A Reference-Counting Garbage Collection Algorithm for Cyclical Functional Programming

Baltasar Trancón y Widemann

Universität Bayreuth, Germany

ISMM '08 Tucson, Arizona 2008–6–7/8 RCGC4CFP

Trancón

Introductior CFP Algorithm Conclusion

RCGC4CFP

Trancón

Introduction

RC History CRC Special Cases

CFP

Algorithm Conclusion

Reference Counting & Cycles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reference Counting

In a Nutshell

- simple basic algorithm
 - count number of live references to a cell
 - reference count drops to zero \Longrightarrow garbage
- often considered outdated, but not quite dead yet!

Famous Problem

- what about cycles?
 - ▶ reference count drops to zero ← garbage

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

RCGC4CFP

Trancón

Introduction

RC History CRC Special Cases

CFP

Algorithm Conclusion History of Cyclic Reference Counting The Algorithm of Brownbridge (1985–88)

Principle

- partition references into strong and weak subset
 - no cycle entirely strong
 - weak edges irrelevant for reachability (maintain!)
- collection based on strong count only

Advantages

intuitively appealing

Disadvantages

- hard to get right, complex code
- efficiency issues

RCGC4CFP

Trancón

Introduction

RC History CRC Special Cases

CFP

Algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

History of Cyclic Reference Counting The Algorithm of Lins, Martínez & Wachenchauzer (1990)

Principle

- detect cyclic garbage by "speculative deletion"
- revert if false positive

Advantages

- easy to understand & implement
- potential for optimization & heuristics

Disadvantages

- basic algorithm speculates too often, inefficient
- thoroughly confounded by sharing

RCGC4CFP

Trancón

Introduction

RC History CRC Special Cases

CFP

Algorithm Conclusion

Common Special Cases Acyclic Data

Acyclic Data

- some data may not have cycles at all statically by type dynamically by usage
- plain reference counting preferred

Fixed Data

- global constants & let bindings
- reachable by root references
- Iower bound for lifetime known

RCGC4CFP

Trancón

Introduction

RC History CRC Special Cases

Algorithm Conclusion

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

Functional Programming & Cycles

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Cyclical Functional Programming

In Common With Other FP Paradigms

- purely functional; immutable data
- free data types & recursion
- strict; no infinite data

Speciality: Cycles

detect by searching the call stack for recurring inputs handle by special values & operations

RCGC4CFP

Trancón

Introduction

CFF

Theory Implementation

Algorithm

Con clu sion

Cyclical Functional Programming Cycle Handling

Cycle Handling & Unfold

- build result top-down (destination passing)
- upon cycle, just copy previous result (ditto)
- effective for all primitively corecursive functions

Cycle Handling & Search

- traverse recursively
- upon cycle, return truth value immediately
- fixed point semantics

false least fixed point true greatest fixed point either intermediate fixed points

Trancón

Introduction

CFF

Theory Implementation

Algorithm

Conclusion

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□>

RCGC4CFP

Trancón

Introduction

Theory Implementation

Algorithm

Conclusion

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

くりゃく 前々 ふかく ふやく ふやく

RCGC4CFP

Introduction

Theory Implementation

Algorithm

Con clusion

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

RCGC4CFP

Introduction

Theory Implementation

Algorithm

Conclusion

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

RCGC4CFP

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

RCGC4CFP

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

RCGC4CFP

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

RCGC4CFP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

RCGC4CFP

Implementation of CFP Programming System

The Malice System

- virtual machine, supports
 - destination passing & higher-order functions
 - cycle detection & handling (ditto)
- interpreter & aot compiler

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

Conclusion

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Implementation of CFP Applications

Cyclic Lists generalization of familiar list algorithms

- ▶ insert, delete, length
- ▶ map, filter, quicksort

Rationals generalization of school math algorithms

- arithmetics, order
- period detection

Algebraic Subtyping vtable-like dynamic encoding

- static recursive subtype checking
- dynamic (duck typing) access

Real-World Applications

RCGC4CFP

Trancón

Introduction

CFP

Theory Implementation

Algorithm

C on clusion

RCGC4CFP

Trancón

Introduction

CFI

Algorithm Derivation Evaluation

Con clusion

Wanted: Reference-Counting Algorithm

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

$\begin{array}{c} \text{Deriving an Algorithm} \\ \text{MLW At Work} \end{array}$

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Initial Situation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$\begin{array}{c} \text{Deriving an Algorithm} \\ \text{MLW At Work} \end{array}$

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Initial Situation

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing
RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

Deriving an Algorithm Idea #1

Idea #1 — Component Analysis

- consider strongly connected components
 - all cells in an SCC die together
 - only inter-SCC references count for reachability
- maintain separate inter/intra counts
 - inter count drops to zero \Longrightarrow garbage

Problems

- inter-SCC references may point to distant members (#2)
- maintaining inter/intra classification is hard

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Deriving an Algorithm $I_{dea} \# 2$

Idea #2 — Edge Coloring

- approximate inter/intra by maintained strong/weak partition, à la Brownbridge
 - strong \simeq inter
- choose invariants that are cheap to maintain
 - 1. no cycle is entirely strong
 - 2. weak in + strong out \implies strong in
- maintain separate strong/weak counts
 - strong count drops to zero \Longrightarrow garbage

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Conclusion

Deriving an Algorithm Invariants

How To Maintain Invariant 1

- mutator creates references in three ways only
 - 1. root \implies strong
 - 2. constructor argument \implies strong
 - 3. ditto \implies weak

How To Maintain Invariant 2

- deleting (strong) references may create violations
 - weak in & no strong in & strong out
- rectify my making strong out references weak
 - propagate

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

うせん 御 (中学) (明) (日)

Deriving an Algorithm $_{\rm EC\ At\ Work}$

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Initial Situation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Deriving an Algorithm $_{\rm EC\ At\ Work}$

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Initial Situation

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #1: Reachable, sharing

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way
RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□>

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

くりゃく 前々 ふかく ふやく ふやく

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□>

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #2: Reachable, different way

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□>

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #2: Reachable, different way

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #2: Reachable, different way

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clu sion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Conclusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

C on clu si on

Delete #3: Unreachable

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Con clusion

Delete #3: Unreachable

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Deriving an Algorithm Independence

Independence Thesis

- edge coloring is independent of other optimizations/heuristics
- "push-out" should be possible

Case Study: Deletion Queue

- queue zero-count cell to defer speculation
- ▶ process one entry ⇒ others redundant
- combined with edge coloring in three hours

Trancón

Introduction

CFF

Algorithm

Derivation Evaluation

Conclusion

Evaluation Measurement

What And How To Measure

- no real-world implementation/application exists
- cannot measure runtime

Extend Idea From Original MLW Paper

- simulate & count traversal operations
- single (cyclical) algorithm, varying amount of cycles
- without queue & with different sizes
- additionally measure green-blue ratio (overkill)

RCGC4CFP

Trancón

Introduction

CFF

Algorithm Derivation Evaluation

Con clusion

Evaluation Charts: No Cycles in Input

Evaluation Charts: Small Cycles in Input

Evaluation Charts: Medium Cycles in Input

25 MLW -----EC 20 Evaluation 15 KCalls 10 5 0 2 5 10 20 50 0 1 Queue Size quicksort 1 where 1 = [0..9] ++ (cycle [5..9])

◆□ → ◆□ → ▲目 → ▲目 → ▲□ → ◆○ ●

Evaluation Charts: Large Cycles in Input

Evaluation Charts: Small Cycles in Input

RCGC4CFP

Trancón

Evaluation Charts: Medium Cycles in Input

Evaluation Charts: Large Cycles in Input

Evaluation Special Cases

Special Cases Come For Free!

Acyclic Input no weak references Acyclic Types as above, statically Global Data persistent strong references

no speculation in either case

RCGC4CFP

Trancón

Introduction

CFF

Algorithm Derivation Evaluation

Conclusion

< □ > < □ > < 三 > < 三 > < 三 > の < ⊙

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

 $\mathsf{Conclusion}$

Summary Open Questions

Conclusions

Conclusion

Summary

- CFP paradigm creates cycles in controlled way
- EC algorithm exploits control to speed up MLW
- ▶ 1-bit edge coloring, simple maintenance
- full algorithm & proof in paper
- combines with (some) other improvements
- applies where maintenance assumptions hold

RCGC4CFP

Trancón

Introduction

CFF

Algorithm

Con clusion

Summary Open Questions

Conclusion

Open Questions

- ► undo strong→weak conversion?
- more independent optimizations/heuristics?
- applicable/efficient beyond toy examples?
 - real-world applications of CFP?
 - other applications with same mutator behavior?

Answers Welcome

- specification & proof in the paper
- Java demo implementation available

RCGC4CFP

Trancón

Introduction CFP Algorithm Conclusion Summary Open Questions