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In a Nutshell

» simple basic algorithm

» count number of live references to a cell
» reference count drops to zero — garbage

» often considered outdated, but not quite dead yet!

Famous Problem

» what about cycles?
» reference count drops to zero < garbage



History of Cyclic Reference Counting
The Algorithm of Brownbridge (1985-88)
Principle

» partition references into strong and weak subset

» no cycle entirely strong
» weak edges irrelevant for reachability (maintain!)

» collection based on strong count only

Advantages

> intuitively appealing

Disadvantages

» hard to get right, complex code

> efficiency issues
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History of Cyclic Reference Counting RCGC4CFP
The Algorithm of Lins, Martinez & Wachenchauzer (1990) Trancén

Principle History CRC

» detect cyclic garbage by “speculative deletion”

> revert if false positive

Advantages

» easy to understand & implement

» potential for optimization & heuristics

Disadvantages

» basic algorithm speculates too often, inefficient

» thoroughly confounded by sharing
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Special Cases

Acyclic Data

» some data may not have cycles at all

statically by type
dynamically by usage
» plain reference counting preferred

Fixed Data
» global constants & let bindings

» reachable by root references

» lower bound for lifetime known
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Theory

In Common With Other FP Paradigms

» purely functional; immutable data
» free data types & recursion

» strict; no infinite data

Speciality: Cycles

detect by searching the call stack for recurring inputs

handle by special values & operations



Cyclical Functional Programming
Cycle Handling

Cycle Handling & Unfold

» build result top-down (destination passing)
» upon cycle, just copy previous result (ditto)

» effective for all primitively corecursive functions

Cycle Handling & Search

> traverse recursively
» upon cycle, return truth value immediately
» fixed point semantics

false least fixed point
true greatest fixed point
either intermediate fixed points
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Implementation

The Malice System

» virtual machine, supports

» destination passing & higher-order functions
» cycle detection & handling (ditto)

> interpreter & aot compiler



Implementation of CFP
Applications

Cyclic Lists generalization of familiar list algorithms

> insert, delete, length
> map, filter, quicksort

Rationals generalization of school math algorithms

» arithmetics, order
» period detection

Algebraic Subtyping vtable-like dynamic encoding

> static recursive subtype checking
» dynamic (duck typing) access

Real-World Applications
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Wanted:
Reference-Counting Algorithm
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Idea #1 — Component Analysis

Derivation

» consider strongly connected components

> all cells in an SCC die together
» only inter-SCC references count for reachability

> maintain separate inter/intra counts
> inter count drops to zero =—> garbage

Problems

> inter-SCC references may point to distant members
(#2)

> maintaining inter/intra classification is hard
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|dea #2 — Edge Coloring D

> approximate inter/intra by maintained strong/weak
partition, a la Brownbridge

> strong =~ inter
> choose invariants that are cheap to maintain

1. no cycle is entirely strong
2. weak in + strong out = strong in

> maintain separate strong/weak counts
» strong count drops to zero —> garbage
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How To Maintain Invariant 1

Derivation

» mutator creates references in three ways only

1. root = strong
2. constructor argument = strong
3. ditto = weak

How To Maintain Invariant 2

» deleting (strong) references may create violations
» weak in & no strong in & strong out

» rectify my making strong out references weak
> propagate
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Independence Thesis Derivation

» edge coloring is independent of other
optimizations/heuristics

> “push-out” should be possible

Case Study: Deletion Queue

> queue zero-count cell to defer speculation
> process one entry = others redundant

» combined with edge coloring in three hours
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What And How To Measure

Evaluation

» no real-world implementation/application exists

» cannot measure runtime

Extend Idea From Original MLW Paper

simulate & count traversal operations
single (cyclical) algorithm, varying amount of cycles

without queue & with different sizes

vV v v Yy

additionally measure green—blue ratio (overkill)
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Charts: Medium Cycles in Input
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Evaluation

Special Cases

Special Cases Come For Free!

Acyclic Input no weak references
Acyclic Types as above, statically

Global Data persistent strong references

» no speculation in either case
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Summary

Summary

CFP paradigm creates cycles in controlled way
EC algorithm exploits control to speed up MLW
1-bit edge coloring, simple maintenance

full algorithm & proof in paper

combines with (some) other improvements

vV V. v v Vv .Y

applies where maintenance assumptions hold
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Open Questions

» undo strong—weak conversion?

» more independent optimizations/heuristics? Opsn Questions
» applicable/efficient beyond toy examples?

» real-world applications of CFP?
» other applications with same mutator behavior?

Answers Welcome

» specification & proof in the paper

» Java demo implementation available
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