Parametric Prediction of Heap Memory Requirements

Víctor Braberman, Federico Fernandez, Diego Garbervetsky, Sergio Yovine*

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA) (*) VERIMAG, France. Currently visiting UBA.

Motivation

- Context: Java like languages
 - Object orientation
 - Automatic memory management (GC)
- Predicting amount of memory allocations is very hard
 - Problem undecidable in general
 - Impossible to find an exact expression of dynamic memory requested, even knowing method parameters
- Predicting actual memory requirements <u>is harder</u>
 - Memory is recycled
 - Unused objects are collected
 - ⇒ memory required <= memory requested/allocated</p>

Example

How much memory is required to run mo?

```
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){
4: A a = new A();
   B[] dummyArr= m2(i);
5:
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8:
  arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];
   return arrB;
}
```


Our goal

- An expression over-approximating the peak amount of memory consumed using an ideal memory manager
 - Parametric
 - Easy to evaluate
 - E.g.:Required(m)(p1,p2) = 2p² + p1
 - Evaluation cost known "a priori"

Given a method m (p₁, ..., p_n)
peak (m): an expression in terms of p₁, ..., p_n for the max amount of memory consumed by m

Context

Previous work

- A general technique to find non-linear parametric upper- bounds of dynamic memory allocations
 - totAlloc(m) computes an expression in terms of m parameters for the amount of dynamic memory requested by any run starting at m
 - Relies on programs invariants to approximate number of visits of allocating statements
- Using a scope-based region management...
 - An application of that technique to approximate region sizes

Computing dymamic memory allocations

Basic idea: counting visits to memory allocating statements.

- Dynamic Memory allocations \cong number of <u>visits</u> to new statements
- \circ \cong number of <u>possible variable assignments</u> at its control location
- \cong <u>number of integer solutions</u> of a predicate constraining variable assignments at its control location (i.e. an <u>invariant</u>)

For linear invariants, # of integer solutions = # of integer points = Ehrhart polynomial size(B) * (1/2k2+1/2k)

Memory requested by a method

 How much memory (in terms of mo parameters) is <u>requested/allocated</u> by mo

totAlloc(mo)(mc) =
$$\sum_{cs \in CS_m0} S(m0, cs)$$

=(size(B[])+size(B)+size(C))(1/2 mc²+5/2 mc)
+size(A) mc

Problem

- Memory is released by a garbage collector
 - Very difficult to predict when, where, and how many object are collected

Our approach: Approximate GC using a scope-based region memory manager

Region-based memory management

Memory organized using m-regions

```
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
void m1(int k) {
3: for (int i = 1; i <= k; i++){
4: A a = new A();
5: B[] dummyArr= m2(i);
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: \operatorname{arrB}[j-1] = \operatorname{new} B();
9: C c = new C();
10: c.value = arrB[j-1];
11: return arrB;
}
```


Region-based memory management

Memory organized using m-regions

Region-based memory management

Escape Analysis

```
void mO(int mc) {
  m1(mc);
  B[] m2Arr=m2(2 * mc)
}
void m1(int k) {
  for (int i = 1; i <= k; N_+){
  A a = new A();
4:
  B[] dummyArr= m2(i);
5:
}
B[] m2(int n) {
  B[] arrB = new B[n];
6:
   for (int j = 1; j <= n;
                          j++) {
7:
  arrB[j-1] = new B()
8:
9: C c = new C();
10: c.value = arrB[j-1];
   return arrB;
}
```

- Escape(m): objects that live beyond m
 - Escape(mo) = {}
 - Escape(m1) = {}
 - Escape(m2) = {m2.6, m2.8}
- Capture(m): objects that do not live more that m
 - Capture(mo) = {mo.2.m2.6, mo.2.m2.8},
 - Capture(m1) = {m1.4, m0.1.m1.5.m2.6, m0.1.m1.5.m2.8},
 - Capture(m2) = {m2.9}
- Region(m) \cong Capture(m)

Obtaining region sizes

• Region(m) \cong Capture(m)

- memCap (m) : an expression in terms of p₁, ..., p_n for the amount of memory required for the region associated with m
- memCap(m) is totAlloc(m) applied only to captured allocations
- memCap(m0) = (size(B[]) + size(B)).2mc
- memCap(m1) = (size(B[]) + size(B)).(1/2 k² +1/2k) + size(A).k
- memCap(m2) = size(C).n

Approximating peak consumption

Approach:

- Over approximate an ideal memory manager using an scoped-based memory regions
 - m-regions: one region per method

When & Where:

- created at the beginning of method
- destroyed at the end
- How much memory is allocated/deallocated in each region:
 - memCap (m) >= actual region size of m for any call context

• How much memory is allocated in outer regions :

 memEsc(m) >= actual memory that is allocated in callers regions

Approximating peak consumption

- Peak(m) = Peak \uparrow (m) + Peak \downarrow (m)
 - peak¹(m): peak consumption for objects allocated in regions created when m is executed
 - peak↓(m): consumption for objects allocated in regions that already exist before m is executed

Our technique:

- mem ↑(m) >= Peak ↑(m)
 - Approximation of peak memory allocated in newly created regions

• mem \downarrow (m) >= Peak \downarrow (m)

 Approximation of memory allocated in preexistent regions (memEsc(m))

Approximating Peak^(m)

Region's stack evolution

Some region configurations can not happen at the same time

Approximating Peak^(m)

Region sizes may vary according to method calling context

Approximating Peak^(m)

We consider the largest region for the same calling context

mem↑(mo)

Approximating Peak⁽m)

3. Maximizing instantiated regions

Solving maxrsize

- Solution: use an approach based on Bernstein basis over polyhedral domains (Clauss et al. 2004)
 - Enables bounding a polynomial over a parametric domain given as a set of linear restraints
 - Obtains a parametric solution
- Bernstein(pol, l):
 - Input: a polynomial *pol* and a set of linear (parametric) constrains *l*
 - Return a set of polynomials (candidates)
 - Bound the maximum value of *pol* in the domain given by *l*

Solving maxrsize using bernstein

Example:

Input Polynomial

- Restriction: A parametric domain (linear restraint)
 - D(P1,P2) = {(i, n) |1 ≤i≤P1 +P2, i ≤ 3P2, n=i}

```
    Bernstein(Q, D) =
    D1 = {P1≤2P2} C1: {(P1+P2)<sup>2</sup>-1,P2+P1 }
    D2 = {2P2≤P1} C2: {9P2<sup>2</sup>-1}
```

- Partial solution to our problem
 - We still need to determine symbolically maximum between polynomials
 - In the worst case we can leave it for run-time evaluation (cost known "a priori")
 - A comparison when actual parameters are available

maxrsize

where {Ci, Di} = Bernstein(rsize(m_k), $I_{\pi.mk}$, P_{mo})

- Maxrsize(mo,mo)(mc) = (size(B[]) + size(B)).2mc
- Maxrsize(mo.1.m1,mo)(mc) =
 (size(B[]) + size(B)).(1/2 mc² +1/2mc) + size(A).mc
- Maxrsize(mo.1.m1.5.m2,mo)(mc) = size(C).mc
- Maxrsize(mo.21m2,mo)(mc) = size(C).2mc

Evaluating mem[↑]

- basically a sum maximized regions
- A comparison of the results of the sum

Evaluating mem[↑]

Manupilating evaluation trees

Considering size(T) = 1 for all T

Dynamic memory required to run a method

Computing memReq

Memreq_{mo}(mc) = mc² +7mc

The tool-suite

Peak memory computation component

Experimentation (#objects) • Jolden: totAlloc vs Peak vs region based code

- MST, Em3d completely automatic
- For the rest we need to provide some region sizes manually
- MST, Em₃d, Bisort, TSP: peak close to totAlloc (few regions, long lived objects)

•Power, health, BH, Perimeter: peak << totAlloc

Experiments (#objects)

App	mem↑ _{main} + mem↓ _{main}	No GC	#Regs	Param.	#Objs	Estimation	Err%	Time (secs)		
								TR	TM	TB
MST -v nv				10	253	269	7%	16.03	26.04	0.03
	$\frac{9}{4}nv^2 + 3nv + 5 + \max\{nv - 1, 2\}$	$\frac{9}{4}nv^2 + 4nv + 6$	3	100	22703	22904	1%			
	-	-		1000	2252003	2254004	0%			
Em3d				(10,5)	344	354	3%	17.34	30.37	0.05
-n <i>n</i> -d <i>d</i>	$6n.d + 2n + 14 + \max\{6, 2n\}$	6n.d + 4n + 20	3	(100,7)	4604	4614	0%			
				(1000,8)	52004	52014	0%			
BiSort				10	12	14	17%	17.55	3.21	0.03
-s <i>s</i> -p-m	s + 4	2s + 5	4	64	68	70	3%			
				128	132	134	3%			
TSP				10	31	34	10%	14.37	4.17	0.08
-c <i>c</i> -p-m	$2x + 2$ (where $x = 2^{(\lfloor \log_2 c \rfloor) + 1}$)	4x + 2	5	31	63	66	5%			
				63	127	130	2%			
Power-p-m	32424	1552434	3	-	32421	32424	0%	20.72	5.82	0.02
Health	$\frac{1}{2}$	2		(4,1)	1595	1538	4%	27.55	-	0.10
-1 -t	$\frac{-(21+51x+5(x-1)t)}{9}$	$\frac{2}{-}(8(x-1)+(5x-2)t)$	6	(5,3)	7510	7080	6%			
	(where $x = 4^l$)	3		(6,4)	34588	32791	5%			
TreeAdd				8	262	259	1%	15.32	-	0.00
-1 <i>l</i> -p-m	$x + 6$ (where $x = 2^{l}$)	x + 8	2	10	1030	1027	0%			
				12	4102	4099	0%			
BH		$25a m h^2 + m h(17)$		10	2385	3797	59%	25.49	-	0.08
-b <i>nb</i> -s <i>s</i>	$13nb^2 + 246nb + 37$	$238.00 \pm 10(17 \pm 27)$	14	50	11657	44837	285%			
		(4s) + 11s + 37		100	156637	23315	563%			
Perimeter				13	158042	262155	66%	18.78	-	0.00
-1 <i>l</i> -p-m	$x + 11$ (where $x = 4^{(l-4)}$)	x + 11	2	14	224090	1048587	367%			
				17	6305002	67108875	964%			
Voronoi	∞	∞	5					27.76	-	-

Related work

Author	Year	Language	Expressions	Memory Manager	Benchmarks
Hofmann & Jost	2003	Functional	Linear	Explicit	No
Lui & Unnikrishnan	2003	Functional	Recursive functions	Ref. Counting	Add-hoc (Lists)
Chin et al	2005	Java like	Linear (Pressburger): Checking	Explicit	Jolden
Chin et al NEXT PRESENTATION!	2008	Bytecode	Linear: Inference	Explicit	SciMark, MyBench
Albert et al (2)	2007	Bytecode	Recurrence equations	No && Esc Analysis	No

Conclusions

- A technique for computing parametric (easy to evaluate) specifications of heap memory requirements
 - Consider memory reclaiming
 - Use memory regions to approximate GC
 - A model of peak memory under a scoped-based region memory manager
 - An application of Bernstein to solve a non-linear maximization problem
 - A tool that integrates this technique in tool suite
- Precision relies on several factors:
 - invariants, region sizes, program structure, Bernstein

Conclusions

Future work

- Restrictions on the input
 - Better support for recursion
 - More complex data structures
 - Other memory management mechanisms
- Usability / Scalability
 - Integration with other tools/ techniques
 - JML / Spec# (checking+inferring)
 - Type Systems (Chin et al.)
 - Modularity
 - Improve precision