
Departamento de Computación
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires (UBA)
(*) VERIMAG, France. Currently visiting UBA.

1

 Context: Java like languages
 Object orientation

 Automatic memory management (GC)

 Predicting amount of memory allocations is very hard
 Problem undecidable in general

▪ Impossible to find an exact expression of dynamic memory requested,
even knowing method parameters

 Predicting actual memory requirements is harder
 Memory is recycled

▪ Unused objects are collected

▪ memory required <= memory requested/allocated

2

How much memory is required to run m0?

0

10

20

30

40

50

60

70

80

Ideal consumption

0

2

4

6

8

10

12

14

“Ideal” consumption
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){
4: A a = new A();
5: B[] dummyArr= m2(i);

}
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];

}
11: return arrB;
}

m0(2)

m0(7)

3

ret m1

ret m1

 An expression over-approximating the peak
amount of memory consumed using an ideal
memory manager
 Parametric
 Easy to evaluate
 E. g. :Required(m)(p1,p2) = 2p2 + p1

 Evaluation cost known “a priori”

4

Given a method m(p1,..,pn)
 peak(m): an expression in terms of p1,…,pn

for the max amount of memory consumed by m

 Previous work

 A general technique to find non-linear parametric
upper- bounds of dynamic memory allocations

▪ totAlloc(m) computes an expression in terms of m
parameters for the amount of dynamic memory requested
by any run starting at m

▪ Relies on programs invariants to approximate number of
visits of allocating statements

 Using a scope-based region management…

▪ An application of that technique to approximate region
sizes

5

For linear invariants, # of integer solutions = # of integer
points = Ehrhart polynomial size(B) * (½k2+½k)

 {0≤ i < n, 0≤j<i}: a set of constraints
describing a iteration space

for(i=0;i<n;i++)

for(j=0;j<i;j++)

• new C()

o Dynamic Memory allocations  number of visits to new statements

o  number of possible variable assignments at its control location

o  number of integer solutions of a predicate constraining variable
assignments at its control location (i.e. an invariant)

i

j

Basic idea: counting visits to memory allocating statements.

6

 How much memory (in terms of m0
parameters) is requested/allocated by m0

7


 CS_m0 cs

cs) S(m0,totAlloc(m0)(mc) =

= (size(B[])+size(B)+ size(C))(1/2 mc2 +5/2 mc)
+size(A)mc

 Memory is released by a garbage collector

 Very difficult to predict when, where, and how
many object are collected

 Our approach: Approximate GC using a
scope-based region memory manager

0

20

40

60

80

Ideal consumption

0

5

10

15

Ideal consumption

m0(2) m0(7)

8

Memory organized using m-regions
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){
4: A a = new A();
5: B[] dummyArr= m2(i);

}
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];

}
11: return arrB;
}

9

Memory organized using m-regions

10

 Escape(m): objects that live
beyond m
 Escape(mo) = {}
 Escape(m1) = {}
 Escape(m2) = {m2.6, m2.8}

 Capture(m): objects that do
not live more that m
 Capture(mo) = {m0.2.m2.6,

m0.2.m2.8},
 Capture(m1) = {m1.4,

m0.1.m1.5.m2.6,
m0.1.m1.5.m2.8},

 Capture(m2) = {m2.9}
 Region(m)  Capture(m)

Escape Analysis
void m0(int mc) {
1: m1(mc);
2: B[] m2Arr=m2(2 * mc);
}
void m1(int k) {
3: for (int i = 1; i <= k; i++){
4: A a = new A();
5: B[] dummyArr= m2(i);

}
}
B[] m2(int n) {
6: B[] arrB = new B[n];
7: for (int j = 1; j <= n; j++) {
8: arrB[j-1] = new B();
9: C c = new C();
10: c.value = arrB[j-1];

}
11: return arrB;
}

11

 Region(m)  Capture(m)

 memCap(m): an expression in terms of p1,…,pn
for the amount of memory required for the region
associated with m

 memCap(m)is totAlloc(m)applied only to
captured allocations

12

• memCap(m0) = (size(B[]) + size(B)).2mc

• memCap(m1) = (size(B[]) + size(B)).(1/2 k2 +1/2k) +size(A).k

• memCap(m2)= size(C).n

Approach:

 Over approximate an ideal memory manager using
an scoped-based memory regions
 m-regions: one region per method

 When & Where:
▪ created at the beginning of method
▪ destroyed at the end

 How much memory is allocated/deallocated in
each region:

▪ memCap(m) >= actual region size of m for any call context

 How much memory is allocated in outer regions :
▪ memEsc(m) >= actual memory that is allocated in callers

regions

13

 Peak(m) = Peak(m) + Peak(m)
 peak(m): peak consumption for objects

allocated in regions created when m is executed
 peak(m): consumption for objects allocated in

regions that already exist before m is executed

Our technique:

 mem (m) >= Peak (m)
 Approximation of peak memory allocated in

newly created regions

 mem(m) >= Peak(m)
 Approximation of memory allocated in

preexistent regions (memEsc(m))

Pre existent
regions

m region

m callees’ regions

14

 Some region configurations can not happen at the same time

Region’s stack evolution

?

?

?

rm0 rm0

rm1

rm0

rm1

rm2

rm0 rm0

rm2

rm0

rm1

…rm0

rm1

rm2

rm0

rm1

15
peak(0, m0) = max  size(rk())

Region sizes may vary according to method calling context

m0.1.m1.5.m2

rsize(m2) = n (assume size(C)=1)

{ k= mc, 1i k, n = i}

{ k= mc = n} maximizes

maxrsize(m0.1.m1.5.m2,m0) = mc

16

rm0

rm1

rm2

rm0

rm1

rm2

rm0

rm1

rm2

peak(m0)

…

In terms of m0
parameters!

We consider the largest region for the same calling context

maxrm0 maxrm0

maxrm1

maxrm0

maxrm1

maxrm2

maxrm0

maxrm2

)(
||1

[1..k]

0maxrsizemax mc
k

m

mo


 




peak(m0) 

17mem(m0)

= mem(m0)

m0.1.m1.5.m2

m0.1.m1.5

m0

m0.2

 m-region expressed in terms of m parameters
 rsize(m2)(m0) = n

 Maximum according to calling context and in terms
of MUA parameters
 maxrsize(m0.1.m1.5.m2,m0) (mc) = mc
 maxrsize(m0.2.m2,m0)(mc) = 2mc

3. Maximizing instantiated regions

maxrsize(.m,m0)(Pm0)
= Maximize rsize(m) subject to I(Pm0 ,Pm,W)

• We cannot solve a non-linear maximization
problem in runtime!!
• Too expensive
• Execution time difficult to predict

• We need a parametric solution that can be
solved at compile time.

18

 Solution: use an approach based on Bernstein
basis over polyhedral domains (Clauss et al.
2004)
 Enables bounding a polynomial over a parametric

domain given as a set of linear restraints

 Obtains a parametric solution
 Bernstein(pol, I):
 Input: a polynomial pol and a set of linear

(parametric) constrains I

 Return a set of polynomials (candidates)
▪ Bound the maximum value of pol in the domain given by I

19

 Partial solution to our problem
 We still need to determine symbolically maximum

between polynomials

 In the worst case we can leave it for run-time evaluation
(cost known “a priori”)
▪ A comparison when actual parameters are available

20

Example:
 Input Polynomial

 Q(n)=n2-1,
 Restriction: A parametric domain (linear restraint)

 D(P1,P2) = {(i, n) |1 ≤i≤P1 +P2, i ≤ 3P2, n=i}

 Bernstein(Q, D) =

D1 = {P1≤2P2} C1: {(P1+P2)2-1,P2+P1 }

D2 = {2P2≤P1} C2: {9P22-1}

max { q(Pmo) C1} if D1(Pmo)

Maxrsize(m0,.mk)=
max { q(Pmo) Ck} if Dk(Pmo)

where {Ci, Di} = Bernstein(rsize(mk), I .mk,Pm0)

• Maxrsize(m0,m0)(mc) = (size(B[]) + size(B)).2mc

• Maxrsize(m0.1.m1,m0)(mc) =

(size(B[]) + size(B)).(1/2 mc2 +1/2mc) +size(A).mc

• Maxrsize(m0.1.m1.5.m2,m0)(mc) = size(C).mc

• Maxrsize(m0.21m2,m0)(mc) = size(C).2mc
21

 mem:

 basically a sum maximized regions

 A comparison of the results of the sum

max

)(
||1

[1..k]

0maxrsizemax mc
k

m

mo


 





22

maxrm0 maxrm0

maxrm1

maxrm0

maxrm1

maxrm2

maxrm0

maxrm2

m0.1.m1.5.m2

m0.1.m1.5

m0

m0.2

rm1

rm2

rm0

rm2

23

+

max

+

4mc

mcmc^2+2mc

2mc

24

Considering size(T) = 1 for all T

 Memreqm0(mc) = mc2 +7mc

Computing memReq

Init start
m0

call
m1

call
m2

ret
m2

call
m2

ret
m2

call
m2

ret
m2

call
m2

ret
m2

ret
m1

call
m2

ret
m2

ret
m0

end

M2

M1

M0

ideal

memRq(4)

25

26

Experimentation (#objects)
• Jolden: totAlloc vs Peak vs
region based code

• MST, Em3d completely
automatic
• For the rest we need to
provide some region sizes
manually
• MST, Em3d, Bisort, TSP: peak
close to totAlloc (few regions,
long lived objects)

•Power, health, BH, Perimeter:
peak << totAlloc

27

28

29

Author Year Language Expressions Memory
Manager

Benchmarks

Hofmann & Jost 2003 Functional Linear Explicit No

Lui &
Unnikrishnan

2003 Functional Recursive
functions

Ref.
Counting

Add-hoc
(Lists)

Chin et al 2005 Java like Linear
(Pressburger):
Checking

Explicit Jolden

Chin et al
NEXT
PRESENTATION!

2008 Bytecode Linear:
Inference

Explicit SciMark,
MyBench

Albert et al (2) 2007 Bytecode Recurrence
equations

No && Esc
Analysis

No

 A technique for computing parametric (easy to
evaluate) specifications of heap memory
requirements
 Consider memory reclaiming

 Use memory regions to approximate GC

 A model of peak memory under a scoped-based region
memory manager

 An application of Bernstein to solve a non-linear
maximization problem

 A tool that integrates this technique in tool suite
 Precision relies on several factors:
 invariants, region sizes, program structure, Bernstein

30

 Restrictions on the input
 Better support for recursion

 More complex data structures

 Other memory management mechanisms
 Usability / Scalability
 Integration with other tools/ techniques

▪ JML / Spec# (checking+inferring)

▪ Type Systems (Chin et al.)

▪ Modularity

 Improve precision

Future work

31

