
Memory Management for Self-Adjusting
Computation

Matthew Hammer Umut Acar

Toyota Technological Institute at Chicago

International Symposium on Memory Management, 2008



Overview of Talk

• Previous frameworks written in SML
• We implement a framework for C

In this talk, we
• Briefly review self-adjusting computation
• Discuss memory management issues
• Introduce and evaluate our approach
• Compare to previous SML framework
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Self-Adjusting Computation

Motivation : Incremental change is pervasive.

Many applications encounter data that changes slowly or
incrementally over time.

• Applications that interact with a physical environment.
E.g., Robots.

• Applications that interact with a user.
E.g., Games, Editors, Compilers, etc.

• Application that rely on modeling or simulation.
E.g., Scientific Computing, Computational Biology, Motion
Simulation.
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Self-Adjusting Computation

Ordinary Program Runs
ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

• Ordinary programs often
run repeatedly on
changing input.

• What if input and output
change by only small
increments?
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Self-Adjusting Computation

Ordinary Program Runs
ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N
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Self-Adjusting Program Runs
Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1
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Self-Adjusting Computation

• Record execution in a
program trace

• When input changes, a
change propagation
algorithm updates the
output and trace as if the
program was run
“from-scratch”.

• Tries to reuse past
computation when
possible

Self-Adjusting Program Runs
Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change
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Self-Adjusting Computation

Previous work has shown effectiveness for many applications:

List primitives (map, reverse, . . . ) O(1)
Sorting: mergesort, quicksort O(log n)
2D Convex hulls O(log n) [ESA ’06]
Tree contraction [Miller, Reif ’85] O(log n) [SODA ’04].
3D Convex Hulls O(log n) [SCG ’07]
Meshing in 2D and 3D O(log n) [FWCG ’07]
Bayesian Inference on Trees O(log n) [NIPS ’07]
Bayesian Inference on Graphs O(sd log n) [UAI ’08]

All bounds are randomized (expected time) and are within an
expected constant factor of optimal or best known-bounds.
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Writing Self-Adjusting Programs

ProgramInput Output Self-Adj.
ProgramInput Output

Trace In

Trace Out

Program
Transformation

Ordinary programs may be transformed into self-adjusting ones

• Special operations added to create/update program trace
• Done either by hand, or via compiler support

Previous work focused on supporting SML programs
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Motivation for this Work

Want to write self-adjusting computations in C.

Benefits
• Performance (both time and space).
• Large user base
• Broad hardware support (e.g., robots)
• Interoperability with other libraries/software

Challenges
• Memory management
• Ensuring Safety & Correct-usage

This talk will focus on memory management.
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Motivation for this Work

Want to write self-adjusting computations in C.

Some Memory Management Options
• Leave it to the programmer?

— breaks abstractions of framework
• Use an existing collector?

— previous work suggests performance problems

Our Approach
Couples memory management with the existing change
propagation algorithm.
• Memory allocation recorded in program trace
• Dead objects are identified during change propagation
• Dead objects are reclaimed automatically
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Examples
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Self-Adjusting Primitives

3f

g

9

call read

write

modref
(input)

modref 
(output)

• A modifiable reference (modref) is a
memory cell that stores changeable
data.

• The input, output and intermediate data
of the program is instrumented with
modrefs.

• To access its contents, a modref is read
during a function invocation.

• To set its contents, a modref is written
• The program trace stores the program’s

callgraph and modref dependencies.
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Example: Mapping a List

?

E

Input
List

Output
Dest

Let’s map a list in a
self-adjusting way.
• The input is stored in

a modref
• We have to read it to

see a list cell
• We are given an

empty modref to
write the output
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map

read
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Example: Mapping a List

E

Input
List

Output
Dest

map

?a
read read

value

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails
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Example: Mapping a List

E

Input
List

Output
Dest

map

?a
read read

value

a' E

allocate

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails
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Example: Mapping a List

Input
List

Output
Dest

map

?a
read read

value

a' E

allocate
write

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails
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Example: Mapping a List

Input
List

Output
Dest

map

?a
read read

value

a' E

allocate
write

mapcall

Input
List

Output
Dest

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails
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Example: Mapping a List

?

E

Input
List

Output
Dest

Nil Case
• Read nil input
• Write nil output
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Example: Mapping a List

nilnil

E

Input
List

Output
Dest

map

read read
value

Nil Case
• Read nil input
• Write nil output
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Example: Mapping a List

nilnil

nil

Input
List

Output
Dest

map

read read
value

write

Nil Case
• Read nil input
• Write nil output
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

b
read read

value

b'

allocate
write

call map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

Full trace of mapping [a,b,c,d] 7→ [a’,b’,c’,d’]
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

b
read read

value

b'

allocate
write

call map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

User removes b from input, issues propagate command
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

b
read read

value

b'

allocate
write

call map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

2nd iteration of map is affected by change
(old read value doesn’t match new contents)
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read

b'

map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

re-execute

System begins re-executing the invocation
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

Invocation is re-executed using new read value
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

map

c
read read

value

c'

write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

allocate

Maps c 7→ c’
Reuses the cons cell holding c’
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

Previous owner is out-of-date,
Ultimately it’s removed
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Writes the cons cell to the output destination
(readers of this modref are now affected, if any)
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Call Argscall

Recursive call with arguments:
• input_list ← read( tail( input_list ) )
• output_dest ← tail( new_cons_cell )
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Call Argscall Match

Recursive call matches a call in the trace

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42



Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

Matching call is reused
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

garbage

Allocation of b’ cell is garbage
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Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

Output & Trace are consistent with removal of b
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Program Traces

When a trace is updated via change propagation, old trace
objects are modified and/or replaced with new trace objects.

Live trace object
Trace object retained in the updated trace.

Dead trace object
Trace object removed from the updated trace.
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History Independence

History Independence Property
A trace updated via change propagation is consistent with
a from-scratch run.

Self-Adj.
ProgramInput Output

Trace

Self-Adj.
ProgramInput Output

Old Trace

Trace Equivalent
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History Independence

New trace, via change propagation

map

a
read read

value

a'

allocate
write

call map

read read
value

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

New Trace, “from-scratch”

map

a
read read

value

a'

allocate
write

call map

read

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write
allocate

write

call 

read
value
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The Rough Idea for Identifying Garbage

Dead allocations (aka garbage) can be attributed to:
1 Live invocations that are re-executed
2 Dead invocations that are removed

allocate

map

b' E

map

c' E

allocate dead

re-execute

dead

remove

Enrich program traces
• Record allocations in the program trace
• Manage allocations during change propagation
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Challenges: Dangling Pointers

Must avoid dangling pointers in program trace
• Reclaiming dead objects too soon makes dangling pointers
• History independence implies that an updated trace

cannot reach dead objects.

dead

map

a
read read

value

a'

allocate
write

call map

read

b'

map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

re-execute

out-of-date
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map

a
read read

value

a'

allocate
write

call map

read read
value

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

b'
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Challenges: Supporting Reuse

Reuse of calls is essential
• The arguments must match
• Made possible by reusing allocated objects

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)
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Challenges: Supporting Reuse

Reuse of calls is essential
• The arguments must match
• Made possible by reusing allocated objects

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

map

c
read read

value

c'

write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

allocate
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Overview of Our Technique

Free Live

Dead

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details
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Implementation: Overview

• Implemented as a library for C
• Primitives are “low-level”,

(e.g., we don’t enforce correct usage)
• Dead objects reclaimed automatically
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Programming Interface

Modref Primitives

Creation modref(key1, . . . ,keyn)
Writing write(l, v)

Reading read(l)

Modrefs . . .
• May be indexed by keys.
• Hold changeable values.
• Track read-dependencies.

Other Primitives

Allocation new(size, fi,key1, . . . ,keyn)
Invocation call(f ,arg1, . . . ,argn)
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Interface: Normal Form Programs

Reads must be in Normal Form, i.e., within a use of call

Not Normal
int x = read(m1);
int y = x + 1;
write(m2, y);

Normal
call(incr, read(m1), m2);

void incr(int x, modref_t* m) {
write(m, x + 1);

}
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Interface: Allocation

List Cell Structure
typedef struct {

void* head;
modref_t* tail;

} cell_t;

List Cell Allocation
cell_t* c = new(sizeof(cell_t), cell_init, head);

List Cell Initialization
void cell_init(cell_t* c, void** keys) {
c->head = keys[0];
c->tail = modref();

}

Allocated blocks are immutable (after being initialized).
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Interface Example: Mapping a List

Apply a function f to each element of a given list.

void map(cell_t* c1,
void* (*f)(void* x),
modref_t* result)

{
if (c1 == NULL)
write(result, NULL);

else {
void* y = f(c1->head);
cell_t* c2 = new(sizeof(cell_t), cell_init, y);
write(result, c2);
call(map, read(c1->tail), f, c2->tail);

}
}

To map a list input to output using f:

modref_t* output = modref();
call(map, read(input), f, output);
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Evaluation
Part I
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Benchmarks

List Primitives
filter, map, minimum, and sum

Sorting
quicksort and mergesort

Computational Geometry
• quickhull finds convex hull
• diameter finds diameter of a set of points
• distance finds distance between two sets of points

Tree Algorithms
• bstverif verifies invariants of a binary search tree
• exprtree evaluates an expression tree
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Overhead

ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change

small
change

small
change

Overhead
How much slower is the self-adjusting program when running
“from-scratch”?

Matthew Hammer Memory Management for Self-Adjusting Computation 26 / 42



Speedup

ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change

small
change

small
change

Speedup
How much faster can the self-adjusting program update the
output for a small change?
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Overhead & Speedup

Application Input Size Overhead Speedup
filter 106 4.2 1.7× 105

map 106 2.4 3.0× 105

minimum 106 2.6 1.3× 105

sum 106 2.4 1.5× 104

quicksort 105 2.1 5.6× 103

mergesort 105 1.8 1.3× 104

quickhull 105 2.1 1.9× 103

diameter 105 2.3 1.9× 103

distance 105 2.0 3.5× 103

exprtree 106 2.3 1.0× 104

bstverif 106 3.9 1.2× 105

• On a dual 2Ghz PowerPC G5, 6 GB of memory
• GCC 4.0.2 with “-O3 -combine”
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Overhead & Speedup

Application Input Size Overhead Speedup
filter 106 4.2 1.7× 105

map 106 2.4 3.0× 105

minimum 106 2.6 1.3× 105

sum 106 2.4 1.5× 104

quicksort 105 2.1 5.6× 103

mergesort 105 1.8 1.3× 104

quickhull 105 2.1 1.9× 103

diameter 105 2.3 1.9× 103

distance 105 2.0 3.5× 103

exprtree 106 2.3 1.0× 104

bstverif 106 3.9 1.2× 105

• Average overhead is 2 to 3x;
• Overhead is scalable, i.e., O(1)
• Speedups range from three to five orders of magnitude
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Evaluation Part II:
Comparison to SML
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Evaluation: Setup & Measurements

Measurements
SML+GC SML code including GC time
SML-GC SML code excluding GC time

Benchmarks
List Primitives and Sorting: filter, map, minimum, sum
Computational Geometry: quickhull, diameter

Setup
SML: MLton with “-runtime "ram-slop 1.0"”
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Quicksort: Timing comparison
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First Observations
• SML timings excluding GC comparable to C timings.
• SML timings including GC become 10x slower.
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Tracing GC Cost

MLton uses a set of conventional tracing collectors
(copying and mark-sweep).

Analysis
For tracing collectors, each reclaimed location costs

O
(

1
1− r

)
where 0 ≤ r < 1 is the fraction of live memory.

Observation
Execution traces often consume large fractions of available
memory, i.e., r can approach 1 during normal usage.

Matthew Hammer Memory Management for Self-Adjusting Computation 32 / 42



Quicksort: Tracing GC Cost

Tracing GC Cost

(bytes traversed by GC) / (bytes allocated)
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Cost increases for larger input-sizes (with larger traces).
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Generational Approaches

What about generations?
• By partitioning objects into two or more generations GC

avoids tracing the entire heap for each collection.
• Generational approach makes several assumptions.
• Program traces violate each of these.

Generational Assumption
Objects die young
Old objects are unlikely to die
Old-to-new pointers are rare

Violation by Program Trace
New objects are long-lived
Removed objects are often old
Old-to-new pointers are common
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Evaluation: From-Scratch Time (sec)
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Evaluation: Average Update Time (sec)
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Evaluation: Space

 0

 200

 400

 600

 800

 1000

 1200

filter
map

minimum
sum quicksort

mergesort

quickhull

diameter

M
ax

 L
iv

e 
(M

B
)

SML
C

Matthew Hammer Memory Management for Self-Adjusting Computation 37 / 42



Comparison Summary

Self-Adj. C vs Self-Adj. SML
• 40-75% reduction of space usage.
• Excluding SML GC time, they are comparable.
• Including SML GC time, C versions up to 10x faster.
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Related Work

Reference Counting
• Also has O(1) bound
• Well-known challenges with overhead of counters,

and with cyclic structures.

Region-based Approaches
• Also organize objects according to “scope”
• Usually don’t support objects moving between regions
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Future Work

On-going

Front-end for C and improved runtime:
• Simpler interface

(e.g., reads used more naturally)
• Imperative modrefs

(i.e., multiple writes)
• More optimizations and safety-checks

Future
• Integration with existing, tracing collectors
• Integration with existing, region-based approaches
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Summary

• Memory management of self-adjusting propagation . . .
• Couples nicely with tracing and change propagation.
• But requires some care for correctness and reuse.

• The result realizes the asymptotic bounds we wanted.
• The C implementation outperforms previous

implementations in both time and space.
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Thanks, Questions

Thank You!
Questions?
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