOSER: Automating Resource Management in Java

Interest Reachability

Differentiate between interest and non-interest links.

If A references B through a non-interest link, then the relevant
behavior of A does not depend on the existence of B.

Non-interest links must be annotated by the programmer since
”relevant” behavior defines application semantics.

The CLOSER: Automating Resource Management in Java

Interest Reachability

Differentiate between interest and non-interest links.

If A references B through a non-interest link, then the relevant
behavior of A does not depend on the existence of B.

Non-interest links must be annotated by the programmer since
”relevant” behavior defines application semantics.

The CLOSER: Automating Resource Management in Java

Interest Reachability

Differentiate between interest and non-interest links.

If A references B through a non-interest link, then the relevant
behavior of A does not depend on the existence of B.

Non-interest links must be annotated by the programmer since
”relevant” behavior defines application semantics.

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

Advantages:

Resource drag is much shorter compared to asynchronous
approaches.

Works even if disposing the resource has visible side effect
(e.g, disposal removes button from a window).

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

Advantages:

Resource drag is much shorter compared to asynchronous
approaches.

Works even if disposing the resource has visible side effect
(e.g, disposal removes button from a window).

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

Advantages:

Resource drag is much shorter compared to asynchronous
approaches.

Works even if disposing the resource has visible side effect
(e.g, disposal removes button from a window).

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

Advantages:

Resource drag is much shorter compared to asynchronous
approaches.

Works even if disposing the resource has visible side effect
(e.g, disposal removes button from a window).

The CLOSER: Automating Resource Management in Java

Interest Reachability

Observer Listener Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

Observer Listener Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

Listener Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

Listener Observed

o.removeListener(l)

The CLOSER: Automating Resource Management in Java

Interest Reachability

Listener Observed

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

Recall:

We want to guarantee that a resource is disposed as soon as it
becomes unreachable through interest links.

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

To achieve this goal:

Whenever possible, statically identify the first program point where
resource becomes unreachable through interest links

When this is not possible, identify the correct dispose point using a
variation of reference counting.

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

To achieve this goal:

Whenever possible, statically identify the first program point where
resource becomes unreachable through interest links

When this is not possible, identify the correct dispose point using a
variation of reference counting.

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

To achieve this goal:

Whenever possible, statically identify the first program point where
resource becomes unreachable through interest links

When this is not possible, identify the correct dispose point using a
variation of reference counting.

The CLOSER: Automating Resource Management in Java

Problem: Resource Sharing

A Font object is shared between two Window objects and should be
disposed when last window is closed by the user:

font

window1 window2

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

The user annotates:

the set of primitive resources

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {

private Listener l;

@Obligation(obligates = ‘‘removePerspectiveListener’’,
resource=1)

public void addPerspectiveListener(Listener l);
. . .

}

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {

private Listener l;

@Obligation(obligates = ‘‘removePerspectiveListener’’,
resource=1)

public void addPerspectiveListener(Listener l);
. . .

}

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {

private Listener l;

@Obligation(obligates = ‘‘removePerspectiveListener’’,
resource=1)

public void addPerspectiveListener(Listener l);
. . .

}

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

The user annotates:

the set of primitive resources
the set of non-interest-links

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {

@NonInterest
private Listener l;

@Obligation(obligates = ‘‘removePerspectiveListener’’,
resource=1)

public void addPerspectiveListener(Listener l);
. . .

}

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

The user annotates:

the set of primitive resources
the set of non-interest-links

CLOSER infers:

the set of higher-level resources

and later automatically synthesizes dispose methods.

CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

CLOSER automatically inserts any appropriate resource dispose calls
into source code.

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

The user annotates:

the set of primitive resources
the set of non-interest-links

CLOSER infers:

the set of higher-level resources
and later automatically synthesizes dispose methods.

CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

CLOSER automatically inserts any appropriate resource dispose calls
into source code.

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

The user annotates:

the set of primitive resources
the set of non-interest-links

CLOSER infers:

the set of higher-level resources
and later automatically synthesizes dispose methods.

CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

CLOSER automatically inserts any appropriate resource dispose calls
into source code.

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

The user annotates:

the set of primitive resources
the set of non-interest-links

CLOSER infers:

the set of higher-level resources
and later automatically synthesizes dispose methods.

CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

CLOSER automatically inserts any appropriate resource dispose calls
into source code.

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple 〈V,E, σV , σE〉 where:

V is a finite set of abstract memory locations

E is a set of directed edges between these locations

σV is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

σE is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple 〈V,E, σV , σE〉 where:

V is a finite set of abstract memory locations

E is a set of directed edges between these locations

σV is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

σE is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple 〈V,E, σV , σE〉 where:

V is a finite set of abstract memory locations

E is a set of directed edges between these locations

σV is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

σE is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple 〈V,E, σV , σE〉 where:

V is a finite set of abstract memory locations

E is a set of directed edges between these locations

σV is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

σE is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple 〈V,E, σV , σE〉 where:

V is a finite set of abstract memory locations

E is a set of directed edges between these locations

σV is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

σE is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge

The CLOSER: Automating Resource Management in Java

Example RIG

public class BufferPrinter {
. . .
public BufferPrinter(Buffer buf) {

this.buf = buf;
this.listener =

new BufferListener(this);
buf.addListener(listener);
this.socket = new Socket();
socket.connect();

}
}

A

DB C

this

socket

listener

buf

σv(A) =?

1

σv(B) = 1

1

σv(C) = 1

1

σv(D) =?

1

σE (e) = 1

1

σE (e) = 0

1

The CLOSER: Automating Resource Management in Java

Example RIG

public class BufferPrinter {
. . .
public BufferPrinter(Buffer buf) {

this.buf = buf;
this.listener =

new BufferListener(this);
buf.addListener(listener);
this.socket = new Socket();
socket.connect();

}
}

A

DB C

this

socket

listener

buf

σv(A) =?

1

σv(B) = 1

1

σv(C) = 1

1

σv(D) =?

1

σE (e) = 1

1

σE (e) = 0

1

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class T is a higher-level resource if:

there exists a field lf of some instance of T

such that σV (lf) w 1

σE(lT × f → lf) = true

If T is inferred to be a higher-level resource,

T ’s constructor becomes an obligating method

and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource Example

A

DB C

this

socket

listener

buf

σv(B) = 1

1

σv(C) = 1

1

σE (e) = 1

1

σE (e) = 0

1

σv(A) = 1

1

σv(D) = 0

1

The CLOSER: Automating Resource Management in Java

Higher-Level Resource Example

A

DB C

this

socket

listener

buf

σv(B) = 1

1

σv(C) = 1

1

σE (e) = 1

1

σE (e) = 0

1

σv(A) = 1

1

σv(D) = 0

1

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

Strong static dispose

Dispose resource directly by calling fulfilling method
No checks necessary

Weak (conditional) static dispose

Checks whether the resource’s obligating method was called
before disposing it.

Dynamic dispose

Requires keeping a run-time “interest-count”
Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Solicitors

CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

If o is a solicitor for resource r, it has the unique responsibility to
dispose r.

CLOSER infers a solicitor by:

First computing a set of solicitor candidates from the
resource interest graph for each point in the program

Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

CLOSER first computes a set of paths
P = 〈l, f1 ◦ . . . ◦ fn,May/Must〉 that reach r

It then applies a set of unification rules to determine the existence
of a canonical path l.f1...fn that may safely be used to dispose r

If such a unique path exists, then l.f1...fn is designated as a
solicitor candidate for r

If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of l

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

CLOSER first computes a set of paths
P = 〈l, f1 ◦ . . . ◦ fn,May/Must〉 that reach r

It then applies a set of unification rules to determine the existence
of a canonical path l.f1...fn that may safely be used to dispose r

If such a unique path exists, then l.f1...fn is designated as a
solicitor candidate for r

If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of l

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

CLOSER first computes a set of paths
P = 〈l, f1 ◦ . . . ◦ fn,May/Must〉 that reach r

It then applies a set of unification rules to determine the existence
of a canonical path l.f1...fn that may safely be used to dispose r

If such a unique path exists, then l.f1...fn is designated as a
solicitor candidate for r

If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of l

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

CLOSER first computes a set of paths
P = 〈l, f1 ◦ . . . ◦ fn,May/Must〉 that reach r

It then applies a set of unification rules to determine the existence
of a canonical path l.f1...fn that may safely be used to dispose r

If such a unique path exists, then l.f1...fn is designated as a
solicitor candidate for r

If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of l

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

CLOSER first computes a set of paths
P = 〈l, f1 ◦ . . . ◦ fn,May/Must〉 that reach r

It then applies a set of unification rules to determine the existence
of a canonical path l.f1...fn that may safely be used to dispose r

If such a unique path exists, then l.f1...fn is designated as a
solicitor candidate for r

If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of l

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

button button

image image

pic

R

B Inferred solicitor for R:

toolBar.button

B Image disposed via call chain:

toolBar.dispose()

↓
button.dispose()

↓
image.dispose()

The CLOSER: Automating Resource Management in Java

Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code

Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM
A Manager class keeps dynamic interest counts
The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code
Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM
A Manager class keeps dynamic interest counts
The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code
Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM

A Manager class keeps dynamic interest counts
The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code
Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM
A Manager class keeps dynamic interest counts

The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code
Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM
A Manager class keeps dynamic interest counts
The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Implementation

Static Analysis:

Builds on IBM WALA framework for analysis of Java byte code
Source code transformation utilizes Eclipse JDT toolkit

Dynamic Instrumentation:

Does not rely on modifying the JVM
A Manager class keeps dynamic interest counts
The modified source code calls static methods of the Manager

CLOSER appears transparent to the programmer

The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

∼ 7500 lines of code

Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

∼ 7500 lines of code

Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

∼ 7500 lines of code

Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

∼ 7500 lines of code

Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

∼ 7500 lines of code

Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

User annotates only 5 resources.

CLOSER infers all the remaining 62 resources.

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

Missing dispose call in the original code was a resource leak.

Programmer forgot to dispose a Transpose (resource in SWT).

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

More weak dispose calls because CLOSER is path-insensitive.

Inserts redundant null-checks even though one already exists.

The CLOSER: Automating Resource Management in Java

Case Study, Continued

private void paint() {
if(image == null) {

if(image!=null){
image.dispose();

}
image = new Image(...);

}
}

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

No shared resources in the application.

CLOSER successfully identified all resources as unshared.

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original Instrumented

Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code

316 356

Resource Mgmt Code
to Application Size Ratio

4.2% 4.9%

CLOSER doesn’t cause code bloat or substantial runtime overhead.

And it is correct by construction.

The CLOSER: Automating Resource Management in Java

Related Work

DeLine, R., and Fahndrich, M.
Enforcing high-level protocols in low-level software.
In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation (New York, NY, USA, 2001), ACM Press,
pp. 59–69.

Guyer, S., McKinley, K., and Frampton, D.
Free-Me: a static analysis for automatic individual object reclamation.
Proceedings of the 2006 ACM SIGPLAN conference on Programming language design
and implementation (2006), 364–375.

Heine, D. L., and Lam, M. S.
A practical flow-sensitive and context-sensitive c and c++ memory leak detector.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (New York, NY, USA, 2003), ACM, pp. 168–181.

Blanchet, B.

Escape analysis for object oriented languages. application to Javatm.
In OOPSLA (Denver, 1998).

Boehm, H.
Destructors, finalizers, and synchronization.
ACM SIGPLAN Notices 38, 1 (2003), 262–272.

