RCGC4CFP

Trancén

A Reference-Counting
Garbage Collection Algorithm
for Cyclical Functional Programming

Baltasar Trancén y Widemann

Universitdt Bayreuth, Germany

ISMM 08
Tucson, Arizona
2008-6-7/8



RCGC4CFP

Trancén

Introduction

Reference Counting
&
Cycles



Reference Counting RCGCACFP

Trancén

RC

In a Nutshell

» simple basic algorithm

» count number of live references to a cell
» reference count drops to zero — garbage

» often considered outdated, but not quite dead yet!

Famous Problem

» what about cycles?
» reference count drops to zero < garbage



History of Cyclic Reference Counting
The Algorithm of Brownbridge (1985-88)
Principle

» partition references into strong and weak subset

» no cycle entirely strong
» weak edges irrelevant for reachability (maintain!)

» collection based on strong count only

Advantages

> intuitively appealing

Disadvantages

» hard to get right, complex code

> efficiency issues

RCGC4CFP

Trancén

History CRC



History of Cyclic Reference Counting RCGC4CFP
The Algorithm of Lins, Martinez & Wachenchauzer (1990) Trancén

Principle History CRC

» detect cyclic garbage by “speculative deletion”

> revert if false positive

Advantages

» easy to understand & implement

» potential for optimization & heuristics

Disadvantages

» basic algorithm speculates too often, inefficient

» thoroughly confounded by sharing



Common Special Cases RCGCACFP

Acyclic Data Trancén

Special Cases

Acyclic Data

» some data may not have cycles at all

statically by type
dynamically by usage
» plain reference counting preferred

Fixed Data
» global constants & let bindings

» reachable by root references

» lower bound for lifetime known



RCGC4CFP

Trancén

CFP

Functional Programming
&
Cycles



RCGC4CFP

Cyclical Functional Programming

Trancén

Theory

In Common With Other FP Paradigms

» purely functional; immutable data
» free data types & recursion

» strict; no infinite data

Speciality: Cycles

detect by searching the call stack for recurring inputs

handle by special values & operations



Cyclical Functional Programming
Cycle Handling

Cycle Handling & Unfold

» build result top-down (destination passing)
» upon cycle, just copy previous result (ditto)

» effective for all primitively corecursive functions

Cycle Handling & Search

> traverse recursively
» upon cycle, return truth value immediately
» fixed point semantics

false least fixed point
true greatest fixed point
either intermediate fixed points

RCGC4CFP

Trancén

Theory



RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

map (+5) [T ]

Xs ys




Cyclical Functional Programming

Example: map

map (+5) [o}—{#F-

Xs ys

RCGC4CFP

Trancén

Theory



Cyclical Functional Programming

Example: map

map (+5) [o}—{#F-

Xs ys

RCGC4CFP

Trancén

Theory



Cyclical Functional Programming

Example: map

map (+5) [}—®H

map (+5) [o}—{#F-

Xs ys

RCGC4CFP

Trancén

Theory



Cyclical Functional Programming

Example: map

=]
o |

map (+5) [}—®H

map (+5) [o}—{#F-

|
ML

Xs ys

RCGC4CFP

Trancén

Theory



Cyclical Functional Programming

Example: map

=]
o |

map (+5) [}—®H

.

map (+5) [o}—{#F-

Xs ys

RCGC4CFP

Trancén

Theory



RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

map (+5) [SHToF
map (+5) [
map (+5) [T

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

map (+5) [SHToF
map (+5) [
map (+5) [T

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

map (+5) [SHToF
map (+5) [
map (+5) [T

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

map (+5) [e}—T®F
map (+5) [e}—ToF
map (+5) [e}—T#F
map (+5) [o}—{#F

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

1

map (+5) [o}foF Fode
map (+5) E’E”' B ]
]

=

map (+5) [}—®H
map (+5) [o}—{#F-

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

oL

map (+5) [o}foF Fode
map (+5) E’E”' B ]
]

=

map (+5) [}—®H
map (+5) [o}—{#F-

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

map (+5) E\E Te 4@3
map (+5) [ o —— o]
map (+5) [efToF
map (+5) [FHTeH—— =]

map (+5) [o}—{#F-

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

-| map (+5) E\E . '4_'?‘:'
map (+5) [ o —— o]
map (+5) [efToF
i (+5) [F-FoHF—— zal

map (+5) [o}—{#F-

Xs ys




RCGC4CFP

Cyclical Functional Programming

Example: map Trancén

Theory

-| map (+5) E\E = 5
4@ o
map (+5) [T [

map (+5) [oToF
[msp (+5) [FHF3F Z21
map (+5) [oFoF

Xs ys




Implementation of CFP RCGCACFP

Programming System Trancén

Implementation

The Malice System

» virtual machine, supports

» destination passing & higher-order functions
» cycle detection & handling (ditto)

> interpreter & aot compiler



Implementation of CFP
Applications

Cyclic Lists generalization of familiar list algorithms

> insert, delete, length
> map, filter, quicksort

Rationals generalization of school math algorithms

» arithmetics, order
» period detection

Algebraic Subtyping vtable-like dynamic encoding

> static recursive subtype checking
» dynamic (duck typing) access

Real-World Applications

RCGC4CFP

Trancén

Implementation



RCGC4CFP

Trancén

Algorithm

Wanted:
Reference-Counting Algorithm



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

/\7\

Initial Situation



Deriving an Algorithm RCGCACFP
MLW At Work Trancén
Deriva tion

A K K

00

0/ \0/—>\ ]

Initial Situation



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K

00

AV

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

AV

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

AV

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

e o
AW
® ® @

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

e o
AW
® ® @

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K Evaluation

@ O
K
®@ O

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K

-0

0/0 0]

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K

-0

0/0 0]

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K

-0

‘/ ‘/\K

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K

-0

‘/ ‘/\K

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K K

00

AV

Delete #1: Reachable, sharing



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

0O

AV

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

AV

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

AV

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

@ o
AW
® ® @

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

@ o
AW
® ® @

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K Evaluation

® O
K
®@ O

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

® O
K
®@ O

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

® O
K
® O

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

. ‘/\K

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

. ‘/\K

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

AV

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

0O

AV

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

K

0O

AV

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

AV

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

‘/ \‘H o

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

‘/ \‘H o

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation
Evaluation

. e

0/0 0]

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation
Evaluation

@ O
K
®@ O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation
Evaluation

@ O
K
®@ O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

@ o
K
®@ O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

@ o
K
®@ O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

@ o
K
®@ o O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

® O
K
®@ o O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
MLW At Work Trancén

Derivation

® O
K
® O O

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
Idea #1 Trancén

Idea #1 — Component Analysis

Derivation

» consider strongly connected components

> all cells in an SCC die together
» only inter-SCC references count for reachability

> maintain separate inter/intra counts
> inter count drops to zero =—> garbage

Problems

> inter-SCC references may point to distant members
(#2)

> maintaining inter/intra classification is hard



Deriving an Algorithm RCGCACFP
Idea #2 Trancén

|dea #2 — Edge Coloring D

> approximate inter/intra by maintained strong/weak
partition, a la Brownbridge

> strong =~ inter
> choose invariants that are cheap to maintain

1. no cycle is entirely strong
2. weak in + strong out = strong in

> maintain separate strong/weak counts
» strong count drops to zero —> garbage



RCGC4CFP

Deriving an Algorithm

Invariants Trancén

How To Maintain Invariant 1

Derivation

» mutator creates references in three ways only

1. root = strong
2. constructor argument = strong
3. ditto = weak

How To Maintain Invariant 2

» deleting (strong) references may create violations
» weak in & no strong in & strong out

» rectify my making strong out references weak
> propagate



Deriving an Algorithm RCGCACFP
EC At Work Trancén
A K K
C—>C19)
S

K
U9—>C)

Initial Situation



Deriving an Algorithm
EC At Work

A K K

—®

0/ Y

Initial Situation

RCGC4CFP

Trancén



Deriving an Algorithm
EC At Work

K K

O—®

0/ P

Delete #1: Reachable, sharing

RCGC4CFP

Trancén

Derivation



Deriving an Algorithm
EC At Work

K K

@—®

0/ P

Delete #1: Reachable, sharing

RCGC4CFP

Trancén

Derivation



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

O—-®

0/ P

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

@ @
/O,
® G—

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

@ @
/O,
® G—

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

¥
e @

¥

) @—E9

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

¥
e @

¥

) @—En

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

® @
K
® © ®

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

D @
D ® @

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

®» @
® ® @

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

®
® ® @

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

® @
K
® ® ®

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

. ‘/\K

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

. ‘/\K

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

e @
/O,
® 7

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

=

¢ o-&

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

K

=

¢ o-&

Delete #2: Reachable, different way



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

Q0

¢ o-&

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

oo

7

’
i AY
4

¥ oo ¥
D @—En

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

oo

7

’
i AY
4

¥ oo ¥
D @—En

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® 0

7
’
’

¥ ¥
OEROEND)

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® @
K
® © ®

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® @
K
® © ®

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® @
D ® @

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

@ @
@ ©® @

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

D @
®© ® @

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

D @
@ ® @

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® 0
K
® & ©

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® O
K
® & ©

Delete #3: Unreachable



RCGC4CFP

Deriving an Algorithm
EC At Work Trancén

Derivation

® O
K
® & ©

Delete #3: Unreachable



Deriving an Algorithm receacre
Independence Trancén
Independence Thesis Derivation

» edge coloring is independent of other
optimizations/heuristics

> “push-out” should be possible

Case Study: Deletion Queue

> queue zero-count cell to defer speculation
> process one entry = others redundant

» combined with edge coloring in three hours



Evaluation RCGC4CFP

Measurement Trancén

What And How To Measure

Evaluation

» no real-world implementation/application exists

» cannot measure runtime

Extend Idea From Original MLW Paper

simulate & count traversal operations
single (cyclical) algorithm, varying amount of cycles

without queue & with different sizes

vV v v Yy

additionally measure green—blue ratio (overkill)



RCGC4CFP

Evaluation
Charts: No Cycles in Input

Trancén

25 T
MLW ——

EC ——

20
Evaluation
15
i)
©
g
10
5
0 sk e sk e e
0 1 2 5 10 20 50

Queue Size

quicksort 1 where
1 = [0..99]



Evaluation
Charts: Small Cycles in Input

14

12

10

KCalls

0 I I I I I
0o 1 2 5 10 20 50

Queue Size

quicksort 1 where
1 = [0..9] ++ (cycle [8,9])

RCGC4CFP

Trancén

Evaluation



Evaluation
Charts: Medium Cycles in Input

25

20

15

KCalls

10

MLW ——

quicksort 1 where

1 = [0..9] ++ (cycle [5..9])

10

Queue Size

20

50

RCGC4CFP

Trancén

Evaluation



Evaluation
Charts: Large Cycles in Input

45
40
35
30
25
20
15
10

5

0

KCalls

quicksort 1 where

1

cycle [0..14]

10 20 50

Queue Size

RCGC4CFP

Trancén

Evaluation



Evaluation RCGCACFP
Charts: Small Cycles in Input

Trancén

25

20
Evaluation

15

Overkill

10

0 L L f t i
0o 1 2 5 10 20 50

Queue Size

quicksort 1 where
1 = [0..9] ++ (cycle [8,9])



Evaluation RCGCACFP
Charts: Medium Cycles in Input

Trancén

18
16
14
12

Evaluation

10

Overkill

o N A O ©

0o 1 2 5 10 20 50

Queue Size

quicksort 1 where
1 = [0..9] ++ (cycle [5..9])



Evaluation
Charts: Large Cycles in Input

=
o

Overkill
o P N W b O O N 0 ©

MLW ——
EC ——

quicksort 1 where

1

cycle [0..14]

10 20 50
Queue Size

RCGC4CFP

Trancén

Evaluation



Evaluation

Special Cases

Special Cases Come For Free!

Acyclic Input no weak references
Acyclic Types as above, statically

Global Data persistent strong references

» no speculation in either case

RCGC4CFP

Trancén

Evaluation



COnClUSiOnS

(o> <> <>

«E>»



Conclusion RCGCA4CFP

Trancén

Summary

Summary

CFP paradigm creates cycles in controlled way
EC algorithm exploits control to speed up MLW
1-bit edge coloring, simple maintenance

full algorithm & proof in paper

combines with (some) other improvements

vV V. v v Vv .Y

applies where maintenance assumptions hold



Conclusion RCGCA4CFP

Trancén

Open Questions

» undo strong—weak conversion?

» more independent optimizations/heuristics? Opsn Questions
» applicable/efficient beyond toy examples?

» real-world applications of CFP?
» other applications with same mutator behavior?

Answers Welcome

» specification & proof in the paper

» Java demo implementation available



	Introduction
	RC
	History CRC
	Special Cases

	Cyclical Functional Programming
	Theory
	Implementation

	A Reference-Counting Algorithm for Cyclical Functional Programming
	Derivation
	Evaluation

	Conclusion
	Summary
	Open Questions


