

Runtime support
for region-based memory management
in Mercury

Quan Phan*, Zoltan Somogyi**, Gerda Janssens*

* DTAI, KU Leuven, Belgium.
** Computer Science and Software Engineering Department,

University of Melbourne, Australia.

ISMM 2008
Tucson, Arizona, USA

Region-based Memory
Management (RBMM)

 Idea:
 Group heap objects of the same lifetime into regions.
 Reclaim garbage by destroying region as a whole.

 Advantages:
 Small runtime overhead

 No runtime detection of garbage
 Often achieve good memory reuse.
 Good chance of better data locality

 Related data kept together.

Mercury
 Logic/functional programming language

 developed at Melbourne Univ.
 declarative language aims at large-scale application development.

 Mercury's syntax is similar to Prolog's
 Explicit declarations

 Types, modes, determinism.

Mercury's types, modes,
determinism.

 Types: ~ Haskell's.
 list(int) ---> [] ; [int | list(int)].

 Modes: instantiation of arguments of predicates.
 in: ground → ground, out: free → ground.
 a mode of a predicate: modes for its arguments → procedure.

 Determinism: # possible solutions of a procedure.

Mercury predicate

:- pred append(list(int), list(int), list(int)).
:- mode append(in, in, out) is det.
:- mode append(out, out, in) is multi.
append([], Y, Y).
append([Xe | Xs], Y, [Xe | Zs]) :-

append(Xs, Y, Zs).

Backtracking

 Due to nondeterminism
 Disjunction:

 (g1 ; ...; gi ; ...; gn)
 Make a choice and backtracks into the disjunction later.

 if g1 then g2 else g3
 Semantically equivalent to the disjunction:

 (g1, g2); (not g1, g3).
 Try g1, if succeeds, execute g2. If fails, backtracks to g3

as if g1 had not been tried.

Backward execution

g1

g2a g2b

OR

succeeds/fails

forward execution

backtracks
choice point

 ..., g1, (g2a; g2b), g3, ...
 Forward execution containing g2a.
 Backtrack to g2b: backward

execution.
 Backward liveness: live during

backward execution.

RBMM for Mercury

% (in, in, out) is det.
append(X, Y, Z) :-
(

X == [],
Z := Y

;
X => [Xe | Xs],
append(Xs, Y, Zs),
Z <= [Xe | Zs]

).

 2
 [|]

 3
[]

 1
[]

 1
[|]

[|]

[|]

[|]

Y

X

Z

 Example: the call to append([1], [2, 3], Z) in the first
mode.

RBMM for Mercury
 Program analysis and transformation

 Q. Phan and G. Janssens. Static region analysis for
Mercury. ICLP 2007.

 Regions.
 Region liveness.
 Mercury to region-annotated Mercury.
 Often achieve good memory reuse.

 S. Cherem and R. Rugina. Region analysis and
transformation for Java programs. ISMM 2004.

Region-annotated Mercury

% (in, in, out) is det.
append(X, Y, Z) :-
(

X == [],
Z := Y

;
X => [Xe | Xs],
append(Xs, Y, Zs),
Z <= [Xe | Zs]

).

Xe

([|], 2)

([|], 1)

([|], 2)

([|], 1)
X, Xs

Z, Y,
ZsR1 R2

% (in, in, out) is det.
append(X, Y, Z, R1, R2) :-
(

X == [],
remove(R1),
Z := Y

;
X => [Xe | Xs],
append(Xs, Y, Zs, R1, R2),
Z <= [Xe | Zs] in R2

).

Runtime support
 Basic support

 Regions, region instructions, allocation into regions.
 Needed in any RBMM systems.
 Mercury: only enough for programs with no backtracking.

 Support for backtracking
 Liveness w.r.t forward execution.
 Backtracking causes problems.

 How to support backtracking with little impact on deterministic
code??
 Less than 5% of Mercury code is nondeterministic.

Impact of backtracking:
Region resurrection.

 Region resurrection
 Dead in forward execution but live in

backward execution.
 E.g., R.

 Destroy backward live regions in
forward execution causes runtime
errors.

g1

g2a g2b

OR

succeeds/fails

backtracks

choice point

create(R)

remove(R) remove(R)

use R

Impact of backtracking:
Instant reclaiming.

 Instant reclaiming
 When backtracks to a choice point,

allocations in the backtracked-over
execution can be instantly reclaimed.

 Popularly used in logic programming
systems.

 1st case: New regions with respect to
the choice point: R1

 Reclaim R1 before starting the
backward execution containing g2b.

g1

g2a g2b

ORbacktracks
choice point

remove(R1)

create(R1)
fails

Impact of backtracking:
Instant reclaiming.

..., g1, (g2a ; g2b), g3...
 Instant reclaiming ...
 2nd case: Allocations into existing/old

regions: R2 (not R1).
g1

g2a g2b

ORbacktracks
choice point

create(R2)

use R2
Allocate in R2

fails

remove(R1)

create(R1)
Allocate in R1

Old vs. new regions, region list

 Maintain a global region sequence number.

R_6R_8 R_5 R_1

Saved sequence number: 6

...

Region list

new regions old regions

Support for nondet disjunction:
Region resurrection.

..., g1, (g2a ; g2b), g3, ...
 Nondet: any disjuncts may succeed.

 Both g2a and g2b.
 Backtrack from outside
 → backward live regions ≈ all old

regions: e.g., R.

g1

g2a g2b

OR

succeeds/fails

backtracks choice point

create(R)

remove(R) remove(R)

use R

Support for nondet disjunction:
Region resurrection.

 Protect R at the entry to the disjunction:
before g2a.
 Save the global sequence number.
 remove instruction: ignore old regions.

 Unprotect R at the start of the last
disjunct: g2b.
 No longer backtrack into the disjunction
 Clear the saved number
 remove instructions become effective

again.
 R is destroyed when the second remove

is reached.

g1

g2a g2b

OR

succeeds/fails

backtracks choice point

create(R)

remove(R) remove(R)

use RProtect R
Unprotect R

Support for nondet disjunction:
Instant reclaiming

..., g1, (g2a ; g2b), g3, ...
 Instant reclaiming new regions

 Already save the global sequence
number.

 When backtrack to a non-first disjunct:
g2b

 traverse the region list
 reclaim regions until seeing an old

one.

g1

g2a g2b

ORbacktracks
choice point

remove(R)

create(R)

fails
R_6R_8 R_5 R_1

Saved sequence number: 6

...

Region list

new regions old regions

Support for nondet disjunction:
Instant reclaiming

..., g1, (g2a ; g2b), ...
 Instant reclaiming new allocations

 R is an old region.
 Save the size of R at entry to the

disjunction.
 Instant reclaim by restoring at start of

any non-first disjunct: g2b.

g1

g2a g2b

ORbacktracks
choice point

create(R)

use RAllocate in R

Optimized support for
if-then-else

 If-then-else:
 Efficient implementation.
 Support if-then-else without damaging its efficiency.

 Similar support needed.
 Region resurrection: protecting backward live regions.
 Instant reclaiming at start of the else part.

Optimized support for
if-then-else

 Backtrack happens from inside the condition goal
 Only support for changes in the condition

 Protect backward live regions removed in the condition,
 Instant reclaiming new regions created in the condition,
 Instant reclaiming new allocations happen in the condition.

 These changes can be computed from region analysis
information.

 No changes:
 No support added.
 Condition goals are often simple tests → maintaining

efficiency.

Runtime performance

boyer crypt dna life nrev primes qsort queens
0

5

10

15

20

25

Boehm gc
RBMM

Mercury compiler that uses Boehm gc vs. Mercury compiler with RBMM.
 Average speedup 25%.
 2 nondet programs: crypt & queens.
 boyer and life: substantial cost of supporting backtracking.

(s)

Runtime performance

boyer crypt dna life nrev primes qsort queens
0

2

4

6

8

10

12

14

16

18

Boehm excludes gc
RBMM

Exclude gc time:
 RBMM still better in 5 programs: better data locality → speedup due to

better cache behaviour.

(s)

boyer

crypt

dna

life

nrev

primes

qsort

queens

0 10,000,000 20,000,000 30,000,000 40,000,000

5,860,352

4,395,008

7,814,144

5,860,352

7,814,144

7,814,144

7,814,144

7,814,144

1,228,800

204,800

37,273,600

409,600

204,800

409,600

1,843,200

204,800

Last heap size
RBMM Requested

Memory consumption
Region page size 2k (words).
Initial RBMM size 200k, 200k/increase.
Initial heap size ~ 4M words (default in Mercury).

words

Conclusions
 Our results suggest that

 RBMM can be implemented with modest runtime overhead.
 Better data locality.
 → overall speedup.

 Related work:
 RBMM for Prolog: [K. Sagonas and H. Malkhom @ ICLP 2002]

 Require different algorithms due to the significant difference
between the two languages.

 Future work:
 Modify region analysis to take into account backward execution.
 Extend the supported subset of Mercury.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

