
Path Specialization:
Reducing Phased Execution

Overheads
Filip Pizlo, Erez Petrank, Bjarne Steensgaard

Purdue, Technion/Microsoft, Microsoft

ISMM’08 - Tucson, AZ
1

• Real-time, concurrent, and incremental
garbage collectors are becoming main-
stream techniques.

• But these collectors require barriers to be
inserted, which causes execution to slow
down.

2

• Barriers slow down execution of programs.

• This talk focuses on increasing the
throughput of programs that use expensive
barriers.

3

Types of Barriers
(a non-exclusive list of expensive barriers that we’re

familiar with)

4

• Stopless (ISMM’07)

• Brooks read barrier (both lazy and eager)

• Yuasa barrier for concurrent or
incremental mark-sweep

5

Stopless Barriers

• “The write barrier from heck” -anonymous

• Stopless barriers require potentially
multiple branches, loads, stores, and CASes
even on primitive reads and writes.

• But the barriers are only active during the
(short) copying phase.

6

• Brooks read barriers

• Useful when the mutator may see the
same object in both to-space and from-
space

• Idea: each object has a pointer in its
header to the “correct” version of the
object.

• This pointer may be self-pointing

7

Brooks Forwarding
Pointer

8

Brooks Forwarding
Pointer

8

“Lazy” Brooks

object a = b.f
use a
use a

object a = b.forward.f
use a.forward
use a.forward

9

These barriers are only
needed when copying is

ongoing.

10

Yuasa Write Barrier

a.f = b

if barrier active
 mark a.f
a.f = b

11

Yuasa Write Barrier

a.f = b

if barrier active
 mark a.f
a.f = b

We use this barrier
in concurrent and
incremental mark-sweep
collectors.

11

• Barriers for concurrent and incremental collectors
tend to only be active during some phase of collector
execution.

• Even if the collector is always running, the barriers are
only active a fraction of the time.

• Concurrent Mark-sweep: only active during marking
phase.

• Metronome: Brooks only active during the (rare)
copying phase

• Stopless: only active during the (rare and short)
copying phase.

12

• What we want:

• Make code run faster when the barriers
are not needed.

• Make code run not much slower when
the barriers are needed.

• Result: get better throughput.

13

Path Specialization

14

Simple Example
Original

15

Simple Example

barriers

Original

15

Simple Example
Original

15

Simple Example
Original Fast Slow

15

• We wish to provide best throughput while still
being sound.

• Thus - we need to be able to allow code to
switch between one version of the barrier to
another when there is a phase change in the
collector.

• This is the crucial difference from previous
work on specialization.

How It Really Works

16

GC points

• Typically, concurrent and incremental collectors
require that each mutator acknowledges changes
in phase at GC points.

• A GC point may be:

• memory allocation

• back branch (to ensure that GC points are
reached in a timely fashion)

• by proxy - any method call

17

• Three versions of code:

• Unspecialized - code where we don’t
care about GC phase

• Fast - code where we know that we
don’t need barriers

• Slow - code where we need barriers

How It Really Works

18

• The approach:

• The “Unspecialized” code is the original
code; it will check phase, and switch to
either Fast or Slow, at every barrier.

• Fast and Slow switch to Unspecialized at
GC points (e.g. method call).

19

int foo(object o) {
 int x = 2+2;
 o.f = x;
 o.g = null;
 o.bar();
 return o.f;
}

A better example
(Lazy Brooks)

20

int foo(object o) {
 int x = 2+2;
 o.f = x;
 o.g = null;
 o.bar();
 return o.f;
}

A better example
(Lazy Brooks)

Needs Barriers

Needs Barrier

20

int foo(object o) {
 int x = 2+2;
 o.f = x;
 o.g = null;
 o.bar();
 return o.f;
}

A better example
(Lazy Brooks)

Needs Barriers

Needs Barrier
GC point

20

int foo(object o) {
 int x = 2+2;
 o.forward.f = x;
 o.forward.g = null;
 o.bar();
 return o.forward.f;
}

Lazy Brooks:
Without Specialization

Needs Barriers

Needs Barrier
GC point

21

What happens with
path specialization?

22

int foo(object o) {
 int x = 2+2;
 o.f = x;
 o.g = null;
 o.bar();
 return o.f;
}

23

int foo(object o) {
 int x = 2+2;

 o.f = x;
 o.g = null;

 o.bar();

 return o.f;
}

24

int foo(object o) {
 int x = 2+2;

 o.f = x;
 o.g = null;

 o.bar();

 return o.f;
}

int foo(object o) {
 int x = 2+2;

 o.f = x;
 o.g = null;

 o.bar();

 return o.f;
}

int foo(object o) {
 int x = 2+2;

 o.forward.f = x;
 o.forward.g = null;

 o.bar();

 return o.forward.f;
}

Unspecialized Fast Slow

25

int foo(object o) {
 int x = 2+2;

 o.f = x;
 o.g = null;

 o.bar();

 return o.f;
}

int foo(object o) {
 int x = 2+2;

 o.f = x;
 o.g = null;

 o.bar();

 return o.f;
}

int foo(object o) {
 int x = 2+2;

 o.bar();

Unspecialized Fast Slow

 o.forward.f = x;
 o.forward.g = null;

 return o.forward.f;
}

26

int foo(object o) {
 int x = 2+2;

 o.bar();

 o.f = x;
 o.g = null;

 return o.f;
}

 return o.f;
}

 o.f = x;
 o.g = null;

int foo(object o) {
 int x = 2+2;

 o.bar();

int foo(object o) {
 int x = 2+2;

 o.bar();

Unspecialized Fast Slow

 o.forward.f = x;
 o.forward.g = null;

 return o.forward.f;
}

27

int foo(object o) {
 int x = 2+2;
 if need barrier o.forward.f = x;
 o.forward.g = null;
 else o.f = x;
 o.g = null;
 o.bar();
 if need barrier return o.forward.f;
 else return o.f;
}

Lazy Brooks:
With Specialization

28

int foo(object o) {
 int x = 2+2;
 if need barrier o.forward.f = x;
 o.forward.g = null;
 else o.f = x;
 o.g = null;
 o.bar();
 if need barrier return o.forward.f;
 else return o.f;
}

Lazy Brooks:
With Specialization

Unspecialized

Unspecialized

28

int foo(object o) {
 int x = 2+2;
 if need barrier o.forward.f = x;
 o.forward.g = null;
 else o.f = x;
 o.g = null;
 o.bar();
 if need barrier return o.forward.f;
 else return o.f;
}

Lazy Brooks:
With Specialization

Unspecialized

Unspecialized

Fast

Fast

28

int foo(object o) {
 int x = 2+2;
 if need barrier o.forward.f = x;
 o.forward.g = null;
 else o.f = x;
 o.g = null;
 o.bar();
 if need barrier return o.forward.f;
 else return o.f;
}

Lazy Brooks:
With Specialization

Unspecialized

Unspecialized

Slow

Slow

Fast

Fast

28

• Our algorithm aims to introduce the
smallest number of “needs barrier” phase
checks along any path...

• ... while ensuring that code is not duplicated
unnecessarily (example: any path from a
GC point to a check is not duplicated).

• See the paper for the complete algorithm.

Summary

29

Implementation

30

• We have implemented Path Specialization in the
Microsoft Bartok Research Compiler.

• Path specialization exists as an optional pass that
can be applied to any barrier that has a phase check.

• We have tested this with our Yuasa barrier, our lazy
and eager Brooks barriers, and our Stopless
barriers.

31

Results

32

• We test four internal MSR benchmarks
(large PL-type programs) and three smaller
traditional benchmarks ported to .NET.

• Five barriers are used: CMS (Yuasa-type
barrier), Brooks (lazy), Brooks (sunk
eager), Stopless, and Stopless without any
copying activity.

33

Without Specialization

34

35

36

37

Conclusion
• For heavy barriers (Stopless), path specialization

reduces code size and improves performance.

• For barriers that are cheap but already have
phase checks (like CMS), path specialization
increases performance a bit without affecting
code size.

• For Brooks barriers, performance improves but
results in large code blow-up.

• Performance improves for every barrier we
tried.

38

Questions/Comments

39

