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• Real-time, concurrent, and incremental 
garbage collectors are becoming main-
stream techniques.

• But these collectors require barriers to be 
inserted, which causes execution to slow 
down.
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• Barriers slow down execution of programs.

• This talk focuses on increasing the 
throughput of programs that use expensive 
barriers.
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Types of Barriers
(a non-exclusive list of expensive barriers that we’re 

familiar with)
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• Stopless (ISMM’07)

• Brooks read barrier (both lazy and eager)

• Yuasa barrier for concurrent or 
incremental mark-sweep
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Stopless Barriers

• “The write barrier from heck” -anonymous

• Stopless barriers require potentially 
multiple branches, loads, stores, and CASes 
even on primitive reads and writes.

• But the barriers are only active during the 
(short) copying phase.
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• Brooks read barriers

• Useful when the mutator may see the 
same object in both to-space and from-
space

• Idea: each object has a pointer in its 
header to the “correct” version of the 
object.

• This pointer may be self-pointing
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Brooks Forwarding 
Pointer
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Brooks Forwarding 
Pointer

8



“Lazy” Brooks

object a = b.f
use a
use a

object a = b.forward.f
use a.forward
use a.forward
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These barriers are only 
needed when copying is 

ongoing.
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Yuasa Write Barrier

a.f = b

if barrier active
   mark a.f
a.f = b
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Yuasa Write Barrier

a.f = b

if barrier active
   mark a.f
a.f = b

We use this barrier
in concurrent and
incremental mark-sweep
collectors.
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• Barriers for concurrent and incremental collectors 
tend to only be active during some phase of collector 
execution.

• Even if the collector is always running, the barriers are 
only active a fraction of the time.

• Concurrent Mark-sweep: only active during marking 
phase.

• Metronome: Brooks only active during the (rare) 
copying phase

• Stopless: only active during the (rare and short) 
copying phase.
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• What we want:

• Make code run faster when the barriers 
are not needed.

• Make code run not much slower when 
the barriers are needed.

• Result: get better throughput.
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Path Specialization
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Simple Example
Original
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Simple Example

barriers

Original
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Simple Example
Original
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Simple Example
Original Fast Slow
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• We wish to provide best throughput while still 
being sound.

• Thus - we need to be able to allow code to 
switch between one version of the barrier to 
another when there is a phase change in the 
collector.

• This is the crucial difference from previous 
work on specialization.

How It Really Works
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GC points

• Typically, concurrent and incremental collectors 
require that each mutator acknowledges changes 
in phase at GC points.

• A GC point may be:

• memory allocation

• back branch (to ensure that GC points are 
reached in a timely fashion)

• by proxy - any method call
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• Three versions of code:

• Unspecialized - code where we don’t 
care about GC phase

• Fast - code where we know that we 
don’t need barriers

• Slow - code where we need barriers

How It Really Works
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• The approach:

• The “Unspecialized” code is the original 
code; it will check phase, and switch to 
either Fast or Slow, at every barrier.

• Fast and Slow switch to Unspecialized at 
GC points (e.g. method call).
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int foo(object o) {
   int x = 2+2;
   o.f = x;
   o.g = null;
   o.bar();
   return o.f;
}

A better example
(Lazy Brooks)
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int foo(object o) {
   int x = 2+2;
   o.f = x;
   o.g = null;
   o.bar();
   return o.f;
}

A better example
(Lazy Brooks)

Needs Barriers

Needs Barrier
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int foo(object o) {
   int x = 2+2;
   o.f = x;
   o.g = null;
   o.bar();
   return o.f;
}

A better example
(Lazy Brooks)

Needs Barriers

Needs Barrier
GC point

20



int foo(object o) {
   int x = 2+2;
   o.forward.f = x;
   o.forward.g = null;
   o.bar();
   return o.forward.f;
}

Lazy Brooks:
Without Specialization

Needs Barriers

Needs Barrier
GC point
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What happens with 
path specialization?

22



int foo(object o) {
   int x = 2+2;
   o.f = x;
   o.g = null;
   o.bar();
   return o.f;
}

23



int foo(object o) {
   int x = 2+2;

   o.f = x;
   o.g = null;

   o.bar();

   return o.f;
}
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int foo(object o) {
   int x = 2+2;

   o.f = x;
   o.g = null;

   o.bar();

   return o.f;
}

int foo(object o) {
   int x = 2+2;

   o.f = x;
   o.g = null;

   o.bar();

   return o.f;
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int foo(object o) {
   int x = 2+2;

   o.forward.f = x;
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Unspecialized Fast Slow

25



int foo(object o) {
   int x = 2+2;

   o.f = x;
   o.g = null;

   o.bar();

   return o.f;
}

int foo(object o) {
   int x = 2+2;

   o.f = x;
   o.g = null;

   o.bar();

   return o.f;
}

int foo(object o) {
   int x = 2+2;

   o.bar();

Unspecialized Fast Slow

   o.forward.f = x;
   o.forward.g = null;

   return o.forward.f;
}
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int foo(object o) {
   int x = 2+2;

   o.bar();

   o.f = x;
   o.g = null;

   return o.f;
}

   return o.f;
}

   o.f = x;
   o.g = null;

int foo(object o) {
   int x = 2+2;

   o.bar();

int foo(object o) {
   int x = 2+2;

   o.bar();

Unspecialized Fast Slow

   o.forward.f = x;
   o.forward.g = null;

   return o.forward.f;
}
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int foo(object o) {
   int x = 2+2;
   if need barrier o.forward.f = x;
                         o.forward.g = null;
   else o.f = x;
          o.g = null;
   o.bar();
   if need barrier return o.forward.f;
   else return o.f;
}

Lazy Brooks:
With Specialization
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• Our algorithm aims to introduce the 
smallest number of “needs barrier” phase 
checks along any path...

• ... while ensuring that code is not duplicated 
unnecessarily (example: any path from a 
GC point to a check is not duplicated).

• See the paper for the complete algorithm.

Summary
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Implementation
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• We have implemented Path Specialization in the 
Microsoft Bartok Research Compiler.

• Path specialization exists as an optional pass that 
can be applied to any barrier that has a phase check.

• We have tested this with our Yuasa barrier, our lazy 
and eager Brooks barriers, and our Stopless 
barriers.
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Results

32



• We test four internal MSR benchmarks 
(large PL-type programs) and three smaller 
traditional benchmarks ported to .NET.

• Five barriers are used: CMS (Yuasa-type 
barrier), Brooks (lazy), Brooks (sunk 
eager), Stopless, and Stopless without any 
copying activity.
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Without Specialization
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Conclusion
• For heavy barriers (Stopless), path specialization 

reduces code size and improves performance.

• For barriers that are cheap but already have 
phase checks (like CMS), path specialization 
increases performance a bit without affecting 
code size.

• For Brooks barriers, performance improves but 
results in large code blow-up.

• Performance improves for every barrier we 
tried.
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Questions/Comments
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