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Region-based Memory 
Management (RBMM)

 Idea:
 Group heap objects of the same lifetime into regions.
 Reclaim garbage by destroying region as a whole.

 Advantages:
 Small runtime overhead

 No runtime detection of garbage
 Often achieve good memory reuse.
 Good chance of better data locality

 Related data kept together.



  

Mercury
 Logic/functional programming language

 developed at Melbourne Univ.
 declarative language aims at large-scale application development.

 Mercury's syntax is similar to Prolog's
 Explicit declarations

 Types, modes, determinism.



  

Mercury's types, modes, 
determinism.

 Types: ~ Haskell's.
 list(int) ---> [] ; [int | list(int)].

 Modes: instantiation of arguments of predicates.
 in: ground → ground, out: free → ground.
 a mode of a predicate: modes for its arguments → procedure.

 Determinism: # possible solutions of a procedure.



  

Mercury predicate

:- pred append(list(int), list(int), list(int)).
:- mode append(in, in, out) is det.
:- mode append(out, out, in) is multi.
append([], Y, Y).
append([Xe | Xs], Y, [Xe | Zs]) :-

append(Xs, Y, Zs).



  

Backtracking

 Due to nondeterminism
 Disjunction: 

 (g1 ; ...; gi ; ...; gn)
 Make a choice and backtracks into the disjunction later.

 if g1 then g2 else g3
 Semantically equivalent to the disjunction:

 (g1, g2); (not g1, g3).
 Try g1, if succeeds, execute g2. If fails, backtracks to g3 

as if g1 had not been tried.



  

Backward execution

g1

g2a g2b

OR

succeeds/fails

forward execution

backtracks
choice point

 ..., g1, (g2a; g2b), g3, ...
 Forward execution containing g2a.
 Backtrack to g2b: backward 

execution.
 Backward liveness: live during 

backward execution.



  

RBMM for Mercury

% (in, in, out) is det.
append(X, Y, Z) :-
(

X == [],
Z := Y

;
X => [Xe | Xs],
append(Xs, Y, Zs),
Z <= [Xe | Zs]

).
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 Example: the call to append([1], [2, 3], Z)  in the first 
mode.



  

RBMM for Mercury
 Program analysis and transformation

 Q. Phan and G. Janssens. Static region analysis for 
Mercury. ICLP 2007.

 Regions.
 Region liveness.
 Mercury to region-annotated Mercury.
 Often achieve good memory reuse.

 S. Cherem and R. Rugina. Region analysis and 
transformation for Java programs. ISMM 2004.



  

Region-annotated Mercury

% (in, in, out) is det.
append(X, Y, Z) :-
(

X == [],
Z := Y

;
X => [Xe | Xs],
append(Xs, Y, Zs),
Z <= [Xe | Zs]

).

Xe

([|], 2)

([|], 1)

([|], 2)

([|], 1)
X, Xs

Z, Y,
ZsR1 R2

% (in, in, out) is det.
append(X, Y, Z, R1, R2) :-
(

X == [],
remove(R1),
Z := Y

;
X => [Xe | Xs],
append(Xs, Y, Zs, R1, R2),
Z <= [Xe | Zs] in R2

).



  

Runtime support
 Basic support

 Regions, region instructions, allocation into regions.
 Needed in any RBMM systems.
 Mercury: only enough for programs with no backtracking.

 Support for backtracking
 Liveness w.r.t forward execution.
 Backtracking causes problems.

 How to support backtracking with little impact on deterministic 
code??
 Less than 5% of Mercury code is nondeterministic.



  

Impact of backtracking: 
Region resurrection.

 Region resurrection
 Dead in forward execution but live in 

backward execution.
 E.g., R.

 Destroy backward live regions in 
forward execution causes runtime 
errors.

g1

g2a g2b

OR

succeeds/fails

backtracks

choice point

create(R)

remove(R) remove(R)

use R



  

Impact of backtracking:
Instant reclaiming.

 Instant reclaiming
 When backtracks to a choice point, 

allocations in the backtracked-over 
execution can be instantly reclaimed.

 Popularly used in logic programming 
systems.

 1st case: New regions with respect to 
the choice point: R1

 Reclaim R1 before starting the 
backward execution containing g2b.

g1

g2a g2b

ORbacktracks
choice point

remove(R1)

create(R1)
fails



  

Impact of backtracking:
Instant reclaiming.

..., g1, (g2a ; g2b), g3...
 Instant reclaiming ...
 2nd case: Allocations into existing/old 

regions: R2 (not R1).
g1

g2a g2b

ORbacktracks
choice point

create(R2)

use R2
Allocate in R2

fails

remove(R1)

create(R1)
Allocate in R1



  

Old vs. new regions, region list

 Maintain a global region sequence number.

R_6R_8 R_5 R_1

Saved sequence number: 6

...

Region list

new regions old regions



  

Support for nondet disjunction: 
Region resurrection.

..., g1, (g2a ; g2b), g3, ...
 Nondet: any disjuncts may succeed.

 Both g2a and g2b.
 Backtrack from outside 
 → backward live regions ≈ all old 

regions: e.g., R.

g1

g2a g2b

OR

succeeds/fails

backtracks choice point

create(R)

remove(R) remove(R)

use R



  

Support for nondet disjunction: 
Region resurrection.

 Protect R at the entry to the disjunction: 
before g2a.
 Save the global sequence number.
 remove instruction: ignore old regions.

 Unprotect R at the start of the last 
disjunct: g2b.
 No longer backtrack into the disjunction
 Clear the saved number
 remove instructions become effective 

again.
 R is destroyed when the second remove 

is reached.

g1

g2a g2b

OR

succeeds/fails

backtracks choice point

create(R)

remove(R) remove(R)

use RProtect R
Unprotect R



  

Support for nondet disjunction: 
Instant reclaiming

..., g1, (g2a ; g2b), g3, ...
 Instant reclaiming new regions

 Already save the global sequence 
number.

 When backtrack to a non-first disjunct: 
g2b

 traverse the region list
 reclaim regions until seeing an old 

one.

g1

g2a g2b

ORbacktracks
choice point

remove(R)

create(R)

fails
R_6R_8 R_5 R_1

Saved sequence number: 6

...

Region list

new regions old regions



  

Support for nondet disjunction: 
Instant reclaiming

..., g1, (g2a ; g2b), ...
 Instant reclaiming new allocations

 R is an old region.
 Save the size of R at entry to the 

disjunction.
 Instant reclaim by restoring at start of 

any non-first disjunct: g2b.

g1

g2a g2b

ORbacktracks
choice point

create(R)

use RAllocate in R



  

Optimized support for
if-then-else

 If-then-else:
 Efficient implementation.
 Support if-then-else without damaging its efficiency.

 Similar support needed.
 Region resurrection: protecting backward live regions.
 Instant reclaiming at start of the else part.



  

Optimized support for
if-then-else

 Backtrack happens from inside the condition goal
 Only support for changes in the condition

 Protect backward live regions removed in the condition,
 Instant reclaiming new regions created in the condition,
 Instant reclaiming new allocations happen in the condition.

 These changes can be computed from region analysis 
information.

 No changes:
 No support added.
 Condition goals are often simple tests → maintaining 

efficiency.



  

Runtime performance

boyer crypt dna life nrev primes qsort queens
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Boehm gc
RBMM

Mercury compiler that uses Boehm gc vs. Mercury compiler with RBMM.
 Average speedup 25%.
 2 nondet programs: crypt & queens.
 boyer and life: substantial cost of supporting backtracking.

(s)



  

Runtime performance

boyer crypt dna life nrev primes qsort queens
0

2

4

6

8

10

12

14

16

18

Boehm excludes gc
RBMM

Exclude gc time:
 RBMM still better in 5 programs: better data locality → speedup due to 

better cache behaviour.

(s)



  

boyer

crypt

dna

life

nrev

primes

qsort

queens

0 10,000,000 20,000,000 30,000,000 40,000,000
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Last heap size
RBMM Requested

Memory consumption
Region page size 2k (words).
Initial RBMM size 200k, 200k/increase.
Initial heap size ~ 4M words (default in Mercury).

words



  

Conclusions
 Our results suggest that

 RBMM can be implemented with modest runtime overhead.
 Better data locality.
  → overall speedup.

 Related work:
 RBMM for Prolog: [K. Sagonas and H. Malkhom @ ICLP 2002]

 Require different algorithms due to the significant difference 
between the two languages.

 Future work:
 Modify region analysis to take into account backward execution.
 Extend the supported subset of Mercury.
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