
RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Conclusion

A Reference-Counting

Garbage Collection Algorithm

for Cyclical Functional Programming

Baltasar Trancón y Widemann

Universität Bayreuth, Germany

ISMM '08
Tucson, Arizona
2008�6�7/8



RCGC4CFP

Trancón

Introduction

RC

History CRC

Special Cases

CFP

Algorithm

ConclusionReference Counting

&

Cycles



RCGC4CFP

Trancón

Introduction

RC

History CRC

Special Cases

CFP

Algorithm

Conclusion

Reference Counting

In a Nutshell

I simple basic algorithm
I count number of live references to a cell
I reference count drops to zero =⇒ garbage

I often considered outdated, but not quite dead yet!

Famous Problem

I what about cycles?
I reference count drops to zero ⇐= garbage



RCGC4CFP

Trancón

Introduction

RC

History CRC

Special Cases

CFP

Algorithm

Conclusion

History of Cyclic Reference Counting
The Algorithm of Brownbridge (1985�88)

Principle

I partition references into strong and weak subset
I no cycle entirely strong
I weak edges irrelevant for reachability (maintain!)

I collection based on strong count only

Advantages

I intuitively appealing

Disadvantages

I hard to get right, complex code

I e�ciency issues



RCGC4CFP

Trancón

Introduction

RC

History CRC

Special Cases

CFP

Algorithm

Conclusion

History of Cyclic Reference Counting
The Algorithm of Lins, Martínez & Wachenchauzer (1990)

Principle

I detect cyclic garbage by �speculative deletion�

I revert if false positive

Advantages

I easy to understand & implement

I potential for optimization & heuristics

Disadvantages

I basic algorithm speculates too often, ine�cient

I thoroughly confounded by sharing



RCGC4CFP

Trancón

Introduction

RC

History CRC

Special Cases

CFP

Algorithm

Conclusion

Common Special Cases
Acyclic Data

Acyclic Data

I some data may not have cycles at all

statically by type
dynamically by usage

I plain reference counting preferred

Fixed Data

I global constants & let bindings

I reachable by root references

I lower bound for lifetime known



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

ConclusionFunctional Programming

&

Cycles



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming

In Common With Other FP Paradigms

I purely functional; immutable data

I free data types & recursion

I strict; no in�nite data

Speciality: Cycles

detect by searching the call stack for recurring inputs

handle by special values & operations



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Cycle Handling

Cycle Handling & Unfold

I build result top-down (destination passing)

I upon cycle, just copy previous result (ditto)

I e�ective for all primitively corecursive functions

Cycle Handling & Search

I traverse recursively

I upon cycle, return truth value immediately

I �xed point semantics

false least �xed point
true greatest �xed point

either intermediate �xed points



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

map (+5)

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

map (+5)

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

9

map (+5)

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

9

map (+5)

map (+5)

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

9

map (+5)

map (+5)

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Cyclical Functional Programming
Example: map

1

2

3

4

6

7

8

9

map (+5)

map (+5)

map (+5)

map (+5)

map (+5)

xs ys



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Implementation of CFP
Programming System

The Malice System

I virtual machine, supports
I destination passing & higher-order functions
I cycle detection & handling (ditto)

I interpreter & aot compiler



RCGC4CFP

Trancón

Introduction

CFP

Theory

Implementation

Algorithm

Conclusion

Implementation of CFP
Applications

Cyclic Lists generalization of familiar list algorithms

I insert, delete, length
I map, �lter, quicksort

Rationals generalization of school math algorithms

I arithmetics, order
I period detection

Algebraic Subtyping vtable-like dynamic encoding

I static recursive subtype checking
I dynamic (duck typing) access

Real-World Applications



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Wanted:

Reference-Counting Algorithm



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

3 2

11 3

Initial Situation



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

3 2

11 3

Initial Situation



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

2 2

11 3

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

2 1

10 3

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

2 1

10 3

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

2 1

00 2

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

2 1

00 2

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

00 1

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

01 1

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

01 1

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

11 2

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

11 2

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

2 2

11 3

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

11 3

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

10 3

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

10 3

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

00 2

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

00 2

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 1

00 1

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 1

00 1

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 1

00 1

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 1

10 2

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 1

10 2

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

10 3

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

11 3

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 2

11 3

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

11 3

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

01 2

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

1 1

01 2

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 1

01 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
MLW At Work

0 0

00 1

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
Idea #1

Idea #1 � Component Analysis

I consider strongly connected components
I all cells in an SCC die together
I only inter-SCC references count for reachability

I maintain separate inter/intra counts
I inter count drops to zero =⇒ garbage

Problems

I inter-SCC references may point to distant members
(#2)

I maintaining inter/intra classi�cation is hard



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
Idea #2

Idea #2 � Edge Coloring

I approximate inter/intra by maintained strong/weak
partition, à la Brownbridge

I strong ' inter

I choose invariants that are cheap to maintain

1. no cycle is entirely strong
2. weak in + strong out =⇒ strong in

I maintain separate strong/weak counts
I strong count drops to zero =⇒ garbage



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
Invariants

How To Maintain Invariant 1

I mutator creates references in three ways only

1. root =⇒ strong
2. constructor argument =⇒ strong
3. ditto =⇒ weak

How To Maintain Invariant 2

I deleting (strong) references may create violations
I weak in & no strong in & strong out

I rectify my making strong out references weak
I propagate



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

2/1 2/0

1/01/0 3/0

Initial Situation



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

2/1 2/0

1/01/0 3/0

Initial Situation



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

1/1 2/0

1/01/0 3/0

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

1/1 2/0

1/01/0 3/0

Delete #1: Reachable, sharing



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 2/0

1/01/0 3/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/0

1/00/0 3/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/0

1/00/0 3/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/0

0/00/0 2/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/0

0/00/0 2/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

0/00/0 1/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

0/00/0 1/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

0/00/0 1/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

0/00/0 1/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

0/00/0 1/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

1/00/0 2/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 1/0

1/00/0 2/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/0

1/00/0 3/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/1

1/00/1 3/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 1/1

1/00/1 3/0

Delete #2: Reachable, di�erent way



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 0/1

1/00/1 3/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 0/1

0/00/1 2/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/1 0/1

0/00/1 2/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/1

0/00/1 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
EC At Work

0/0 0/0

0/00/0 1/0

Delete #3: Unreachable



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Deriving an Algorithm
Independence

Independence Thesis

I edge coloring is independent of other
optimizations/heuristics

I �push-out� should be possible

Case Study: Deletion Queue

I queue zero-count cell to defer speculation

I process one entry =⇒ others redundant

I combined with edge coloring in three hours



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Measurement

What And How To Measure

I no real-world implementation/application exists

I cannot measure runtime

Extend Idea From Original MLW Paper

I simulate & count traversal operations

I single (cyclical) algorithm, varying amount of cycles

I without queue & with di�erent sizes

I additionally measure green�blue ratio (overkill)



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: No Cycles in Input

 0

 5

 10

 15

 20

 25

0 1 2 5 10 20 50

KC
al

ls

Queue Size

MLW
EC

quicksort l where

l = [0..99]



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: Small Cycles in Input

 0

 2

 4

 6

 8

 10

 12

 14

0 1 2 5 10 20 50

KC
al

ls

Queue Size

MLW
EC

quicksort l where

l = [0..9] ++ (cycle [8,9])



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: Medium Cycles in Input

 0

 5

 10

 15

 20

 25

0 1 2 5 10 20 50

KC
al

ls

Queue Size

MLW
EC

quicksort l where

l = [0..9] ++ (cycle [5..9])



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: Large Cycles in Input

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 1 2 5 10 20 50

KC
al

ls

Queue Size

MLW
EC

quicksort l where

l = cycle [0..14]



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: Small Cycles in Input

 0

 5

 10

 15

 20

 25

0 1 2 5 10 20 50

O
ve

rk
ill

Queue Size

MLW
EC

quicksort l where

l = [0..9] ++ (cycle [8,9])



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: Medium Cycles in Input

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 1 2 5 10 20 50

O
ve

rk
ill

Queue Size

MLW
EC

quicksort l where

l = [0..9] ++ (cycle [5..9])



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Charts: Large Cycles in Input

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

0 1 2 5 10 20 50

O
ve

rk
ill

Queue Size

MLW
EC

quicksort l where

l = cycle [0..14]



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Derivation

Evaluation

Conclusion

Evaluation
Special Cases

Special Cases Come For Free!

Acyclic Input no weak references

Acyclic Types as above, statically

Global Data persistent strong references

I no speculation in either case



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Conclusion

Summary

Open Questions

Conclusions



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Conclusion

Summary

Open Questions

Conclusion

Summary

I CFP paradigm creates cycles in controlled way

I EC algorithm exploits control to speed up MLW

I 1�bit edge coloring, simple maintenance

I full algorithm & proof in paper

I combines with (some) other improvements

I applies where maintenance assumptions hold



RCGC4CFP

Trancón

Introduction

CFP

Algorithm

Conclusion

Summary

Open Questions

Conclusion

Open Questions

I undo strong�weak conversion?

I more independent optimizations/heuristics?

I applicable/e�cient beyond toy examples?
I real-world applications of CFP?
I other applications with same mutator behavior?

Answers Welcome

I speci�cation & proof in the paper

I Java demo implementation available


	Introduction
	RC
	History CRC
	Special Cases

	Cyclical Functional Programming
	Theory
	Implementation

	A Reference-Counting Algorithm for Cyclical Functional Programming
	Derivation
	Evaluation

	Conclusion
	Summary
	Open Questions


