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 Context: Java like languages
 Object orientation

 Automatic memory management  (GC)

 Predicting amount of memory allocations is very hard
 Problem undecidable in general

▪ Impossible to find an exact expression of dynamic memory requested, 
even knowing method parameters

 Predicting actual memory requirements is harder
 Memory is recycled

▪ Unused objects are collected 

▪ memory required <= memory requested/allocated
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How much memory is required to run m0?
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void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){ 
4: A a = new A();
5: B[] dummyArr= m2(i);

}
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];

}
11: return arrB;
}

m0(2)

m0(7)
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ret m1

ret m1



 An expression over-approximating  the peak 
amount of memory consumed using an ideal 
memory manager 
 Parametric
 Easy to evaluate 
 E. g. :Required(m)(p1,p2) = 2p2 + p1 

 Evaluation cost known “a priori”
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Given a  method m(p1,..,pn)
 peak(m): an expression in terms of p1,…,pn

for the max amount of memory consumed by m



 Previous work

 A general technique to find non-linear parametric 
upper- bounds of dynamic memory allocations

▪ totAlloc(m) computes an expression in terms of m
parameters for the amount of dynamic memory requested 
by any run starting at m

▪ Relies on programs invariants to approximate number of 
visits of allocating statements

 Using a scope-based region management…

▪ An application  of that technique to approximate region 
sizes
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For linear invariants, # of integer solutions = # of integer 
points = Ehrhart polynomial size(B) * ( ½k2+½k)

 {0≤ i < n, 0≤j<i}: a set of constraints 
describing a iteration space

for(i=0;i<n;i++) 

for(j=0;j<i;j++) 

• new C()

o Dynamic Memory allocations  number of visits to new statements

o  number of possible variable assignments at its control location

o  number of integer solutions of a predicate constraining variable 
assignments at its control location (i.e. an invariant)

i

j

Basic idea: counting visits to memory allocating statements.
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 How much memory (in terms of m0 
parameters)  is requested/allocated by m0
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
  CS_m0  cs

cs) S(m0,totAlloc(m0)(mc) = 

= (size(B[])+size(B)+ size(C))(1/2 mc2 +5/2 mc) 
+size(A)mc



 Memory is released by a garbage collector

 Very difficult to predict when, where, and how
many object are collected 

 Our approach: Approximate GC using a 
scope-based region memory manager
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Memory organized using m-regions
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){ 
4: A a = new A();
5: B[] dummyArr= m2(i);

}
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];

}
11: return arrB;
}
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Memory organized using m-regions
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 Escape(m): objects that live 
beyond m
 Escape(mo) = {}
 Escape(m1) = {}
 Escape(m2) = {m2.6, m2.8}

 Capture(m): objects that do 
not live more that m
 Capture(mo) = {m0.2.m2.6, 

m0.2.m2.8},
 Capture(m1) = {m1.4, 

m0.1.m1.5.m2.6, 
m0.1.m1.5.m2.8}, 

 Capture(m2) = {m2.9}
 Region(m)  Capture(m)

Escape Analysis
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){ 
4: A a = new A();
5: B[] dummyArr= m2(i);

}
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];

}
11: return arrB;
}
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 Region(m)  Capture(m)

 memCap(m): an expression in terms of p1,…,pn
for the amount of memory required for the region 
associated with m

 memCap(m)is totAlloc(m)applied only to 
captured allocations
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• memCap(m0) = (size(B[]) + size(B)).2mc

• memCap(m1) = (size(B[]) + size(B)).(1/2 k2 +1/2k) +size(A).k

• memCap(m2)=  size(C).n



Approach:

 Over approximate an ideal  memory manager using 
an scoped-based memory regions
 m-regions: one region per method

 When & Where: 
▪ created at the beginning of method 
▪ destroyed at the end

 How much memory is allocated/deallocated in 
each region:

▪ memCap(m) >=  actual region size of m for any call context

 How much memory is allocated in outer regions : 
▪ memEsc(m) >=  actual memory that is allocated in callers 

regions
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 Peak(m) = Peak(m)  + Peak(m)
 peak(m): peak consumption for objects 

allocated in regions created when m is executed
 peak(m): consumption for objects allocated in 

regions that already exist before m is executed

Our technique:

 mem (m)  >= Peak (m)  
 Approximation of peak memory allocated in 

newly created regions

 mem(m)  >= Peak(m) 
 Approximation of memory allocated in 

preexistent regions (memEsc(m))

Pre existent 
regions

m region

m callees’ regions
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 Some region configurations can not happen at the same time

Region’s stack evolution
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peak(0, m0)  = max  size(rk()) 



Region sizes may vary according to method calling context

m0.1.m1.5.m2

rsize(m2) = n (assume size(C)=1)

{ k= mc, 1i k, n = i}

{ k= mc = n} maximizes

maxrsize(m0.1.m1.5.m2,m0) = mc
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In terms of m0
parameters!



We consider the largest region for the same calling context

maxrm0 maxrm0

maxrm1

maxrm0

maxrm1
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maxrm2

)(
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
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peak(m0) 
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= mem(m0) 

m0.1.m1.5.m2
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 m-region expressed in terms of m parameters
 rsize(m2)(m0) =   n

 Maximum according to calling context and in terms 
of MUA parameters
 maxrsize(m0.1.m1.5.m2,m0) (mc) = mc
 maxrsize(m0.2.m2,m0)(mc) = 2mc

3. Maximizing instantiated regions

maxrsize(.m,m0)(Pm0) 
= Maximize rsize(m) subject to I(Pm0 ,Pm,W)

• We cannot solve a non-linear maximization 
problem in runtime!!
• Too expensive
• Execution time difficult to predict

• We need a parametric solution that can be 
solved at compile time.
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 Solution: use  an approach based on Bernstein 
basis over polyhedral domains  (Clauss et al. 
2004)
 Enables bounding a polynomial over a parametric 

domain given as a set of linear restraints

 Obtains a parametric solution
 Bernstein(pol, I): 
 Input: a polynomial pol and a set of linear 

(parametric) constrains I 

 Return a set of polynomials (candidates) 
▪ Bound the maximum value of pol in the domain given by I
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 Partial solution to our problem
 We still need to determine symbolically maximum 

between polynomials

 In the worst case we can leave it for run-time evaluation 
(cost known “a priori”)
▪ A comparison when actual parameters are available
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Example:
 Input Polynomial

 Q(n)=n2-1, 
 Restriction: A parametric domain (linear restraint)

 D(P1,P2) = {(i, n) |1 ≤i≤P1 +P2, i ≤ 3P2, n=i}

 Bernstein(Q, D) =

D1 = {P1≤2P2}  C1: {(P1+P2)2-1,P2+P1 }

D2 = {2P2≤P1}  C2: {9P22-1}



max { q(Pmo) C1} if D1(Pmo)

Maxrsize(m0,.mk)=
max { q(Pmo) Ck} if Dk(Pmo)

where  {Ci, Di} = Bernstein(rsize(mk), I .mk,Pm0) 

• Maxrsize(m0,m0)(mc) =  (size(B[]) + size(B)).2mc

• Maxrsize(m0.1.m1,m0)(mc) = 

(size(B[]) + size(B)).(1/2 mc2 +1/2mc) +size(A).mc

• Maxrsize(m0.1.m1.5.m2,m0)(mc) = size(C).mc

• Maxrsize(m0.21m2,m0)(mc) = size(C).2mc
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 mem: 

 basically a sum maximized regions

 A comparison of the results of the sum

max

)(
||1

[1..k]

0maxrsizemax mc
k

m

mo


 




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+

max

+

4mc

mcmc^2+2mc

2mc
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Considering size(T) = 1 for all T



 Memreqm0(mc) = mc2 +7mc 

Computing memReq

Init start 
m0

call 
m1

call 
m2

ret 
m2

call 
m2

ret 
m2

call 
m2

ret 
m2

call 
m2

ret 
m2

ret 
m1

call 
m2

ret 
m2

ret 
m0

end

M2

M1

M0

ideal

memRq(4)
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Experimentation (#objects)
• Jolden: totAlloc vs Peak vs
region based code

• MST, Em3d completely 
automatic
• For the rest we need to 
provide some region sizes 
manually
• MST, Em3d, Bisort, TSP: peak 
close  to  totAlloc (few regions, 
long lived objects)

•Power,  health, BH, Perimeter: 
peak << totAlloc
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Author Year Language Expressions Memory
Manager

Benchmarks

Hofmann & Jost 2003 Functional Linear Explicit No

Lui & 
Unnikrishnan

2003 Functional Recursive 
functions

Ref. 
Counting

Add-hoc 
(Lists)

Chin et al 2005 Java like Linear 
(Pressburger):
Checking

Explicit Jolden

Chin et al
NEXT 
PRESENTATION!

2008 Bytecode Linear:
Inference

Explicit SciMark,
MyBench

Albert et al (2) 2007 Bytecode Recurrence 
equations

No  && Esc 
Analysis

No



 A technique for computing parametric (easy to 
evaluate) specifications of heap memory 
requirements
 Consider memory reclaiming

 Use memory regions to approximate GC

 A model of peak memory under a scoped-based region 
memory manager

 An application of Bernstein to solve a non-linear 
maximization problem

 A tool that integrates this technique in tool suite
 Precision relies on several factors: 
 invariants, region sizes, program structure, Bernstein
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 Restrictions on the input
 Better support for recursion

 More complex data structures 

 Other memory management mechanisms
 Usability / Scalability
 Integration with other tools/ techniques

▪ JML / Spec# (checking+inferring)

▪ Type Systems (Chin et al.)

▪ Modularity 

 Improve precision

Future work
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