
Memory Management for Self-Adjusting
Computation

Matthew Hammer Umut Acar

Toyota Technological Institute at Chicago

International Symposium on Memory Management, 2008

Overview of Talk

• Previous frameworks written in SML
• We implement a framework for C

In this talk, we
• Briefly review self-adjusting computation
• Discuss memory management issues
• Introduce and evaluate our approach
• Compare to previous SML framework

Matthew Hammer Memory Management for Self-Adjusting Computation 2 / 42

Self-Adjusting Computation

Motivation : Incremental change is pervasive.

Many applications encounter data that changes slowly or
incrementally over time.

• Applications that interact with a physical environment.
E.g., Robots.

• Applications that interact with a user.
E.g., Games, Editors, Compilers, etc.

• Application that rely on modeling or simulation.
E.g., Scientific Computing, Computational Biology, Motion
Simulation.

Matthew Hammer Memory Management for Self-Adjusting Computation 3 / 42

Self-Adjusting Computation

Ordinary Program Runs
ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

• Ordinary programs often
run repeatedly on
changing input.

• What if input and output
change by only small
increments?

Matthew Hammer Memory Management for Self-Adjusting Computation 4 / 42

Self-Adjusting Computation

Ordinary Program Runs
ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

small
change

small
change • Ordinary programs often

run repeatedly on
changing input.

• What if input and output
change by only small
increments?

Matthew Hammer Memory Management for Self-Adjusting Computation 4 / 42

Self-Adjusting Computation

Ordinary Program Runs
ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

small
change

small
change

Self-Adjusting Program Runs
Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change

Matthew Hammer Memory Management for Self-Adjusting Computation 4 / 42

Self-Adjusting Computation

• Record execution in a
program trace

• When input changes, a
change propagation
algorithm updates the
output and trace as if the
program was run
“from-scratch”.

• Tries to reuse past
computation when
possible

Self-Adjusting Program Runs
Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change

Matthew Hammer Memory Management for Self-Adjusting Computation 4 / 42

Self-Adjusting Computation

Previous work has shown effectiveness for many applications:

List primitives (map, reverse, . . .) O(1)
Sorting: mergesort, quicksort O(log n)
2D Convex hulls O(log n) [ESA ’06]
Tree contraction [Miller, Reif ’85] O(log n) [SODA ’04].
3D Convex Hulls O(log n) [SCG ’07]
Meshing in 2D and 3D O(log n) [FWCG ’07]
Bayesian Inference on Trees O(log n) [NIPS ’07]
Bayesian Inference on Graphs O(sd log n) [UAI ’08]

All bounds are randomized (expected time) and are within an
expected constant factor of optimal or best known-bounds.

Matthew Hammer Memory Management for Self-Adjusting Computation 5 / 42

Writing Self-Adjusting Programs

ProgramInput Output Self-Adj.
ProgramInput Output

Trace In

Trace Out

Program
Transformation

Ordinary programs may be transformed into self-adjusting ones

• Special operations added to create/update program trace
• Done either by hand, or via compiler support

Previous work focused on supporting SML programs

Matthew Hammer Memory Management for Self-Adjusting Computation 6 / 42

Motivation for this Work

Want to write self-adjusting computations in C.

Benefits
• Performance (both time and space).
• Large user base
• Broad hardware support (e.g., robots)
• Interoperability with other libraries/software

Challenges
• Memory management
• Ensuring Safety & Correct-usage

This talk will focus on memory management.

Matthew Hammer Memory Management for Self-Adjusting Computation 7 / 42

Motivation for this Work

Want to write self-adjusting computations in C.

Benefits
• Performance (both time and space).
• Large user base
• Broad hardware support (e.g., robots)
• Interoperability with other libraries/software

Challenges
• Memory management
• Ensuring Safety & Correct-usage

This talk will focus on memory management.

Matthew Hammer Memory Management for Self-Adjusting Computation 7 / 42

Motivation for this Work

Want to write self-adjusting computations in C.

Some Memory Management Options
• Leave it to the programmer?

— breaks abstractions of framework
• Use an existing collector?

— previous work suggests performance problems

Our Approach
Couples memory management with the existing change
propagation algorithm.
• Memory allocation recorded in program trace
• Dead objects are identified during change propagation
• Dead objects are reclaimed automatically

Matthew Hammer Memory Management for Self-Adjusting Computation 7 / 42

Motivation for this Work

Want to write self-adjusting computations in C.

Some Memory Management Options
• Leave it to the programmer?

— breaks abstractions of framework
• Use an existing collector?

— previous work suggests performance problems

Our Approach
Couples memory management with the existing change
propagation algorithm.
• Memory allocation recorded in program trace
• Dead objects are identified during change propagation
• Dead objects are reclaimed automatically

Matthew Hammer Memory Management for Self-Adjusting Computation 7 / 42

Examples

Matthew Hammer Memory Management for Self-Adjusting Computation 8 / 42

Self-Adjusting Primitives

3f

g

9

call read

write

modref
(input)

modref
(output)

• A modifiable reference (modref) is a
memory cell that stores changeable
data.

• The input, output and intermediate data
of the program is instrumented with
modrefs.

• To access its contents, a modref is read
during a function invocation.

• To set its contents, a modref is written
• The program trace stores the program’s

callgraph and modref dependencies.

Matthew Hammer Memory Management for Self-Adjusting Computation 9 / 42

Example: Mapping a List

?

E

Input
List

Output
Dest

Let’s map a list in a
self-adjusting way.
• The input is stored in

a modref
• We have to read it to

see a list cell
• We are given an

empty modref to
write the output

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

?

E

Input
List

Output
Dest

map

read

Let’s map a list in a
self-adjusting way.
• The input is stored in

a modref
• We have to read it to

see a list cell
• We are given an

empty modref to
write the output

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

E

Input
List

Output
Dest

map

?a
read read

value

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

E

Input
List

Output
Dest

map

?a
read read

value

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

E

Input
List

Output
Dest

map

?a
read read

value

a' E

allocate

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

Input
List

Output
Dest

map

?a
read read

value

a' E

allocate
write

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

Input
List

Output
Dest

map

?a
read read

value

a' E

allocate
write

mapcall

Input
List

Output
Dest

Cons Case
• Read input cell
• Map a 7→ a’
• Allocate output cell
• Write output cell
• Recurse on tails

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

?

E

Input
List

Output
Dest

Nil Case
• Read nil input
• Write nil output

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

?

E

Input
List

Output
Dest

map

read

Nil Case
• Read nil input
• Write nil output

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

nilnil

E

Input
List

Output
Dest

map

read read
value

Nil Case
• Read nil input
• Write nil output

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

nilnil

nil

Input
List

Output
Dest

map

read read
value

write

Nil Case
• Read nil input
• Write nil output

Matthew Hammer Memory Management for Self-Adjusting Computation 10 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

b
read read

value

b'

allocate
write

call map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

Full trace of mapping [a,b,c,d] 7→ [a’,b’,c’,d’]

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

b
read read

value

b'

allocate
write

call map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

User removes b from input, issues propagate command

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

b
read read

value

b'

allocate
write

call map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

2nd iteration of map is affected by change
(old read value doesn’t match new contents)

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read

b'

map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

re-execute

System begins re-executing the invocation

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

Invocation is re-executed using new read value

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

map

c
read read

value

c'

write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

allocate

Maps c 7→ c’
Reuses the cons cell holding c’

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

Previous owner is out-of-date,
Ultimately it’s removed

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Writes the cons cell to the output destination
(readers of this modref are now affected, if any)

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Call Argscall

Recursive call with arguments:
• input_list ← read(tail(input_list))
• output_dest ← tail(new_cons_cell)

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Call Argscall Match

Recursive call matches a call in the trace

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

Matching call is reused

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

garbage

Allocation of b’ cell is garbage

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Example: Mapping a List

map

a
read read

value

a'

allocate
write

call map

read read
value

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

Output & Trace are consistent with removal of b

Matthew Hammer Memory Management for Self-Adjusting Computation 11 / 42

Program Traces

When a trace is updated via change propagation, old trace
objects are modified and/or replaced with new trace objects.

Live trace object
Trace object retained in the updated trace.

Dead trace object
Trace object removed from the updated trace.

Matthew Hammer Memory Management for Self-Adjusting Computation 12 / 42

History Independence

History Independence Property
A trace updated via change propagation is consistent with
a from-scratch run.

Self-Adj.
ProgramInput Output

Trace

Self-Adj.
ProgramInput Output

Old Trace

Trace Equivalent

Matthew Hammer Memory Management for Self-Adjusting Computation 13 / 42

History Independence

New trace, via change propagation

map

a
read read

value

a'

allocate
write

call map

read read
value

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

New Trace, “from-scratch”

map

a
read read

value

a'

allocate
write

call map

read

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write
allocate

write

call

read
value

Matthew Hammer Memory Management for Self-Adjusting Computation 14 / 42

The Rough Idea for Identifying Garbage

Dead allocations (aka garbage) can be attributed to:
1 Live invocations that are re-executed
2 Dead invocations that are removed

allocate

map

b' E

map

c' E

allocate dead

re-execute

dead

remove

Enrich program traces
• Record allocations in the program trace
• Manage allocations during change propagation

Matthew Hammer Memory Management for Self-Adjusting Computation 15 / 42

Challenges: Dangling Pointers

Must avoid dangling pointers in program trace
• Reclaiming dead objects too soon makes dangling pointers
• History independence implies that an updated trace

cannot reach dead objects.

dead

map

a
read read

value

a'

allocate
write

call map

read

b'

map

c
read read

value

c'

allocate
write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

re-execute

out-of-date

Matthew Hammer Memory Management for Self-Adjusting Computation 16 / 42

Challenges: Dangling Pointers

Must avoid dangling pointers in program trace
• Reclaiming dead objects too soon makes dangling pointers
• History independence implies that an updated trace

cannot reach dead objects.

map

a
read read

value

a'

allocate
write

call map

read read
value

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

b'

Matthew Hammer Memory Management for Self-Adjusting Computation 16 / 42

Challenges: Supporting Reuse

Reuse of calls is essential
• The arguments must match
• Made possible by reusing allocated objects

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

Matthew Hammer Memory Management for Self-Adjusting Computation 17 / 42

Challenges: Supporting Reuse

Reuse of calls is essential
• The arguments must match
• Made possible by reusing allocated objects

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

Call Argscall Match

Matthew Hammer Memory Management for Self-Adjusting Computation 17 / 42

Challenges: Supporting Reuse

Reuse of calls is essential
• The arguments must match
• Made possible by reusing allocated objects

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

map

c
read read

value

c'

write

call map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

allocate

Matthew Hammer Memory Management for Self-Adjusting Computation 17 / 42

Overview of Our Technique

Free Live

Dead

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details

Matthew Hammer Memory Management for Self-Adjusting Computation 18 / 42

Overview of Our Technique

Free Live

Dead

Allocate

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details

Matthew Hammer Memory Management for Self-Adjusting Computation 18 / 42

Overview of Our Technique

Free Live

Dead

Allocate

Remove /
Re-exec

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details

Matthew Hammer Memory Management for Self-Adjusting Computation 18 / 42

Overview of Our Technique

Free Live

Dead

Allocate

Reuse

Reuse

Remove /
Re-exec

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details

Matthew Hammer Memory Management for Self-Adjusting Computation 18 / 42

Overview of Our Technique

Free Live

Dead

Allocate

Reuse

Reuse

Remove /
Re-exec

Reclaim

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details

Matthew Hammer Memory Management for Self-Adjusting Computation 18 / 42

Overview of Our Technique

Free Live

Dead

Allocate

Reuse

Reuse

Remove /
Re-exec

Reclaim

• Live Allocations
Recorded in program trace with owner.

• Dead Allocations
Removed / Re-executed owner
Maintained in a list during propagation.

• Reuse
Each assigned a new (live) owner.
Matching done via user-supplied keys.

• Reclamation
Change propagation complete⇒
All dead allocations are garbage
(i.e., unreachable)

Paper has more details

Matthew Hammer Memory Management for Self-Adjusting Computation 18 / 42

Implementation: Overview

• Implemented as a library for C
• Primitives are “low-level”,

(e.g., we don’t enforce correct usage)
• Dead objects reclaimed automatically

Matthew Hammer Memory Management for Self-Adjusting Computation 19 / 42

Programming Interface

Modref Primitives

Creation modref(key1, . . . ,keyn)
Writing write(l, v)

Reading read(l)

Modrefs . . .
• May be indexed by keys.
• Hold changeable values.
• Track read-dependencies.

Other Primitives

Allocation new(size, fi,key1, . . . ,keyn)
Invocation call(f ,arg1, . . . ,argn)

Matthew Hammer Memory Management for Self-Adjusting Computation 20 / 42

Interface: Normal Form Programs

Reads must be in Normal Form, i.e., within a use of call

Not Normal
int x = read(m1);
int y = x + 1;
write(m2, y);

Normal
call(incr, read(m1), m2);

void incr(int x, modref_t* m) {
write(m, x + 1);

}

Matthew Hammer Memory Management for Self-Adjusting Computation 21 / 42

Interface: Normal Form Programs

Reads must be in Normal Form, i.e., within a use of call

Not Normal
int x = read(m1);
int y = x + 1;
write(m2, y);

Normal
call(incr, read(m1), m2);

void incr(int x, modref_t* m) {
write(m, x + 1);

}

Matthew Hammer Memory Management for Self-Adjusting Computation 21 / 42

Interface: Allocation

List Cell Structure
typedef struct {

void* head;
modref_t* tail;

} cell_t;

List Cell Allocation
cell_t* c = new(sizeof(cell_t), cell_init, head);

List Cell Initialization
void cell_init(cell_t* c, void** keys) {
c->head = keys[0];
c->tail = modref();

}

Allocated blocks are immutable (after being initialized).

Matthew Hammer Memory Management for Self-Adjusting Computation 22 / 42

Interface Example: Mapping a List

Apply a function f to each element of a given list.

void map(cell_t* c1,
void* (*f)(void* x),
modref_t* result)

{
if (c1 == NULL)
write(result, NULL);

else {
void* y = f(c1->head);
cell_t* c2 = new(sizeof(cell_t), cell_init, y);
write(result, c2);
call(map, read(c1->tail), f, c2->tail);

}
}

To map a list input to output using f:

modref_t* output = modref();
call(map, read(input), f, output);

Matthew Hammer Memory Management for Self-Adjusting Computation 23 / 42

Evaluation
Part I

Matthew Hammer Memory Management for Self-Adjusting Computation 24 / 42

Benchmarks

List Primitives
filter, map, minimum, and sum

Sorting
quicksort and mergesort

Computational Geometry
• quickhull finds convex hull
• diameter finds diameter of a set of points
• distance finds distance between two sets of points

Tree Algorithms
• bstverif verifies invariants of a binary search tree
• exprtree evaluates an expression tree

Matthew Hammer Memory Management for Self-Adjusting Computation 25 / 42

Overhead

ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change

small
change

small
change

Overhead
How much slower is the self-adjusting program when running
“from-scratch”?

Matthew Hammer Memory Management for Self-Adjusting Computation 26 / 42

Speedup

ProgramInput 1 Output 1

ProgramInput 2 Output 2

ProgramInput N Output N

Self-Adj.
ProgramInput 1 Output 1

Self-Adj.
ProgramInput 2 Output 2

Self-Adj.
ProgramInput N Output N

Trace 1

Trace 2

Trace N-1

small
change

small
change

small
change

small
change

Speedup
How much faster can the self-adjusting program update the
output for a small change?

Matthew Hammer Memory Management for Self-Adjusting Computation 27 / 42

Overhead & Speedup

Application Input Size Overhead Speedup
filter 106 4.2 1.7× 105

map 106 2.4 3.0× 105

minimum 106 2.6 1.3× 105

sum 106 2.4 1.5× 104

quicksort 105 2.1 5.6× 103

mergesort 105 1.8 1.3× 104

quickhull 105 2.1 1.9× 103

diameter 105 2.3 1.9× 103

distance 105 2.0 3.5× 103

exprtree 106 2.3 1.0× 104

bstverif 106 3.9 1.2× 105

• On a dual 2Ghz PowerPC G5, 6 GB of memory
• GCC 4.0.2 with “-O3 -combine”

Matthew Hammer Memory Management for Self-Adjusting Computation 28 / 42

Overhead & Speedup

Application Input Size Overhead Speedup
filter 106 4.2 1.7× 105

map 106 2.4 3.0× 105

minimum 106 2.6 1.3× 105

sum 106 2.4 1.5× 104

quicksort 105 2.1 5.6× 103

mergesort 105 1.8 1.3× 104

quickhull 105 2.1 1.9× 103

diameter 105 2.3 1.9× 103

distance 105 2.0 3.5× 103

exprtree 106 2.3 1.0× 104

bstverif 106 3.9 1.2× 105

• Average overhead is 2 to 3x;
• Overhead is scalable, i.e., O(1)
• Speedups range from three to five orders of magnitude

Matthew Hammer Memory Management for Self-Adjusting Computation 28 / 42

Evaluation Part II:
Comparison to SML

Matthew Hammer Memory Management for Self-Adjusting Computation 29 / 42

Evaluation: Setup & Measurements

Measurements
SML+GC SML code including GC time
SML-GC SML code excluding GC time

Benchmarks
List Primitives and Sorting: filter, map, minimum, sum
Computational Geometry: quickhull, diameter

Setup
SML: MLton with “-runtime "ram-slop 1.0"”

Matthew Hammer Memory Management for Self-Adjusting Computation 30 / 42

Quicksort: Timing comparison

 0

 50

 100

 150

 0 50 100 150 200 250 300

T
im

e
(s

)

Input Size (n × 103)

Quicksort From-Scratch

 SML+GC
 SML-GC

C

 0

 5

 10

 15

 0 50 100 150 200 250 300

T
im

e
(m

s)

Input Size (n × 103)

Quicksort Ave. Update

 SML+GC
 SML-GC

C

First Observations
• SML timings excluding GC comparable to C timings.
• SML timings including GC become 10x slower.

Matthew Hammer Memory Management for Self-Adjusting Computation 31 / 42

Quicksort: Timing comparison

 0

 50

 100

 150

 0 50 100 150 200 250 300

T
im

e
(s

)

Input Size (n × 103)

Quicksort From-Scratch

 SML+GC
 SML-GC

C

 0

 5

 10

 15

 0 50 100 150 200 250 300

T
im

e
(m

s)

Input Size (n × 103)

Quicksort Ave. Update

 SML+GC
 SML-GC

C

First Observations
• SML timings excluding GC comparable to C timings.
• SML timings including GC become 10x slower.

Matthew Hammer Memory Management for Self-Adjusting Computation 31 / 42

Tracing GC Cost

MLton uses a set of conventional tracing collectors
(copying and mark-sweep).

Analysis
For tracing collectors, each reclaimed location costs

O
(

1
1− r

)
where 0 ≤ r < 1 is the fraction of live memory.

Observation
Execution traces often consume large fractions of available
memory, i.e., r can approach 1 during normal usage.

Matthew Hammer Memory Management for Self-Adjusting Computation 32 / 42

Quicksort: Tracing GC Cost

Tracing GC Cost

(bytes traversed by GC) / (bytes allocated)

 0

 2

 4

 6

 0 50 100 150 200 250 300T
ra

ve
rs

ed
 /

A
llo

ca
te

d

Input Size (n × 103)

Quicksort Change Propagation

GC Cost

Plot of 1
1−r − 1

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

r

1/(1 - r) - 1

Cost increases for larger input-sizes (with larger traces).

Matthew Hammer Memory Management for Self-Adjusting Computation 33 / 42

Generational Approaches

What about generations?
• By partitioning objects into two or more generations GC

avoids tracing the entire heap for each collection.
• Generational approach makes several assumptions.
• Program traces violate each of these.

Generational Assumption
Objects die young
Old objects are unlikely to die
Old-to-new pointers are rare

Violation by Program Trace
New objects are long-lived
Removed objects are often old
Old-to-new pointers are common

Matthew Hammer Memory Management for Self-Adjusting Computation 34 / 42

Evaluation: From-Scratch Time (sec)

 0

 5

 10

 15

 20

 25

filter
map

minimum
sum quicksort

mergesort

quickhull

diameter

74.2

SML+GC
SML-GC
C

Matthew Hammer Memory Management for Self-Adjusting Computation 35 / 42

Evaluation: Average Update Time (sec)

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

filter
map

minimum
sum

SML+GC
SML-GC
C

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

quicksort

mergesort

quickhull

diameter

Matthew Hammer Memory Management for Self-Adjusting Computation 36 / 42

Evaluation: Space

 0

 200

 400

 600

 800

 1000

 1200

filter
map

minimum
sum quicksort

mergesort

quickhull

diameter

M
ax

 L
iv

e
(M

B
)

SML
C

Matthew Hammer Memory Management for Self-Adjusting Computation 37 / 42

Comparison Summary

Self-Adj. C vs Self-Adj. SML
• 40-75% reduction of space usage.
• Excluding SML GC time, they are comparable.
• Including SML GC time, C versions up to 10x faster.

Matthew Hammer Memory Management for Self-Adjusting Computation 38 / 42

Related Work

Reference Counting
• Also has O(1) bound
• Well-known challenges with overhead of counters,

and with cyclic structures.

Region-based Approaches
• Also organize objects according to “scope”
• Usually don’t support objects moving between regions

Matthew Hammer Memory Management for Self-Adjusting Computation 39 / 42

Future Work

On-going

Front-end for C and improved runtime:
• Simpler interface

(e.g., reads used more naturally)
• Imperative modrefs

(i.e., multiple writes)
• More optimizations and safety-checks

Future
• Integration with existing, tracing collectors
• Integration with existing, region-based approaches

Matthew Hammer Memory Management for Self-Adjusting Computation 40 / 42

Summary

• Memory management of self-adjusting propagation . . .
• Couples nicely with tracing and change propagation.
• But requires some care for correctness and reuse.

• The result realizes the asymptotic bounds we wanted.
• The C implementation outperforms previous

implementations in both time and space.

map

a
read read

value

a'

allocate
write

call map

read read
value

b'

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write

allocate

write

call (matches)

garbage
⇒ map

a
read read

value

a'

allocate
write

call map

read

c

c'

map

d
read read

value

d'

allocate
write

call

nilnil

nil

map

read read
value

write
allocate

write

call

read
value

Matthew Hammer Memory Management for Self-Adjusting Computation 41 / 42

Thanks, Questions

Thank You!
Questions?

Matthew Hammer Memory Management for Self-Adjusting Computation 42 / 42

