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Reference Counting

In a Nutshell

I simple basic algorithm
I count number of live references to a cell
I reference count drops to zero =⇒ garbage

I often considered outdated, but not quite dead yet!

Famous Problem

I what about cycles?
I reference count drops to zero ⇐= garbage
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History of Cyclic Reference Counting
The Algorithm of Brownbridge (1985�88)

Principle

I partition references into strong and weak subset
I no cycle entirely strong
I weak edges irrelevant for reachability (maintain!)

I collection based on strong count only

Advantages

I intuitively appealing

Disadvantages

I hard to get right, complex code

I e�ciency issues
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History of Cyclic Reference Counting
The Algorithm of Lins, Martínez & Wachenchauzer (1990)

Principle

I detect cyclic garbage by �speculative deletion�

I revert if false positive

Advantages

I easy to understand & implement

I potential for optimization & heuristics

Disadvantages

I basic algorithm speculates too often, ine�cient

I thoroughly confounded by sharing
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Common Special Cases
Acyclic Data

Acyclic Data

I some data may not have cycles at all

statically by type
dynamically by usage

I plain reference counting preferred

Fixed Data

I global constants & let bindings

I reachable by root references

I lower bound for lifetime known
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Cyclical Functional Programming

In Common With Other FP Paradigms

I purely functional; immutable data

I free data types & recursion

I strict; no in�nite data

Speciality: Cycles

detect by searching the call stack for recurring inputs

handle by special values & operations
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Cyclical Functional Programming
Cycle Handling

Cycle Handling & Unfold

I build result top-down (destination passing)

I upon cycle, just copy previous result (ditto)

I e�ective for all primitively corecursive functions

Cycle Handling & Search

I traverse recursively

I upon cycle, return truth value immediately

I �xed point semantics

false least �xed point
true greatest �xed point

either intermediate �xed points
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Implementation of CFP
Programming System

The Malice System

I virtual machine, supports
I destination passing & higher-order functions
I cycle detection & handling (ditto)

I interpreter & aot compiler
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Implementation of CFP
Applications

Cyclic Lists generalization of familiar list algorithms

I insert, delete, length
I map, �lter, quicksort

Rationals generalization of school math algorithms

I arithmetics, order
I period detection

Algebraic Subtyping vtable-like dynamic encoding

I static recursive subtype checking
I dynamic (duck typing) access

Real-World Applications
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Deriving an Algorithm
Idea #1

Idea #1 � Component Analysis

I consider strongly connected components
I all cells in an SCC die together
I only inter-SCC references count for reachability

I maintain separate inter/intra counts
I inter count drops to zero =⇒ garbage

Problems

I inter-SCC references may point to distant members
(#2)

I maintaining inter/intra classi�cation is hard
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Deriving an Algorithm
Idea #2

Idea #2 � Edge Coloring

I approximate inter/intra by maintained strong/weak
partition, à la Brownbridge

I strong ' inter

I choose invariants that are cheap to maintain

1. no cycle is entirely strong
2. weak in + strong out =⇒ strong in

I maintain separate strong/weak counts
I strong count drops to zero =⇒ garbage
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Deriving an Algorithm
Invariants

How To Maintain Invariant 1

I mutator creates references in three ways only

1. root =⇒ strong
2. constructor argument =⇒ strong
3. ditto =⇒ weak

How To Maintain Invariant 2

I deleting (strong) references may create violations
I weak in & no strong in & strong out

I rectify my making strong out references weak
I propagate
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Deriving an Algorithm
Independence

Independence Thesis

I edge coloring is independent of other
optimizations/heuristics

I �push-out� should be possible

Case Study: Deletion Queue

I queue zero-count cell to defer speculation

I process one entry =⇒ others redundant

I combined with edge coloring in three hours
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Evaluation
Measurement

What And How To Measure

I no real-world implementation/application exists

I cannot measure runtime

Extend Idea From Original MLW Paper

I simulate & count traversal operations

I single (cyclical) algorithm, varying amount of cycles

I without queue & with di�erent sizes

I additionally measure green�blue ratio (overkill)
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Charts: Medium Cycles in Input
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Charts: Small Cycles in Input
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Charts: Medium Cycles in Input
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Special Cases

Special Cases Come For Free!

Acyclic Input no weak references

Acyclic Types as above, statically

Global Data persistent strong references

I no speculation in either case
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Summary

I CFP paradigm creates cycles in controlled way

I EC algorithm exploits control to speed up MLW

I 1�bit edge coloring, simple maintenance

I full algorithm & proof in paper

I combines with (some) other improvements

I applies where maintenance assumptions hold
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Conclusion

Open Questions

I undo strong�weak conversion?

I more independent optimizations/heuristics?

I applicable/e�cient beyond toy examples?
I real-world applications of CFP?
I other applications with same mutator behavior?

Answers Welcome

I speci�cation & proof in the paper

I Java demo implementation available
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